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DEDEKIND’S CRITERION AND INTEGRAL BASES
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ABSTRACT. Let R be a principal ideal domain with quotient field K, and
L = K(α), where α is a root of a monic irreducible polynomial F (x) ∈ R[x].
Let ZL be the integral closure of R in L. In this paper, for every prime p of
R, we give a new efficient version of Dedekind’s criterion in R, i.e., necessary
and sufficient conditions on F (x) to have p not dividing the index

[
ZL : R[α]

]
,

for every prime p of R. Some computational examples are given for R = Z.

1. Introduction

Throughout this paper unless otherwise stated, R is a principal ideal do-
main with quotient field K. For every prime element p of R, let νp be the

p-adic discrete valuation on R and k(p) = R
(p) the residue field associated to p.

The Gaussian valuation of K(x) which extends νp and defined by

νp

(
l∑

i=0

aiX
l−i

)
= min {νp(ai), 0 ≤ i ≤ l} is also denoted by νp.

Let L = K(α), where α is a root of a monic irreducible polynomial F (x) ∈ R[x].
Let disc(F ) be the discriminant of F , ZL the integral closure of R in L, and
ind(α) =

[
ZL : R[α]

]
the index of R[α] in ZL. A natural question is: when does

ZL = R[α]? If R = Z, then for every prime integer p, Dedekind gave a criterion
to test whether or not p divides ind(α); more precisely, he proved that p does
not divide ind(α) if and only if for every i = 1, . . . , r, either ei = 1 or ei ≥ 2 and

φi(x) does not divide M(x), where

M (x) =
F (x)−∏r

j=1 φ
lj
j (x)

p
and F (x) =

r∏
j=1

φj
lj
(x) (mod p)

is the factorization of F (x) in Fp[x] (see [5, Theorem 6.1.4] and [8]).
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This criterion was also proved over any valuation ring R and any algebraic field
extension L = K(α) of K, where L/K is not necessarily separable [7]. In this
paper, we give a more efficient version of this criterion for any principal ideal
domain R with no separability assumption on the extension L/K. We further
give some computational examples in the case R = Z.

2. Main results

We recall here the definition of the index ind(α) =
[
ZL : R[α]

]
. Since

R is a principal ideal domain, ZL is a free R-module of rank n = deg(F ).
Let B = {u1, . . . , un} be an R-basis of ZL and PF

B the transition matrix from B
to the R-basis F = {1, α, . . . , αn−1} of R[α]. The index

[
ZL : R[α]

]
is the prin-

cipal ideal of R generated by the determinant of PF
B . It is well known that this

principal ideal
[
ZL : R[α]

]
is well defined and is independent on the choice of the

bases B and F of ZL and R[α], respectively. Since R is a principal ideal domain,
it follows from the invariant factor Theorem that there exists B = {u1, . . . , un}
an R-basis of ZL and (q1, . . . , qn) ∈ Rn such that for every i = 1, . . . , n − 1, qi
divides qi+1, and F = {q1u1, . . . , qnun} is an R-basis of R[α]. Since PF

B is the

diagonal matrix with diagonal elements: q1, . . . , qn, the index
[
ZL : R[α]

]
is then

precisely the principal ideal of R generated by
∏n

i=1 qi. If R = Z, then ind(α) is
the cardinal order of the finite group ZL/Z[α].

In this section, let

F (x) ≡
r∏

i=1

φli
i (x) (mod p)

be the factorization of F (x) in k(p)[x], where for every i := 1, . . . , r, φi is a monic
polynomial in R[x]. For every i := 1, . . . , r, let Qi(x) and Ri(x) be the quotient
and the remainder of the Euclidean division of F (x) by φi(x), respectively.

Our next Theorem computationally improves the well known Dedekind’s cri-
terion.

������� 2.1� Under the above hypotheses, p does not divide the index
[
ZL :

R[α]
]
if and only if for every i :=1, . . . , r, either li=1 or li≥2 and νp

(
Ri(x)

)
=1.

