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DEDEKIND’S CRITERION AND INTEGRAL BASES
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ABSTRACT. Let R be a principal ideal domain with quotient field K, and
L = K(a), where « is a root of a monic irreducible polynomial F(z) € Rlx].
Let Zj be the integral closure of R in L. In this paper, for every prime p of
R, we give a new efficient version of Dedekind’s criterion in R, i.e., necessary
and sufficient conditions on F(z) to have p not dividing the index [Zy, : R[qa]],
for every prime p of R. Some computational examples are given for R = Z.

1. Introduction

Throughout this paper unless otherwise stated, R is a principal ideal do-
main with quotient field K. For every prime element p of R, let v, be the
p-adic discrete valuation on R and k(p) = % the residue field associated to p.
The Gaussian valuation of K (x) which extends v, and defined by

l
Vp Zain_i =min{r,(a;), 0 <i<lIl} is also denoted by v,.
i=0

Let L = K(«a), where « is a root of a monic irreducible polynomial F(z) € Rx].
Let disc(F') be the discriminant of F, Z;, the integral closure of R in L, and
ind(a) = [Zg : R[a]] the index of R[a] in Zy. A natural question is: when does
Z1, = R[a]? If R =7, then for every prime integer p, Dedekind gave a criterion
to test whether or not p divides ind(«); more precisely, he proved that p does
not divide ind(«) if and only if for every ¢ = 1,...,r, either e; = 1 or e¢; > 2 and
¢i(x) does not divide M (x), where

F(z)—TT_, ¢} (2)
p

M(x) = and F(x) = H¢_jlj (z) (mod p)

is the factorization of F(z) in Fp[z] (see [5, Theorem 6.1.4] and [§]).
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This criterion was also proved over any valuation ring R and any algebraic field
extension L = K(a) of K, where L/K is not necessarily separable [7]. In this
paper, we give a more efficient version of this criterion for any principal ideal
domain R with no separability assumption on the extension L/K. We further
give some computational examples in the case R = Z.

2. Main results

We recall here the definition of the index ind(a) = [Zp : R[a]]. Since
R is a principal ideal domain, Zj, is a free R-module of rank n = deg(F).
Let B = {uy,...,u,} be an R-basis of Z;, and P% the transition matrix from B
to the R-basis F = {1,c,...,a" '} of R[a]. The index [Zy, : R[o]] is the prin-
cipal ideal of R generated by the determinant of PZ. It is well known that this
principal ideal [Zy, : R[a]] is well defined and is independent on the choice of the
bases B and F of Z;, and R]a], respectively. Since R is a principal ideal domain,
it follows from the invariant factor Theorem that there exists B = {uq, ..., u,}
an R-basis of Zy, and (q1,...,q,) € R™ such that for every i = 1,...,n— 1, ¢;
divides gi11, and F = {qiu1,...,q,u,} is an R-basis of R[a]. Since P} is the
diagonal matrix with diagonal elements: ¢1, ..., ¢,, the index [Z L R[oz]] is then
precisely the principal ideal of R generated by [[}"_; ¢;. If R = Z, then ind(«) is
the cardinal order of the finite group Z, /Z[«].

In this section, let

F(z) = [[ ¢1(x) (mod p)

be the factorization of F(z) in k(p)[x], where for every i := 1,...,r, ¢; is a monic
polynomial in R[z]. For every i :=1,...,r, let Q;(x) and R;(z) be the quotient
and the remainder of the Euclidean division of F(z) by ¢;(x), respectively.

Our next Theorem computationally improves the well known Dedekind’s cri-
terion.

THEOREM 2.1. Under the above hypotheses, p does not divide the index [ZL:
R[a]] if and only if for everyi:=1,...,r, either ;=1 orl;>2 and v, (Rz(x)) =1.

Proof. If for every i := 1,...,r, I; = 1, then by the generalized Dedekind’s
criterion p does not divide ind(«a) (see for example [7]). Otherwise, let

F(z) =TT,y 67 (x)
p

as defined in the Dedekind’s criterion and let us show that for every i =1,...,r,
with [; > 2, v, (R;(z)) = 1 if and only if ¢; does not divide M (z) in k(p)[z].

M(z) =

2
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Indeed, as
F(z) = [] 67 () (mod p)
then ¢;(x) divides j=1
F(x), Ri(z)=0 (modp) and Q;(z)= W (mod p).

J#i
Thus there exists some H;(z) € R[z| such that
Qi(z) = ¢ (@) [ [ 67 (@) + pHi(x).

J#i
Therefore,
Fz) = (7" () [T & + pHi(2) 6s(x) + Ri(z)
oy
and ’
F(z) — T, 6% ,
M(z) = (2) 1_5_1 ¢; (@) _ H(2)64(x) + Rzzgx).

