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ESTIMATION OF MA(1) MODEL

BASED ON ROUNDED DATA

Meihui Guo — Gen-Liang Li

ABSTRACT. Most recorded data of continuous distributions are rounded to the
nearest decimal place due to the precision of the recording mechanism. This
rounding entails errors in estimation and measurement. In this study, we con-
sider parameter estimation of time series models based on rounded data. The

adjusted maximum likelihood estimates in [Stam, A.—Cogger, K. O.: Rounding
errors in autoregressive processes, Internat. J. Forecast. 9 (1993), 487–508] are de-
rived theoretically for the first order moving average MA(1) model. Simulations
are performed to compare the efficiencies of the adjusted maximum likelihood
estimators with other estimators.

1. Introduction

Most recorded data are rounded to the nearest decimal place due to precision
of the recording mechanism. This rounding entails errors in estimation and mea-
surement. For example, in 1982 the Vancouver stock exchange (VSE) initialized
the stock market index at 1000. After 22 months of recomputing the index and
truncating to three decimal places at each change in market value, the value of
the index becomes 524.811, regardless of the fact that the “true” value is 1098.892
(M c C u l l o u g h and V i n o d, 1999). Another example is the ineffectiveness of
the Patriot missile defense system during the Gulf War (August, 1990–February,
1991) caused by the rounding error of its integer timing register (S k e e l , 1992).
The round-off error sometimes is a major source of measurement errors and
distorts statistical inference. In the earlier days, the rounding errors were not re-
garded as a serious problem because the sample size was small and was tolerable
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relatively to the statistical problem. However, the technologies of nowadays de-
velop rapidly, which makes it possible to collect, store and analyze data sets of
huge size in fields such as biological sciences, finance and wireless communica-
tions, etc. The effect of rounding errors inevitably have to be considered in the
statistical analysis of these huge data sets.

The earliest study on the rounding error for independent identically dis-
tributed (i.i.d.) sample is back to S h e p p a r d (1897) who proposed the maxi-
mum-likelihood correction for the sample covariance estimator. See also T r i c -
k e r (1984, 1990A,B, 1992), D em p s t e r and R o b i n (1983), H a l l (1982),
H e i t j a n and R u b i n (1991), L e e and V a r d e m a n (2001, 2002). For de-
pendent rounded sample, S t a m and C o g g e r (1993) studied the adjusted
maximum likelihood estimate for the autoregressive (AR) time series models.
B a i , et al., (2009) proposed the approximate maximum likelihood estimation
for time series models and proved strong consistency and asymptotic normal-
ity of the estimators. Z h a n g, et al., (2010) proposed the short overlapping
series estimator for α-mixing models. In this study, we consider the parameter
estimation of the first order moving average MA(1) time series models based
on rounded data. The adjusted maximum likelihood estimates of the MA(1)
models are derived theoretically. Simulation study is performed to compare the
efficiencies of the adjusted maximum likelihood estimators with other estimators
for the MA(1) models.

The paper is organized as follows. In Section 2, we introduce the adjusted
maximum likelihood estimates for the AR models. In Section 3, we derive the
adjusted maximum likelihood estimates for the MA(1) models. Simulation re-
sults and discussion are given in Section 4.

2. Adjusted MLE of the AR models

In this section, we introduce the adjusted maximum likelihood estimate
of S t a m and C o g g e r (1993). Consider the following AR(p) model

Xt − µ = φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + · · ·+ φp(Xt−p − µ) + εt, (1)

where

εt
i.i.d.
∼ N(0, σ2) for t = 1, . . . , n

and

β = (µ,Φ, σ2), Φ = (φ1, . . . , φp)

represent the parameter vector.