P r o o f. If for every i := 1, . . . , r, li = 1, then by the generalized Dedekind’s
criterion p does not divide ind(α) (see for example [7]). Otherwise, let

M (x) =
F (x)−∏r

j=1 φ
lj
j (x)

p

as defined in the Dedekind’s criterion and let us show that for every i = 1, . . . , r,
with li ≥ 2, νp

(
Ri(x)

)
= 1 if and only if φi does not divide M(x) in k(p)[x].
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Indeed, as

F (x) ≡
r∏

j=1

φ
lj
j (x) (mod p),

then φi(x) divides

F (x), Ri(x) = 0 (mod p) and Qi(x) = φli−1
i (x)

∏
j �=i

φ
lj
j (mod p).

Thus there exists some Hi(x) ∈ R[x] such that

Qi(x) = φli−1
i (x)

∏
j �=i

φ
lj
j (x) + pHi(x).

Therefore,

F (x) =
(
φli−1
i (x)

∏
j �=i

φ
lj
j + pHi(x)

)
φi(x) +Ri(x)

and

M (x) =
F (x)−∏r

j=1 φ
lj
j (x)

p
= Hi(x)φi(x) +

Ri(x)

p
.

It follows that φi does not divideM(x) in k(p)[x] if and only if Ri(x)
p �≡ 0 (mod p).

That is νp
(
Ri(x)

)
= 1. �

����		
�� 2.2� If R is a discrete valuation ring with maximal ideal (p), then
the equality ZL = R[α] holds if and only if for every i := 1, . . . , r, either li = 1
or li ≥ 2 and νp

(
Ri(x)

)
= 1.

����		
�� 2.3� Under the hypotheses of theorem 2.1, if R is a Dedekind
domain, then for every prime ideal p of R, p does not divide the index

[
ZL : R[α]

]
if and only if for every i := 1, . . . , r, either li = 1 or li ≥ 2 and Ri(x) ∈
p[X]− p2[X].

Remark. A similar result holds with applications in more general rings, namely
P r ü f e r domains (cf. [9]). In This work, we are interested in another way,
namely computation of integral bases.

������� 2.4� Let L = K(α), where α is any root of F (x) = φ(x)n − a ∈ R[x]
such that νp(a) and n are coprime and φ(x) ∈ R[x] is a monic polynomial whose
reduction modulo p is irreducible. Then {αiθj , 0 ≤ i < m−1 and 0 ≤ j < n−1}
is a p-integral basis of ZL, where m = deg(φ), θ = φ(α)u

pv , u and v are non-

negative integers satisfying νp(a)u− nv = 1 such that 0 ≤ u < n.

P r o o f. First, L = F (α), where F = K
(
φ(α)

)
, g(x) = xn − a is the minimal

polynomial of φ(α) over K, and h(x) = φ(x) − φ(α) is the minimal polyno-
mial of α over F. As νp(a) and n are coprime, using the Euclid’s algorithm,
there exists a unique solution of non-negative integers (u, v) of νp(a)u− nv = 1
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such that 0 ≤ u < n. Consider g1(x) = xn− au

pnv . Then g1(x)∈R[x] and g1(θ)=0.

Since νp(
au

pnv ) = νp(a)u − nv = 1, by Eisenstein’s criterion g1(x) is irreducible

in R[x]. By Theorem 2.1, p does not divide the index
[
ZF = R[θ]

]
; {θj, 0 ≤

j < n− 1} is a p-integral basis of ZF over R. Thus pZF = pn, where p = (p, θ).
As h(x)=φ(x) (mod p), φ(x) is irreducible over k(p), and f(p/p)=1; k(p)=k(p),

we have h(x) = φ(x) is irreducible over k(p). Again by Theorem 2.1,[
ZL = ZF [α]

] �⊂ p; {αi, 0 ≤ i < m− 1}
is a p-integral basis of ZL over ZF , where m = deg (φ). Finally,

{αiθj , 0 ≤ i < m− 1 and 0 ≤ j < n− 1}
is a p-integral basis of ZL over R. �

In particular, if φ(x) = x, then we have the following corollaries:

����		
�� 2.5� Let p be a prime of R, L = K(α), where α is a root of an
irreducible polynomial F (x) = xn − a ∈ R[x] such that νp(a and n are co-

prime. Let θ = αu

pv , where u and v are the unique non-negative integers satisfying

νp(a)u− nv = 1 and 0 ≤ u < n. Then p does not divide the index
[
ZL : R[θ]

]
.