It follows that ¢; does not divide M (x) in k(p)[z] if and only if R"T(z) # 0 (mod p).
That is v, (Ri(z)) = 1. O

COROLLARY 2.2. If R is a discrete valuation ring with mazximal ideal (p), then
the equality Zj, = R[] holds if and only if for every i :=1,...,r, either l; =1
orl; > 2 and v, (R;i(z)) = 1.

COROLLARY 2.3. Under the hypotheses of theorem [21], if R is a Dedekind
domain, then for every prime idealp of R, p does not divide the index [ZL : R[aH
if and only if for every i := 1,...,r, either l; = 1 or l; > 2 and R;(x) €
p[X] - p?[X].

Remark. A similar result holds with applications in more general rings, namely
Priifer domains (cf. [9]). In This work, we are interested in another way,
namely computation of integral bases.

THEOREM 2.4. Let L = K(«), where « is any root of F(x) = ¢(z)™ — a € R[z]
such that vy(a) and n are coprime and ¢(x) € Rlx] is a monic polynomial whose

reduction modulo p is irreducible. Then {a'07, 0 <i<m—1and0<j<n—1}
#(a)"

v
negative integers satisfying v,(a)u —nv =1 such that 0 < u < n.

is a p-integral basis of Zy, where m = deg(¢), 0 = , u and v are non-

Proof. First, L = F(a), where F' = K(¢(a)), g(z) = 2™ — a is the minimal
polynomial of ¢(a) over K, and h(zx) = ¢(z) — ¢(«) is the minimal polyno-
mial of a over F. As v,(a) and n are coprime, using the Euclid’s algorithm,
there exists a unique solution of non-negative integers (u,v) of v,(a)u —nv =1

3
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such that 0 < u < n. Consider g1 (z) = 2™ — pa:U . Then ¢, (z) € R[z] and g1(0) =0.

Since I/p(;Tuv) = vp(a)u —nv = 1, by Eisenstein’s criterion g;(z) is irreducible
in R[z]. By Theorem 21l p does not divide the index [Zp = R[f]]; {67, 0 <
Jj <n—1} is a p-integral basis of Zp over R. Thus pZp = p", where p = (p, 0).
As h(z)=¢(z) (mod p), ¢(x) is irreducible over k(p), and f(p/p)=1; k(p) =k(p),
we have h(z) = ¢(x) is irreducible over k(p). Again by Theorem 2]

Zp =7Zpld]] ¢ p; {a',0<i<m—1}
is a p-integral basis of Zj, over Zp, where m = deg (¢). Finally,

{a97,0<i<m—1 and 0<j<n-—1}

is a p-integral basis of Z;, over R. O

In particular, if ¢(z) = x, then we have the following corollaries:

COROLLARY 2.5. Let p be a prime of R, L = K(«), where « is a root of an
irreducible polynomial F(x) = 2" — a € Rlx] such that vy(a and n are co-
prime. Let 6 = z—:,
vp(a)u —nv =1 and 0 < u < n. Then p does not divide the index [Zy, : R[f]].

where u and v are the unique non-negative integers satisfying

For any element 6 € Zr, we say that 6 generates a power integral basis
of Zy over R if (1,0,...,60" 1) is a R-basis of Zj, where n is the degree [L :
K]; Z;, = R[0]. When a field L has a power integral basis, the field L is said
to be monogenic. It is called a problem of Hasse to characterize whether the
ring of integers in an algebraic number field has a power integral basis or does
not [IH3]. The following corollaries give a condition on @ in order to have the
monogeneses of any field L defined by F(z) = 2™ — a.

COROLLARY 2.6. Keep the assumptions and notations of Corollary[2.3, if R is

a discrete valuation ring with maximal ideal (p), then Zy, = R|[0)], where 6 = z—:
and « is a root of F(x) = x™ —a. We say that 0 generates a power integral basis

of Z1, over R.

COROLLARY 2.7. Let L = Q(«) be a pure prime number field; o a complex root
of an irreducible polynomial F(x) = xP — a € Z[x], where p is an odd prime.
Assume that a = m® with 0 < e < p and let § = 7‘7"1—1;, where u and v are the
unique non-negative integers satisfying eu —nv =1 and 0 < u < n. Then we
have the following:

(1) If p divides m or p does not divide m and v,(mP~' — 1) = 1, then Zj, is
monogenic. Especially Z;, = 716)].

(2) Ifp does not divide m and v,(mP~' —1) > 2, then (1,0,...,0P2, 9%1) is
an integral basis of Zy,.
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THEOREM 2.8. Let L = Q(«) be a pure prime number field; o is a complex root
of an irreducible polynomial F(x) = P — a € Z[zx], where p is an odd prime.
We can assume that v4(a) < p for every prime integer q; set a = $H::1pf"
the factorization of a into powers of positive prime integers such that for every
i=1,...,7, e; <p. Then we have the following:

(1)

(2)

If p divides a or p does not divide a and vy(aP~ — 1) =1, then

ak

roo 1B
[Lizipi
If p does not divide a and v,(aP~* — 1) > 2, then

0<k<p is a Z-integral basis of Zj, .

k -1

o

TR B Py
[licipi ” pllicip ”

is a Z-integral basis of Zy,.

