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OPTIMAL DESIGNS

FOR NONPARAMETRIC ESTIMATION

OF ZEROS OF REGRESSION FUNCTIONS

Zdeněk Hlávka

ABSTRACT. We investigate nonparametric estimators of zeros of a regression
function and its derivatives and we derive the distribution of design points min-

imizing the expected width of a confidence interval and the expected variance
of the proposed estimator.

The main goal of this contribution is to derive the optimal distribution of de-
sign points for a nonparametric regression estimator of the so-called zero of a re-
gression function, i.e., the location in which the unknown regression function
intersects the horizontal axis.

A survey of literature concerning optimal design for nonparametric regression
models may be found in [20]. The immediately following discussion [7] suggests
that there seem to exist two different general approaches. One approach uses the
classical optimal design theory in order to find a finite set of support points with
associated weights minimizing, e.g., the sum of variances of the nonparametric
regression estimator in some pre-defined points [5], [12]. The other approach uses
calculus of variations in order to find designs minimizing Asymptotic Integrated
Mean Squared Error (AIMSE) of the nonparametric regression estimator [3],
[4], [10]. Similar ideas underlie also the derivation of minimax and maximin
designs, i.e., designs minimizing the maximum of AIMSE or designs maximizing
the minimum power of a test over a class of alternatives [1], [2]; cf. also [21].

In contrast to the previously proposed optimal designs [1]–[5], [10], [12], we
aim to find the design minimizing the variability of the empirical zero, i.e., the
location at which the nonparametric regression estimator intersects the horizon-
tal axis, instead of minimizing the variability of the nonparametric regression
estimator itself. Similarly as in [10], the optimal design is obtained by applying
standard calculus of variations. The main advantage of our approach is that prior
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information may be used very naturally. In Section 2, we obtain similar designs
as [10] but the interpretation of our result seems to be more straightforward.

A similar approach to optimal design has been previously used in [8] for
nonparametric estimator of the location of maximum with constant bandwidth.
In this paper, we concentrate on the empirical zero of an arbitrary derivative
of the regression function and we derive the optimal distribution of design points
also for local (adaptive) bandwidths.

Introduction. We consider a fixed-design nonparametric regression model, i.e.,

Yi = m(xi) + εi for i = 1, . . . , n, (1)

where Yi’s are observations of a response variable, 0 ≤ x1 < · · · < xn ≤ 1
are fixed values of the explanatory variable defined by a probability density
function fX(.) (i.e.,

∫ xi

xi−1

fX(u) du
.
= 1/n), and εi’s are iid centered random

errors. In Sections 1 and 2, we will consider also heteroscedastic random errors.

We are mainly interested in estimation of the zero of m(.), i.e., the x-coor-
dinate of the point in which the unknown regression function m(.) intersects
the horizontal axis. The zero is sometimes also called a root of the equation
m(.) = 0. We also investigate estimators of zeros of derivatives of m(.). The
symbol ξν denotes the zero of m(ν)(.), the νth derivative of m(.).

In Section 1, we start by investigating the asymptotic distribution of the
empirical zero, i.e., the value at which the nonparametric regression estima-
tor m̂(ν)(.) meets the horizontal axis. In Section 2, we obtain the distribution
of design points minimizing some measures of variability of the empirical zero.
Finally, a short simulation study is contained in Section 3.

Gasser-Müller estimator. Assuming that we observe n pairs of observations
(Yi, xi), i = 1, . . . , n, from the nonparametric regression model (1), the Gasser-
-Müller (GM) estimator [6] of m(ν)(.) is defined as

m̂n,bn,ν(x) =
1

bν+1
n

n
∑

i=1

si
∫

si−1

Kν

(

x− u

bn

)

duYi, (2)

where si−1 = 1
2 (xi + xi−1), bn is the bandwidth, and Kν(.) is a kernel function

of order (ν, k) [6], i.e., the support of the Lipschitz continuous function Kν(.) is
the interval 〈−1, 1〉 and

1
∫

−1

Kν(x)x
jdx =











(−1)νν! for j = ν,

0, 0 ≤ j < k, j 6= ν,

(−1)kk!Bk,k for j = k.