46



ESTIMATION OF MA(1) MODEL BASED ON ROUNDED DATA

The rounded version of X = (X1, . . . , Xn) is denoted by

Y = (Y1, . . . , Yn),

where

Yt = yt if and only if Xt = xt

and

yt −
h

2
≤ xt < yt +

h

2
, t = 1, . . . , n,

and h is the width of the rounding interval. Herein, we assume

Yt = Xt + Ut, (2)

and the rounding errors Ut’s are i.i.d Unif
[

−h
2 ,

h
2

]

random variables. If the
exact data x = (x1, . . . , xn) are available, the maximum likelihood estimator
(MLE) of β is obtained by maximizing the joint probability density function
(pdf) f(x; β) of x with respect to β. In most situations, only the rounded data

y = (y1, . . . , yn) can be observed. The pseudo MLE (PMLE) β̂0 of β is obtained
by ignoring the rounding effect and solving the following normal equations

∂ ln f(y; β)

∂β
= 0. (3)

If the rounding effect is considered, then by (2) the likelihood function of β based
on the rounded data y is

L(β;y) = h−n

yn+h/2
∫

yn−h/2

. . .

y1+h/2
∫

y1−h/2

f(u; β) du1 . . . dun. (4)

The MLE β̂ of β based on the rounded data is obtained by maximizing the
likelihood function L(β;y) which is usually intractable due to its n-fold integrals.
L i n d l e y (1950) derived the Maclaurin expansion of the likelihood function
L(β;y) at h = 0 when f is a univariate distribution function. T a l l i s (1967)
extended the Maclaurin expansion to the following multivariate case

L(β;y) = f(y; β) +
h2

24

n
∑

t=1

∂2f(y; β)

∂y2t
+O

(

h3
)

. (5)

The log-likelihood function can be approximated near h = 0 by

lnL(β;y) ≈ ln f(y; β) +
h2

24

n
∑

t=1

[

∂2f(y; β)/∂y2t
f(y; β)

]

+O
(

h3
)

. (6)

Using the PMLE β̂0 as the initial estimate, the estimate utilizing one iteration
of the Newton-Raphson method is

β̂A = β̂0 −A−1b, (7)
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where A = [aij], b = [bj ] and

aij =
∂2 ln(L(β;y))

∂βi∂βj
≈

∂2 ln(f(y; β))

∂βi∂βj

∣

∣

∣

∣

β=β̂0

, (8)

bj =
∂ ln(L(β;y))

∂βj
≈

h2

24

∂

∂βj

n
∑

t=1

[

∂2f(y; β)/∂y2t
f(y; β)

]

∣

∣

∣

∣

∣

β=β̂0

, (9)

where βi denotes the ith element of β, i, j = 1, . . . , p+ 2.

For the AR(1) model, the adjusted MLE’s are

µ̂A = µ̂0, φ̂A = φ̂0 + h2φ̂0

(

1− φ̂2
0

)

/12σ̂2
0, σ̂2

A = σ̂2
0 − h2

(

1 + φ̂2
0

)

/12 ,

where
(

µ̂0, φ̂0, σ̂
2
0

)

are the PMLE of
(

µ, φ1, σ
2
)

.

3. Adjusted MLE of the MA(1) model

Assume X = (X1, . . . , Xn) follows the MA(1) model

Xt = εt − θεt−1, εt
i.i.d.
∼ N

(

0, σ2
)

, (10)

where |θ| < 1. The joint pdf of X = x is

f(x; β) =
(

2πσ2
)

−n/2
exp







−
1

2σ2

n
∑

t=1

(

t−1
∑

i=0

θixt−i

)2






, (11)

where β =
(

θ, σ2
)

is the parameter vector and assume xt = 0, for t ≤ 0.
The likelihood function of β based on the rounded data y = (y1, . . . , yn) is the
L(β;y) defined in (4) with f given by (11), and the adjusted MLE’s of β can be
derived from (7), (8) and (9) with

A =











∂2 ln f

∂θ2
∂2 ln f

∂θ∂σ2

∂2 ln f

∂θ∂σ2

∂2 ln f

∂(σ2)2











β=β̂0

, (12)

b′ =
h2

24

(

n
∑

t=1

∂

∂θ

∂2f(y; β)/∂y2t
f(y; β)

,

n
∑

t=1

∂

∂σ2

∂2f(y; β)/∂y2t
f(y; β)

)

β=β̂0

, (13)

where β̂0 is the PMLE of β. The following Lemma 1–Lemma 2 are preliminaries
of Theorem 3.
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Lemma 1. Let

et=

t−1
∑

i=0

θiyt−i, ėt=

t−1
∑

i=1

iθi−1yt−i and ët=

t−1
∑

i=2

i(i− 1)θi−2yt−i.