For any element θ ∈ ZL, we say that θ generates a power integral basis
of ZL over R if (1, θ, . . . , θn−1) is a R-basis of ZL, where n is the degree [L :
K]; ZL = R[θ]. When a field L has a power integral basis, the field L is said
to be monogenic. It is called a problem of Hasse to characterize whether the
ring of integers in an algebraic number field has a power integral basis or does
not [1–3]. The following corollaries give a condition on a in order to have the
monogeneses of any field L defined by F (x) = xn − a.

����		
�� 2.6� Keep the assumptions and notations of Corollary 2.5, if R is
a discrete valuation ring with maximal ideal (p), then ZL = R[θ], where θ = αu

pv

and α is a root of F (x) = xn−a. We say that θ generates a power integral basis
of ZL over R.

����		
�� 2.7� Let L = Q(α) be a pure prime number field; α a complex root
of an irreducible polynomial F (x) = xp − a ∈ Z[x], where p is an odd prime.

Assume that a = me with 0 < e < p and let θ = αu

mv , where u and v are the
unique non-negative integers satisfying eu − nv = 1 and 0 ≤ u < n. Then we
have the following:

(1) If p divides m or p does not divide m and νp(m
p−1 − 1) = 1, then ZL is

monogenic. Especially ZL = Z[θ].

(2) If p does not divide m and νp(m
p−1 − 1) ≥ 2, then (1, θ, . . . , θp−2, θ

p−1

p ) is

an integral basis of ZL.
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������� 2.8� Let L = Q(α) be a pure prime number field; α is a complex root
of an irreducible polynomial F (x) = xp − a ∈ Z[x], where p is an odd prime.
We can assume that νq(a) < p for every prime integer q; set a = ∓∏r

i=1 p
ei
i

the factorization of a into powers of positive prime integers such that for every
i = 1, . . . , r, ei < p. Then we have the following:

(1) If p divides a or p does not divide a and νp(a
p−1 − 1) = 1, then⎛

⎝ αk

∏r
i=1 p

� kei
p �

i

, 0 ≤ k < p

⎞
⎠ is a Z-integral basis of ZL.

(2) If p does not divide a and νp(a
p−1 − 1) ≥ 2, then⎧⎨

⎩ αk

∏r
i=1 p

� kei
p �

i

, 0 ≤ k < p− 1

⎫⎬
⎭ ∪

⎧⎨
⎩ αp−1

p
∏r

i=1 p
� (p−1)ei

p �
i

⎫⎬
⎭

is a Z-integral basis of ZL.

P r o o f. (1) We have to check that for every positive prime integer q dividing
disc(F ) = ∓pp ·ap−1, if q does not divide the index

[
ZL : Z[θ]

]
. Let pi be a

prime integer dividing a. Then F (x) = xp (mod pi), the Newton polygon
Nx(F ) = S is one sided of slope ei/p, and its attached residual polynomial
is FS(y) is of degree 1 (because gcd

(
l(S), h(S)

)
= 1, where l(S) and h(S)

are the length and the height of S, respectively). Thus, by [6, Prop 2.1],⎛
⎝
⎧⎨
⎩ αk

p
� kei

p �
i

⎫⎬
⎭ , 0 ≤ k < p

⎞
⎠ is a pi-integral basis of ZL.

If p does not divide a and νp(a
p−1−1) = 1, then F (x) = (x−a)p (mod p).

Let
H(x) = F (x+ a) = xp + · · ·+ pap−1x+ ap − a.

Then
H(x) = xp (mod p).