(3)

In the following, we fix the parameters ν and k and a kernel function Kν(.)
of order (ν, k).
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NONPARAMETRIC ESTIMATION OF ZEROSAssumption. The following assumptions are used in Section 1 in order to derive
the asymptotic distribution of the nonparametric estimator of ξν , i.e., the zero
of m(ν)(.), the νth derivative of the unknown regression function m(.)

(A1) The function m(k)(.) is Lipschitz continuous.

(A2) The Lipschitz continuous kernel function Kν(.) with support 〈−1, 1〉 is
of order (ν, k), where ν ≥ 0, k > ν + 1 and the difference k − ν is even.

(A3) The bandwidth bn → 0, nb2n→∞, nb2ν+1
n → ∞ as n → ∞.

(A4) The density of design points, fX(x) > δf > 0, is Lipschitz (γf )-continuous
with 0 < γf ≤ 1, i.e., |fX(u)− fX(v)| ≤ Lf |u− v|γf for all u and v ∈ 〈0, 1〉
and for some Lf > 0.

(A5) The random errors εi are iid and E|εi|
r < ∞ for some r > 2. Denoting εi =

εn(xi), where εn(x) is defined for all x ∈ 〈0, 1〉, we assume that Eεn(x) = 0
and Var

{

εn(x)
}

= σ2(x), where the function σ2(.) is Lipschitz continuous

and there exist 0 < δσ and Dσ < +∞ such that δσ < σ2(x) < Dσ for all
x ∈ 〈0, 1〉.

Assuming independent and identically distributed (iid) random errors, the
rate of uniform strong consistency and asymptotic normality of GM estimator is
derived in [6], [9], [11]. The uniform strong consistency and asymptotic normal-
ity of nonparametric regression estimators under various mixing assumptions is
investigated in [16], [18].

For simplicity, we discuss only iid random errors although the asymptotic
results in Sections 1 and 2 are valid also for strongly mixing random errors: the
asymptotic normality of GM estimator may be established by using a Central
Limit Theorem for nonstationary weakly dependent triangular arrays of random
variables [14] and the uniform strong consistency rate, needed for establishing the
asymptotic normality of empirical zero, may be derived by applying a Hoeffding

type exponential inequality for strongly mixing sequences [17] and by proceeding
similarly as in [9], [11].

Assuming iid random errors, the asymptotic distribution of empirical zero is
described in the following Section 1.

1. Asymptotic distribution of empirical zero

The symbol ξ̂n,bn,ν denotes the empirical zero of mn,bn,ν(.), i.e., a solution

of the equation m̂n,bn,ν(ξ̂n,bn,ν) = 0. The empirical zero is a natural estimator
of the zero ξν .

In order to establish the asymptotic distribution of ξ̂n,bn,ν , we use an addi-
tional assumption concerning the geometry of the function m(.) close to ξν :
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(A6) The zero ξν is unique. There exist a, b, c > 0, and τ ≥ 1 such that 0 < a <
ξν < b < 1,m(ν)(.) is strictly monotonous on 〈a, b〉 and |m(ν)(t)| ≥ c|t−ξν |

τ

for t ∈ 〈a, b〉.Proposition 1. Assume that assumptions (A1)–(A6) hold, nb2ν+3
n / logn → ∞,

the kernel Kν(.) is differentiable, Kν(−1) = Kν(1) = 0, the derivative K′

ν(.) is
Lipschitz continuous, the regression function m(.) is (k + 1)-times continuously

differentiable, and m(ν+1)(ξν) 6= 0. If n1/2b
k+1/2
n → d ≥ 0, then

(

nb2ν+1
n

)1/2(
ξ̂n,bn,ν − ξν

)

D
−→ N

(

−
dBk,km

(k)(ξν)

m(ν+1)(ξν)
,
σ2(ξν)

fX(ξν)

V

{m(ν+1)(ξν)}2

)

.

