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ABSTRACT. We introduce the Weibull distributions in presence of cure frac-
tion, censored data and covariates. Twomodels are explored in this paper: mixture
and non-mixture models. Inferences for the proposed models are obtained under
the Bayesian approach, using standard MCMC (Markov Chain Monte Carlo)
methods. An illustration of the proposed methodology is given considering a life-

time data set.

1. Introduction

The mixture cure rate model, also known as standard cure rate model, as-
sumes that the studied population is a mixture of susceptible individuals, who
experience the event of interest and non-susceptible individuals that will never
experience it. These individuals are not at risk with respect to the event of
interest and are considered immune, non-susceptible, or cured, [5]. Different ap-
proaches, parametric and non-parametric, have been considered to model cure
fraction.

Following M a l l e r and Z h o u (1996), let us assume that the population is
divided in two groups of individuals: a group of cured individuals with probability
π and a group of susceptible individuals with a proper survival function S0 (t) =
P (T > t) where T denotes the lifetime of the individual with probability 1− π.

In this mixture model, we have

S (t) = π + (1− π)S0 (t) , (1)

where π ∈ (0, 1) and S0 (t) is the survival function for the susceptible individuals
(not-censored observations). Let us denote the mixture model (1) as Model 1.
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Considering a random sample (ti, δi), i = 1, . . . , n, the contribution of the ith
individual for the likelihood function is given by

Li =
[

f (ti)
]δi[S (ti)

]1−δi , (2)

where δi is a censoring indicator variable, that is, δi = 1 for an observed lifetime
and δi = 0 for a censored lifetime.

Assuming the “mixture model” (1) the probability density function (p.d.f.)
for the lifetime T is (from f (t) = dF (t) /dt) given by

f (t) = (1− π) f0 (t) , (3)

where F (t) = 1 − S (t) and f0 (t) is the probability density function for the
susceptible individuals. Substitution of the mixture density and survival function
in the standard likelihood function yields the likelihood for the mixture cure
model

Li = (1− π)
δi
[

f0 (ti)
]δi[π + (1− π)S0 (ti)

]1−δi . (4)

Therefore the log-likelihood is given by

lnL = r ln (1− π) +

n
∑

i=1

δi ln f0 (ti)

+

n
∑

i=1

(1− δi) ln
[

π + (1− π)S0 (ti)
]

, (5)

where r =
∑n

i=1 δi is the number of uncensored observations. Common para-
metrically choices for S0 (t) are the exponential and Weibull distributions [9].

An alternative non-mixture formulation has been suggested which defines an
asymptote for the cumulative hazard and hence for the cure fraction, [4], [8], [10].
In this case, the survival function for non-mixture cure fraction model is

S (t) = πF0(t), (6)

where 0 < π < 1 is the probability of cured individuals and F0 (t) = 1 − S0 (t)
is the distribution function for the susceptible individuals. Let us denote the
model (6) as Model 2.

From (6), the survival and hazard function for the non-mixture cure rate
model can be written, respectively, as

S (t) = exp
[

F0 (t) lnπ
]

,
(7)

h (t) = − (lnπ) f0 (t) .
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Since h (t) = f (t) /S (t), the contribution of the ith individual for the likeli-
hood function (see (2)) is given by

Li =
[

h (ti)
]δi

S (ti) , (8)

that is,

Li =
[

− (lnπ) f0 (ti)
]δi exp

[

F0 (ti) ln π
]

. (9)

Assuming a random sample of size n, the log-likelihood function is given by

lnL = r ln (− lnπ) +

n
∑

i=1

δi ln f0 (ti)

+ (lnπ)

n
∑

i=1

[

1− S0 (ti)
]

, (10)

where, as before, r =
∑n

i=1 δi.

2. Weibull distribution for the susceptible individuals

As a special case, let us assume a Weibull distribution for the susceptible
individuals with probability density function

f0 (t) = γλtγ−1 exp [−λtγ ] , (11)

and survival function S0 (t) = exp [−λtγ ].

Assuming the mixture model (1), the log-likelihood function for π, λ and γ
(see (5)) is given by

l (π, λ, γ) = r ln (1− π) + r ln γ + r lnλ

+ (γ − 1) v − λA1 (γ) +A2 (π, λ, γ) , (12)

where

r =

n
∑

i=1

δi, v =

n
∑

i=1

δi ln ti,

A1 (γ) =

n
∑

i=1

δit
γ
i

and

A2 (π, λ, γ) =

n
∑

i=1

(1− δi) ln
[

π + (1− π)e−λt
γ

i

]

.
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Assuming the non-mixture model (6), the log-likelihood function for π, λ
and γ (see (10)) is given by

lnL = r ln (− lnπ) + r ln γ + r lnλ

+ (γ − 1) v − λA1 (γ) + (lnπ)A3 (λ, γ) , (13)

where

r =

n
∑

i=1

δi, v =

n
∑

i=1

δi ln ti,

A1 (γ) =

n
∑

i=1

δit
γ
i and A3 (λ, γ) =

n
∑

i=1

[

1− e−λt
γ

i

]

.