As ap − a is the remainder of H(x) by x and νp(a
p−1 − 1) = 1,

by Theorem 2.1, q does not divide the index
[
ZL : Z[α]

]
.

(2) If p does not divide a and νp(a
p−1 − 1) ≥ 2, then H(x) = xp (mod p) and

its x-Newton polygon
Nx(H) = S1 + S2,

where S1 is of height 1 and S2 is of length 1. Thus [6, Prop 2.1],(
1, α, . . . , αp−2,

αp−1

p

)
is a p-integral basis of ZL. �
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3. Examples

(1) Let

F (x) = x16 + 8x15 + 20x14 − 70x12 − 56x11 + 112x10 + 120x9

− 125x8 − 120x7 + 112x6 + 56x5 − 70x4 + 20x2 − 8x− 7.

Since

F (x) = (x2 + x− 1)8 − 8, φ(x) = x2 + x− 1 (mod 2)

is irreducible in F2[x], and ν2(8) is coprime to 8, by [4, Theorem 1.6],
F (x) is irreducible over Q. Let α be a complex root of F (x) and L = Q(α).
Since

disc
(
F (x)

)
= ∓290.73.1831, for every prime integer p �= 2,

p does not divide ind(α). For p = 2, let θ = α3

2 . Then(
1, θ, . . . , θ7, α, αθ, . . . , αθ7

)
is an integral basis of ZL.

(2) Let
F (x) = x16 + 8x15 + 20x14 − 70x12 − 56x11 + 112x10 + 120x9

− 125x8 − 120x7 + 112x6 + 56x5 − 70x4 + 20x2 − 8x− 23.

Since

F (x) = (x2 + x− 1)8 − 24,

it is a 3-Eisenstein polynomial. So it is irreducible over Q. Let α be a com-
plex root of F (x) and L = Q(α). Since disc

(
F (x)

)
= ∓290.314.163.7253,

for every prime integer q �∈ {2, 3}, q does not divide ind(α). For p = 2,

let θ = α3

2 . Then 2 does not divide
[
ZL : Z[θ]

]
. For p = 3, since ν3(24) = 1,

3 does not divide
[
ZL : Z[α]

]
.

(3) Let p be a non-negative prime integer, F (x) = xp−a ∈ Z[x] an irreducible
polynomial, α a complex root of F (x), and L = Q(α).

(a) For p = 5 and a = 222, let θ = α4

223 . Then for every prime integer
q �∈ {2, 5, 11}, q does not divide ind(α). For q ∈ {2, 11}, q does not
divide ind(θ), too. For p = 5, since v5(22

4 − 1) = 1, v5
(
ind(θ)

)
= 0.

Thus ZL is monogenic, with θ = α4

223 generating a power integral basis.

(b) Let p = 11 and a = 2.36.115. Since disc(F ) = ±1111a10, for every
prime q �∈ {2, 3, 11}, p does not divide disc(F ).
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E=

{
1, α, α2,

α3

11
,
α4

11
,
α5

112
,
α6

112
,
α7

113
,
α8

113
,
α9

114
,
α10

114

}

is an 11-integral basis of ZL, i.e., 11 does not divide the index [ZL : S],

where S is the Z-order generated by E. Similarly, by using θ = α2

3 ,
we get

T =

{
1, α,

α2

3
,
α3

3
,
α4

32
,
α5

32
,
α6

33
,
α7

33
,
α8

34
,
α9

34
,
α10

35

}

as a 3-integral basis of ZL.

Thus,

B=

{
1, α,

α2

3
,
α3

3.11
,

α4

32.11
,

α5

32.112
,

α6

33.112
,

α7

33.113
,

α8

34.113
,

α9

34.114
,

α10

35.114

}

is an integral basis of ZL.
(c) Let p = 11 and a = 36. Then disc(F ) = ±1111360. For q �∈ {3, 11}, q

does not divide ind(α). Then{
1, α,

α2

3
,
α3

3
,
α4

32
,
α5

32
,
α6

33
,
α7

33
,
α8

34
,
α9

34
,
(α− 36)10

11.35

}
is an integral basis of ZL.
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