(4)

P r o o f. The proof is a modification of the proof of Theorem 3.1 in [11]. �

1.1. Constant bandwidth

Looking at the mean and the variance of the asymptotic distribution of the
empirical zero given in Proposition 1 and replacing d2 by nb2k+1

n , it is easy to
express the Mean Squared Error (MSE)

MSE(ξ̂n,bn,ν) = b2k−2ν
n

(

Bk,km
(k)(ξν)

m(ν+1)(ξν)

)2

+
1

nb2ν+1
n

σ2(ξν)

fX(ξν)

V

{m(ν+1)(ξν)}2
.

Assuming that the bias term is not equal to zero, i.e., assuming that the kth de-
rivative of the regression function m(k)(ξν) 6= 0, we may calculate the bandwidth
that minimizes the MSE

b0,n = n−1/(2k+1)

[

2ν + 1

2k − 2ν

σ2(ξν)V

fX(ξν){Bk,km(k)(ξν)}2

]1/(2k+1)

= O
(

n−1/(2k+1)
)

. (5)

1.2. Local bandwidth

The precision of measurements sometimes depends on location and, in some
situations, we may assume that σ2(xi) = σ2w(xi), where w(.) > 0 is a known
function and σ2 > 0 is an unknown constant. Apart of the variance function
w(.), the bandwidth may depend also on the known density of design points.
From (5), we obtain that the asymptotically optimal local bandwidth satisfies

b0,n,f,w(x) ∝

(

w(x)

nfX(x)

)1/(2k+1)

. (6)

For homoscedastic random errors, the local bandwidth is defined by (6) with
w(.) ≡ 1.
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2. Optimal designs

In the nonparametric regression setup, the problem of finding the optimal
distribution of design points has been previously addressed in [10] from the
point of view of the Integrated Mean Squared Error (IMSE) of the GM kernel
regression estimator m̂(x). Choosing a probability measure H with a positive
and continuous density h(.) on 〈0, 1〉 and considering

IMSE = E

∫

{

m̂(x)−m(x)
}2
dH(x) ≈

1

nbn

∫

K2(s) ds

∫

h(x)

fX(x)
dx,

the Asymptotic IMSE (AIMSE) optimal density of design points, with constant
bandwidth and homoscedastic random errors, is

f∗

X(x) = h(x)1/2/

∫

h(u)1/2 du ∝ h(x)1/2, (7)

see [10] for more details.

Unfortunately, the probability measure H lacks any clear interpretation and,
therefore, the AIMSE optimal design is not easily applicable in practice. In this
contribution, similarly as in [8], we overcome this obstacle by obtaining designs
minimizing the variability of the empirical zero.

Let the symbol A denote a probability measure describing the prior distribu-
tion of the zero and let us assume that A has a positive and continuous density
a(.) such that:

(A7) There exists δ > 0 such that a(x) > δ for all x ∈ 〈0, 1〉.

The distribution of design points minimizing our (subjective) prior expectation
of variability of empirical zero based on the nonparametric regression estimator
with constant bandwidth (5) is derived in Proposition 2.Proposition 2. Assume that the assumptions of Proposition 1 and (A7) hold,
σ2(.) = σ2w(.), where w(.) is a known function and 0<σ2<∞, m(ν+1)(ξν) = m1

does not depend on the value of ξν , and that the constand bandwidth b0,n(.) is
given by (5).

(1) Assuming that the product w(.)a(.) satisfies assumption (A4), the densi-

ty of design points fV,w(x) ∝
{

w(x)a(x)
}1/2

minimizes the expectation of

the asymptotic variance of the empirical zero, i.e.,
∫

Var
(

ξ̂n,bn,ν |ξν =u
)

×
a(u) du, with respect to the prior density a(.).

(2) Assuming that {w(.)}2/3{a(.)}4/3 satisfies assumption (A4), the density of
design points fL,w(x) ∝ {w(x)}1/3{a(x)}2/3 minimizes the expected length
of confidence intervals with respect to the prior density a(.).

P r o o f. The proof is analogous to the proof of Theorem 2 in [8]. �
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Proposition 2 suggests that, using constant bandwidth, the density of design
points minimizing the variability of the empirical zero is the same as the density
of design points minimizing the variability of the empirical location of maximum;
cf. [8, Theorem 2].