Then we have

(i) limn→∞

1

n

∑n
t=2

(

ė2t + etët
)

=
(1 + 3θ2)γ∗

0 + 2θ(3 + θ2)γ1
(1− θ2)3

,

(ii) limn→∞

1

n

∑n
t=1

∑n−t
i,j=0 θ

i+jet+iėt+j =
θ(2 + θ2)γ∗

0 + (1 + 5θ2)γ1
(1− θ2)4

,

where

γ∗

0 = γ0 +
h2

12
, γ0 = σ2

(

1 + θ2
)

and γ1 = −θσ2.

P r o o f.

1

n

n
∑

t=2

(

ė2t + etët
)

=
1

n

n
∑

t=2

t−1
∑

l=1

l(2l− 1)θ2l−2y2t−l

+
2

n

n
∑

t=2

t−2
∑

l=1

l(2l+ 1)θ2l−1yt−lyt−l+1 +Rn,

where

Rn =
1

n

n−1
∑

k=2

n
∑

t=k

t−k
∑

l=1

al,t(θ)yt−lyt−l+k

with

lim
n→∞

1

n

n
∑

t=k

t−k
∑

l=1

al,t(θ) < ∞ for all 2 ≤ k ≤ n− 1. (14)

Since

lim
n→∞

1

n

n
∑

t=2

t−1
∑

l=1

l(2l− 1)θ2l−2 =
1 + 3θ2

(1− θ2)3
,

by Chebyshev’s Theorem

1

n

n
∑

t=2

t−1
∑

l=1

l(2l− 1)θ2l−2y2t−l −→
n→∞

1 + 3θ2

(1− θ2)3
γ∗

0 , in probability, (15)

where

γ∗

0 = E
(

Y 2
i

)

= E(Xi + Ui)
2 = γ0 +

h2

12
and

γ0 = E
(

X2
i

)

= σ2
0

(

1 + θ2
)

.
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Similarly,

2

n

n
∑

t=2

t−2
∑

l=1

l(2l+ 1)θ2l−1yiyi+1 −→
n→∞

2θ(3 + θ2)

(1− θ2)3
γ∗

1 , in probability, (16)

where
γ1 = E(YtYt+1) = E(XtXt+1) = −θ0σ

2
0 .

Finally, since

E(YtYt+k) = E(Xt + Ut)(Xt+k + Ut+k) = 0 for k ≥ 2,

by (14) and Chebyshev’s Theorem we have

Rn −→
n→∞

0, in probability. (17)

The result of (i) is obtained by (15), (16) and (17). By similar derivation, we
have the result of (ii). �

Lemma 2. Let
β̂0 =

(

θ̂0, σ̂
2
0

)

be the PMLE of
(

θ, σ2
)

for the MA(1) model (10), then

(i) limn→∞

1

n
A = −

1

σ̂2

0

diag

(

(1 + 3θ̂20)(1 + θ̂20)σ̂
2

0 + 2θ̂0(3 + θ̂20)(−θ̂0σ̂
2

0)

(1− θ̂2
0
)3

,
1

2σ̂2

0

)

,

(ii) limn→∞

1

n
b
′ =

h2

12σ̂4

0

(

θ̂0

(1− θ̂2
0
)2
,−

1

2(1 − θ̂2
0
)

)

.

P r o o f.

(i) By the normal equations (3), we have

−
1

σ2

n
∑

t=2

etėt

∣

∣

∣

∣

∣

β̂0

= 0, −
n

2σ2
+

1

2σ4

n
∑

t=1

e2t

∣

∣

∣

∣

∣

β̂0

= 0. (18)

By (18), the second partial derivatives of ln f with respect to θ and σ2

evaluated at β̂0 are

∂2 ln f

∂(σ2)2
=

n

2σ4
−

1

σ6

n
∑

t=1

e2t = −
n

2σ̂4
0

, (19)

∂2 ln f

∂θ∂σ2
=

1

σ4

n
∑

t=2

etėt = 0. (20)