Proof. (1) We have to check that for every positive prime integer ¢ dividing

disc(F) = FpP-aP~1, if ¢ does not divide the index [Zp, : Z[6]]. Let p; be a
prime integer dividing a. Then F(x) = 2P (mod p;), the Newton polygon
N, (F) = S is one sided of slope e;/p, and its attached residual polynomial
is Fs(y) is of degree 1 (because ged(1(S), h(S)) = 1, where [(S) and h(S)
are the length and the height of S, respectively). Thus, by [0, Prop 2.1],

oF

p;
If p does not divide a and v,(aP~! — 1) = 1, then F(z) = (z —a)? (mod p).
Let

, 0<k<p is a p;-integral basis of Zj,.

H(z)=F(z+a)=aP +---+paP 'z +a? —a.
Then o
H(z) =P (mod p).
As a? — a is the remainder of H(z) by z and v,(a?~! — 1) = 1,
by Theorem 211, ¢ does not divide the index [Z, : Z[o]].
If p does not divide a and v,(a?~ — 1) > 2, then H(x) = 2P (mod p) and
its z-Newton polygon
N,(H) =51+ Sa,

where 57 is of height 1 and Sy is of length 1. Thus [6, Prop 2.1],

aP~1
(1, a,...,aP72, —> is a p-integral basis of Zy,. O
p
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3. Examples

(1) Let
F(z) = 2% 4+ 82 + 202 — 70212 — 562! + 11220 4 1202°
— 12528 — 12027 + 1122° 4 562° — 702" + 2022 — 8z — 7.
Since
Fz)=@*+2-18%-8, ¢(x)=22+z—1 (mod 2)

is irreducible in Fa[z], and 15(8) is coprime to 8, by [4, Theorem 1.6],
F(x) is irreducible over Q. Let a be a complex root of F(x) and L = Q(«).
Since

disc(F(z)) = 72%.73.1831, for every prime integer p # 2,

p does not divide ind(«). For p =2, let § = %3 Then

(1, 0,...,0",a,a0,... ,a97) is an integral basis of Zj,.

(2) Let
F(z) = 2'% 4 821 4+ 202 — 702" — 562! 4 11220 4 1202°

— 12528 — 12027 + 11225 + 562° — 702* + 202% — 8z — 23.

Since

F(z) = (2® + 2 —1)% — 24,
it is a 3-Eisenstein polynomial. So it is irreducible over Q. Let a be a com-
plex root of F(z) and L = Q(«). Since disc(F(z)) = F29°.314.163.7253,
for every prime integer ¢ ¢ {2,3}, ¢ does not divide ind(«). For p = 2,
let 0 = "‘73 Then 2 does not divide [ZL : Z[Q]]. For p = 3, since v5(24) =1,
3 does not divide [Zy, : Z[a]].

(3) Let p be a non-negative prime integer, F'(z) = 2P — a € Z[x] an irreducible
polynomial, a a complex root of F(x), and L = Q(«).
(a) For p = 5 and a = 222 let 0 = % Then for every prime integer
q € {2,5,11}, ¢ does not divide ind(«). For ¢ € {2,11}, ¢ does not
divide ind(f), too. For p = 5, since v5(22* — 1) = 1, v5(ind(6)) = 0.
Thus Zr, is monogenic, with § = % generating a power integral basis.
(b) Let p = 11 and a = 23511°. Since disc(F) = +11'"1a'?, for every
prime ¢ € {2, 3,11}, p does not divide disc(F).
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5 ) 9 Cl{3 a4 a5 alO
= o, -_———— — ™ — — | —
1171171127 1127 1187 1137 1147 114

is an 11-integral basis of Z, i.e., 11 does not divide the index [Z[, : 5],

where S is the Z-order generated by E. Similarly, by using 6 = %2,
we get
a2 o ot o ab o’ of o alf
T= 1,0[,—, 9 1099 997 93 93 94 a4’ of
3737327327337337347347 35
as a 3-integral basis of Zy,.
Thus,
s Ly a2 a3 ol ab ab o a8 a? al0
= o, —
T3 311732117 321127 331127 331137 341137 341147 35114

is an integral basis of Zj,.
(c) Let p =11 and a = 35. Then disc(F) = £11'3%. For ¢ ¢ {3,11}, ¢
does not divide ind(«). Then
X a? o® at o ab ol a® o (a—35)10
- = =2 =2 =2 = = = Al A
7373 7327327337337347347 11.3°

is an integral basis of Zp .
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