The main result is the following Theorem 1 where we derive the optimal distri-
bution of design points for the empirical zero based on nonparametric regression
estimator using local bandwidth.Theorem 1. Assume that the assumptions of Proposition 1 and (A7) hold,
σ2(x)=σ2w(x), where w(x) is a known function and 0<σ2<∞, m(ν+1)(ξν)=m1

does not depend on the value of the true zero ξν , and that the local bandwidth
b0,n,f,w(.) is given by (6).

(1) Assuming that the product
{

w(x)
}(4k−4ν)/(4k−2ν+1){

a(x)
}(4k+2)/(4k−2ν+1)

satisfies (A4), the density of design points

fV,w,l(x) ∝
{

w(x)
}(2k−2ν)/(4k−2ν+1){

a(x)
}(2k+1)/(4k−2ν+1)

minimizes the expectation of the asymptotic variance of the empirical zero,
∫

Var
(

ξ̂n,bn,ν |ξν = u
)

a(u) du,

with respect to the prior density a(.).

(2) Assuming that
{

w(x)
}(4k−4ν)/(3k−ν+1){

a(x)
}(4k+2)/(3k−ν+1)

satisfies as-

sumption (A4), the density of design points

fL,w,l(x) ∝
{

w(x)
}(k−ν)/(3k−ν+1){

a(x)
}(2k+1)/(3k−ν+1)

minimizes the expected length of confidence intervals for the true zero with
respect to the prior density a(.).

P r o o f. We prove only part (1) because the proof of part (2) is very similar.
Plugging the local bandwidth b0,n,f,w(.) into the asymptotic variance of the
estimator provided by Proposition 1, we obtain that

Var(ξ̂n,bn,ν) ∝

{

w(ξν)

fX(ξν)

}(2k−2ν)/(2k+1)

leading the minimization problem

fV,w,l = argmin
fX

1
∫

0

Var
(

ξ̂n,b0,n,f,w(x),ν |ξν = x
)

a(x ) dx

= argmin
fX

1
∫

0

{

fX(x)
}−(2k−2ν)/(2k+1){

w(x)
}(2k−2ν)/(2k+1)

a(x) dx
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NONPARAMETRIC ESTIMATION OF ZEROS

that belongs to standard calculus of variations. Denoting

F (x, y, y′) = F (x, FX , fx)

=
{

fX(x)
}−(2k−2ν)/(2k+1){

w(x)
}(2k−2ν)/(2k+1)

a(x),

the necessary condition for an extreme of

I(fX) = I(y′) =

1
∫

0

F (x, y, y′) dx

is

F ′

y −
d

dx
F ′

y′ = 0,

see, e.g., [13], [19]. In our setup, F ′

y = 0 and

F ′

y′(x) ∝ −f
−(4k−2ν+1)/(2k+1)
X (x)

{

w(x)
}(2k−2ν)/(2k+1)

a(x)

and the optimal density of design points fV,w,l(.) thus has to satisfy

{

fV,w,l(x)
}−(4k−2ν+1)/(2k+1){

w(x)
}(2k−2ν)/(2k+1)

a(x) = constant.

The proof may now be finished similarly as the proof of Theorem 2 in [8]. �

In Table 1, we summarize the powers of the prior density defining optimal
nonparametric regression designs concerning the regression function and its first
two derivatives in a homoscedastic situation (i.e., w(.) ≡ 1) with k = ν + 2.

Table 1. Powers of the prior density defining the optimal experiment de-
sign for estimators of zeros of the regression function and its first and
second derivative for homoscedastic random errors.

Constant bandwidth Local bandwidth

m(.) m′(.) m(2)(.) m(.) m′(.) m(2)(.)

ropt(MSE) 1/2 1/2 1/2 5/9
.
= 0.56 7/11

.
= 0.63 9/13

.
= 0.69

ropt(MAD) 2/3 2/3 2/3 5/7
.
= 0.71 7/9

.
= 0.78 9/11

.
= 0.82

We have already remarked that, using constant bandwidth, exactly the same
designs are obtained in [8] for the location of maximum. Using local bandwidth,
it can be shown that the optimal design for the location of maximum of m(ν)(.)
is also optimal for estimation of the zero of the (ν + 1)th derivative m(ν+1)(.).