Furthermore, since

∂2 ln f/∂θ2 = −
1

σ2

n
∑

t=2

(

ė2t + etët
)

,

by Lemma 1 and (12), the result of (i) is obtained.
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(ii) Note that

∂

∂θ

∂2 ln(f)

∂y2t
= −

2θ2n−2t+1[θ−2(n−t) + (n− t)θ2 − (n− t+ 1)]

σ2(1− θ2)2
,

∂

∂σ2

∂2 ln(f)

∂y2t
=

1

σ4

n−t
∑

i=0

θ2i,

∂

∂θ

(

∂ ln(f)

∂yt

)2

=
2

σ4

n−t
∑

i=0

θiet+i





n−t
∑

j=1

jθj−1et+j +

n−t
∑

k=0

θk ėt+k



 ,

∂

∂σ2

(

∂ ln(f)

∂yt

)2

= −
2

σ6

n−t
∑

i=0

θiet+i .

And by (9),

b1 =
h2

12σ̂4
0

n
∑

t=1





(

1− σ̂2
0

)

(

n−t
∑

i=1

iθ̂2i−1
0

)

+

(

n
∑

i=t

θ̂i−t
0 ei

)





n
∑

j=t

θ̂j−t
0 ėj









∣

∣

∣

∣

∣

∣

β=β̂0

.

b2 = −
h2

24σ̂4
0

θ̂2+2n
0 − θ̂20 + (1− θ̂20)n

(1− θ̂20)
2

.

Then the limits of b1/n and b2/n can be obtained.
�

Finally, by Lemma 2 and the definition of the adjusted MLE given in (7),
we have the following theorem.

Theorem 3. The adjusted MLE of the MA(1) model (10) based on the rounded
data are

θ̂A ≈ θ̂0 +
θ̂0h

2

12σ̂4
0

[

1

1− θ̂20
−

(1 + θ̂20)(1− σ̂2
0)

n(1− θ̂20)
2

]

,

σ̂2
A ≈ σ̂2

0 −
h2

12

[

1

1− θ̂20
−

θ̂20

n(1− θ̂20)
2

]

,

where θ̂0, σ̂
2
0 are the PMLE and h is the width of the rounding interval.
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4. Discussion

Simulation study is performed to compare the efficiencies of the pseudo MLE
(PMLE), the adjusted MLE (AD), the short overlapping series (SOS) estimator
of Z h a n g, et al., (2010) and the approximate maximum likelihood estimation
(AMLE) of B a i, et al., (2009). The root mean squared errors (RMSE) of the
four estimators for (θ, σ2) are given in Table 1 and Table 2, respectively. The

results show that for both θ0 = 0.5 and −0.5, the adjusted MLE (AD) θ̂ has the

smallest RMSE when σ2 > 0.5 and σ̂2 has the smallest RMSE when σ2 ≥ 0.25.

Table 1. The RMSE of θ̂ for the MA(1) models.

θ0 = −0.5 θ0 = 0.5

σ2
0 PMLE AD SOS AMLE PMLE AD SOS AMLE

0.1 0.267 0.859 0.177 0.149 0.285 1.093 0.219 0.220

0.25 0.155 0.224 0.140 0.152 0.164 0.214 0.150 0.152

0.5 0.096 0.103 0.129 0.123 0.107 0.079 0.134 0.158

1 0.067 0.064 0.126 0.117 0.086 0.075 0.125 0.128

4 0.062 0.062 0.115 0.110 0.059 0.058 0.117 0.132

Table 2. The RMSE of σ̂2 for the MA(1) models.

θ0 = −0.5 θ0 = 0.5

σ2
0 PMLE AD SOS AMLE PMLE AD SOS AMLE

0.1 0.0565 0.0427 0.0178 0.0154 0.0530 0.0502 0.0221 0.0186

0.25 0.106 0.0332 0.0376 0.0400 0.105 0.0377 0.0408 0.0452

0.5 0.116 0.0542 0.0684 0.0649 0.115 0.0511 0.0679 0.0800

1 0.140 0.0885 0.120 0.116 0.142 0.0929 0.111 0.122

4 0.363 0.351 0.467 0.455 0.370 0.347 0.454 0.502
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