3. A Bayesian analysis

For a Bayesian analysis of the mixture and non-mixture models introduced
in Section 1, we assume a uniform U (0, 1) prior distribution for the probability
of cure π and Gamma (0.001, 0.001) prior distribution for the scale parameter λ
and shape parameter γ, where Gamma (a, b) denotes a gamma distribution with
mean a/b and variance a/b2. We further assume prior independence among π, λ
and γ. Observe that we are using approximately non-informative priors for the
parameters models.

In the presence of a covariate vector x = (x1, . . . , xk)
′

affecting the parameters
π and λ, but not affecting the shape parameter γ, let us assume the following
regression model

λi = β0 exp (β1x1i + · · ·+ βkxki)

and

ln

(

πi

1− πi

)

= α0 + α1x1i + · · ·+ αkxki. (14)

Assuming the mixture and non-mixture models introduced in Section 1, let us
consider a gamma prior distribution Gamma (0.001, 0.001) for the regression pa-
rameters β0 and α0 and a normal prior distribution N (0, 100) for the regression
parameters βl and αl, l = 1, . . . , k. We also assume prior independence among
the parameters.

Posterior summaries of interest are obtained from simulated samples for the
joint posterior distribution using standard Markov Chain Monte Carlo (MCMC)
methods as the Gibbs sampling algorithm [2] or the Metropolis-Hastings algo-
rithm [1].
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4. An application

Bone marrow transplants are standard treatments for acure leukemia. Progno-
sis of recovery may depend on risk factors known at the time of transplantation,
such as patient and/or donor age and sex, the stage of initial disease, the time
from prognosis to transplantation, among many others. The final prognosis may
change as the patient post transplantation history develops with occurrence of
events at random times during the recovery process, such as development of
acute or chronic graft-versus-host disease (GVHD), return of the platelet count
to normal levels, or development of infections. Transplantation can be consid-
ered a failure when a patient leukemia returns (relapse) or when he or she dies
while in remission (treatment related to death).

In this study, 137 patients with acute myeloctic leukemia (AML) and acute
lymphoblastic leukemia (ALL) received a combination of 16 mg/kg of oral Busul-
fan (BU) and 120 mg/kg of intravenous cyclopho sphamide (Cy) (99 AML and
38 ALL patients) and were treated at one of four hospitals: 76 at Ohio State
University (OSU) in Columbus; 21 at Hahnemann University (HU) in Philadel-
phia; 23 at St. Vicent’s Hospital (SVH) in Sidney, Australia and 17 at Alfred
Hospital (AH) in Melbourne, Australia (data set introduced by K l e i n and
M o e s c h b e r g e r, 1997 )

In the analysis considered in this paper, we assume as lifetimes, the times
(in days) to acute graft-versus-host disease (TA) with 111 censored observations
and the following covariates: patient age in years; donor age in years; patient sex;
donor sex; patient CMV (cytomegalovirus immune status); donor CMV; waiting
time to transplant in days and different hospitals.

To analyze this data set, we consider the cure fraction models introduced in
Section 1, in the presence or not of covariates. As a first analysis, we assume the
cure fraction models not in presence of covariates.

In Table 1, we have the inference results considering Bayesian approaches as-
suming Models 1 and 2, we also have the inference results considering a standard
Weibull distribution not considering cure fraction. The Bayesian estimates were
obtained by Proc MCMC [6] available in SAS 9.2.

For all cases considered in this paper, we assume a “burn-in-sample” of size
15, 000 to eliminate the effect of the initial values used in the simulation ap-
proach; after this “burn-in-sample” period, we simulated another 200, 000 Gibbs
Samples, taking every 100th sample, which gives a final sample of size 2, 000.
Monte Carlo estimates for the random quantities of interest are based on this
final Gibbs sample of size 2, 000. Convergence of the algorithm was monitored
using standard methods, as the trace-plots of the simulated samples.
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Table 1. Posterior summary (not considering the presence of covariates).

Model Parameter
Posterior
Mean (SD)

95% Credible
Interval

DIC

Standard Weibull
λ 0.0283 (0.0120) (0.0104; 0.0572)

421.8
γ 0.3251 (0.0587) (0.2219; 0.4444)

Model 1
λ 0.0019 (0.0019) (0.0001; 0.0072)

352.7γ 1.8335 (0.2651) (1.3766; 2.3809)
π 0.7993 (0.0348) (0.7264; 0.8616)

Model 2
λ 0.0014 (0.0018) (0.00002; 0.0064)

347.7γ 1.9394 (0.3217) (1.3941; 2.8134)
π 0.7980 (0.0349) (0.7241; 0.8604)

In Bayesian context using MCMC methods, we have used the DIC (Deviance
Information Criterion) introduced by [7] and given automatically by the SAS
software (see, Table 1).

From the fitted survival models, we conclude that the Models 1 and 2 are very
well fitted by the survival times. From the results of Table 1, we observe that
the Bayesian inferences give similar results; the DIC criteria for the two assumed
models also give very close results. Overall, Model 2 (non-mixture model) is
better fitted by the data (smaller Monte Carlo estimates for DIC). Model 1
(a first order approximation of Model 2) gives the larger value of DIC.