Comparing our results with the AIMSE optimal design (7), we note that MSE
optimal design for the empirical zero is also AIMSE optimal with h(.) replaced
by the prior density a(.); cf. [10].
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3. Simulations

The simulation study was implemented in the statistical computing environ-
ment R [15]. All simulation results are based on GM estimator using the quartic
kernel (ν = 0, k = 2) and 1000 simulations.

Notice that bandwidths (5) and (6) are asymptotically optimal for estimation
of zeros of a regression function (ν = 0) if m(2)(ξ0) 6= 0. For example, if m(.)
is a linear function, more precise estimators of ξ0 could be obtained by over-
-smoothing, see also [8] for a similar observation concerning estimators of the
location of maximum of a symmetric unimodal regression function.

In order to guarantee that

m(2)(ξ0) 6= 0,

we use the nonlinear regression function

m(x) =
{

(x+ 0.05)2 − (ξ0 + 0.05)2
}

(x+ 0.05)−1.

Notice also that the first derivative m(1)(ξ0) does not depend on ξ0. For simplic-
ity, we assume homoscedasticity (w(.) ≡ 1) and write the local bandwidth (6) as

b0,n,f,w(x) = b
{

fX(x)
}−1/(2k+1)

so that b remains the only bandwidth parameter used in the remaining part
of this section.

Similarly as in [8], the prior distribution of the zero, aS(.), is a mixture of Uni-
form, U (0, 1), and Normal distribution, N

(

µξ, σ
2
ξ

)

, restricted to 〈0, 1〉, i.e.,

aS(ξ) ∝ (1− p)φµξ,σ
2

ξ

(

ξ|ξ ∈ 〈0, 1〉
)

+ p,

where φ
(

.|〈0, 1〉
)

denotes the density of a N
(

µξ, σ
2
ξ

)

distribution restricted to the

interval 〈0, 1〉. In this simulation, we set µξ = 0.4, σξ = 0.1, and p = 0.1.

The density of design points is controlled by a parameter r such that for fixed
value of r, the density of design points, fX,r(.), is proportional to arS(.), i.e.,

fX,r(x) ∝ arS(x).

The value r = 0 leads uniformly distributed design points

fX,0(x) = I
(

x ∈ 〈0, 1〉
)

,

the value r = 1 means that the density of design points is equal to the prior
density of the zero

fX,1(x) = aS(x).

In general, higher values of the parameter r mean that design points are more
concentrated in the neighborhood of the mode of the prior density aS(.).

We choose somewhat higher number of observations, n = 800, because all
theoretical results are asymptotic.We assume homoscedasticity and set σ = 0.5.
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Figure 1. Simulations for local bandwidth: n = 800, σ = 0.5, thick vertical
lines denote the MSE optimal value ropt(MSE) = 5/9

.
= 0.56 and the MAD

optimal value ropt(MAD) = 7/9
.
= 0.71.

Logarithms of simulated MSE and MAD of the empirical zero on a grid for
the bandwidth parameter b and the design density parameter r are plotted
in contour- and heatplots in the upper part of Figure 1: the optimal bandwidth
parameter seems to be b = 0.2 and, for this bandwidth, the simulation agrees
very well with the theoretically optimal values.

The improvement of using the optimal distribution of design points is dis-
played in the lower part of Figure 1 only for b = 0.2. Both MSE and MAD
do not change much for the parameter r ∈ (0.4, 0.8) and even the uniformly dis-
tributed design points, i.e., r = 0, do not perform much worse than the optimal
design.

Similarly as in [8], we may conclude by saying that the choice of appropriate
bandwidth is much more important than the distribution of the design points.
From practical point of view, it looks that uniformly distributed design points
are not much worse than the asymptotically optimal design.
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[13] NOŽIČKA, F.: Calculus of variations (5th ed.), in: Přehled užité matematiky (K. Rek-
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