In the presence of covariates, we assume the following regression models
(see (14)),

λi = β0 exp
[

β1 (x1i − x̄1) + β2 (x2i − x̄2) + β3x3i + β4x4i + β5x5i

+ β6x6i + β7 (x7i − x̄7) + β8x8i + β9x9i + β10x10i

]

;

ln

(

πi

1− πi

)

= α0 + α1 (x1i − x̄1) + α2 (x2i − x̄2) + α3x3i + α4x4i + α5x5i

+ α6x6i + α7 (x7i − x̄7) + α8x8i + α9x9i + α10x10i, (15)

were x1i is the patient age; x2i is the donor age; x3i is the patient sex (1 =
male; 0 = female); x4i is the donor sex (1 = male; 0 = female); x5i is the patient
CMV (1 = CMV positive; 0 = CMV negative); x6i is the donor CMV (1 =
CMV positive; 0 = CMV negative); x7i is the waiting time to transplant in
days; x8i, x9i and x10i are “dummy” variables related to the different hospitals
where x8i = 1 for OSU and 0 for the other hospitals; x9i = 1 for HU and 0 for
the other hospitals; x10i = 1 for SVH and 0 for the other hospitals; x̄1, x̄2 and
x̄7 are samples averages for covariates x1i, x2i and x7i, i = 1, . . . , 137.
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To get some preliminary information on the regression parameters of mo-
del (15), we initially considered individual regression models with only one co-
variate assuming non-informative priors for all parameter models (see, Section 3).
Using the SAS software, following the same simulation approach used to ana-
lyze the data not considering the presence of covariates, we observed that only
covariates x1, x2 and x7 showed some effect on the parameters λi and πi, that
is, where zero was not included in the 95% credible intervals for the associated
regression parameters. Then, we assume a multiple regression model including
only the covariates x1, x2 and x7, that is

λi = β0 exp
[

β1 (x1i − x̄1) + β2 (x2i − x̄2) + β7 (x7i − x̄7)
]

;

ln

(

πi

1− πi

)

= α0 + α1 (x1i − x̄1) + α2 (x2i − x̄2) + α7 (x7i − x̄7) . (16)

In Table 2, we have the inference results considering Bayesian approaches
assuming Models 1 and 2. For a Bayesian analysis we assume non-informative
priors for all parameters models (see Section 3).

Table 2. Posterior summary (multiple regression models on covariates x1,
x2 and x7).

Model Parameter
Posterior
Mean (SD)

95% Credible
Interval

DIC

Model 1

α0 4.8749 (1.1655) (3.0108; 7.6313)

333.5

α1 −0.0400 (0.0370) (−0.1117; 0.0323)
α2 −0.0250 (0.0362) (−0.0971; 0.0484)
α7 −0.0005 (0.0006) (−0.0017; 0.0007)
β0 0.0004 (0.0008) (0.00001; 0.0021)
β1 0.0269 (0.0288) (−0.0329; 0.0865)
β2 0.0141 (0.0429) (−0.0700; 0.0986)
β7 −0.0008 (0.0004) (−0.0017; −0.00008)
γ 2.3440 (0.3298) (1.6977; 2.9694)

Model 2

α0 4.8408 (1.2328) (2.9245; 7.8466)

338.4

α1 −0.0370 (0.0354) (−0.1080; 0.0303)
α2 −0.0276 (0.0351) (−0.0934; 0.0409)
α7 −0.0004 (0.0006) (−0.0016; 0.0008)
β0 0.0002 (0.0004) (0.000008; 0.0013)
β1 0.0251 (0.0302) (−0.0346; 0.0848)
β2 0.0133 (0.0448) (−0.0754; 0.1002)
β7 −0.0009 (0.0004) (−0.0019; −0.0001)
γ 2.4375 (0.3386) (1.8055; 3.1163)
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From the results of Table 2, we observe similar results considering the Models
1 and 2. We also observe similar Monte Carlo estimates for the posterior means,
standard deviations and credible intervals considering the two models, and sim-
ilar DIC values. The covariate x7 affect the scale parameter λ since zero is not
included in the 95% credible intervals for β7.

5. Concluding remarks

Usually in the analysis of lifetime data we could have the presence of cure
fraction and covariates, especially in medical applications. To analyze this kind
of data, we have different parametrical formulations, as the mixture and non-
mixture models given by equations (1) and (6). Computationally, especially using
the Bayesian paradigm, the obtained results are very similar as observed in the
application of the bone transplant lifetime data introduced in Section 4. The
great advantage of the mixture model (1) is related to the simple interpretations,
especially for medical researchers, where we have the proportion of cured and
non-cured individuals given directly in the survival function expression. Further,
generalizations have been obtained considering bivariate lifetime data in the
presence of cured fraction and covariates. In this way, we are using standard
one-parameter copula functions to derive parametrical formulations for the joint
bivariate survival functions.
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