§ sciendo TATRA
MOUNTaIiNS

Mathematical Publications

DOI: 10.2478/tmmp-2019-0010
Tatra Mt. Math. Publ. 73 (2019), 131-144

SELF-SPECTRE,
WRITE-EXECUTE AND THE HIDDEN STATE

GREGORY MORSE

Eo6tvos Lorand Tudomény Egyetem University, Budapest, HUNGARY

ABSTRACT. The recent Meltdown and Spectre vulnerabilities have highlighted
a very present and real threat in the on-chip memory cache units which can ulti-
mately provide a hidden state, albeit only readable via memory timing instruc-
tions [Kocher, P.—Genkin, D.— Gruss, D.— Haas, W.—Hamburg, M.—Lipp, M.—
—Mangard, S.—Prescher, T.—Schwarz, M.—Yarom, Y.: Spectre attacks: Exploit-
ing speculative ezecution, CoRR, abs/1801.01203, 2018]. Yet the exploits, al-
though having some complexity and slowness, are demonstrably reliable on nearly
all processors produced for the last two decades.

Moving out from looking at this strictly as a means of reading protected mem-
ory, as the large microprocessor companies move to close this security vulnera-
bility, an interesting question arises. Could the inherent design of the processor
give the ability to hide arbitrary calculations in this speculative and parallel side
channel? Without even using protected memory and exploiting the vulnerability,
as has been the focus, there could very well be a whole class of techniques which
exploit the side-channel. It could be done in a way which would be largely un-
preventable behavior as the technology would start to become self-defeating or
require a more complicated and expensive on-chip cache memory system to prop-
erly post-speculatively clean itself. And the ability to train the branch predictor
to incorrectly speculatively behave is almost certain given hardware limitations,
and thus provides exactly this pathway.

A novel approach looks at just how much computation can be done specula-
tively with a result store via indirect reads and available through the memory
cache. A multi-threaded approach can allow a multi-stage computation pipeline
where each computation is passed to a read-out thread and then to the next
computation thread [Swanson,S.—McDowell, L. K.—Swift, M. M.—Eggers, S. J.—
—Levy H.M.: An evaluation of speculative instruction exrecution on simultane-
ous multithreaded processors, ACM Trans. Comput. Syst. 21 (2003), 314-340].

© 2019 Mathematical Institute, Slovak Academy of Sciences.

2010 Mathematics Subject Classification: 62KO05.

Keywords: x86, x86-64, Spectre, Meltdown, assembly language, self-modifying code, white-
box cryptography, side-channel vulnerabilities, CPU cache, speculative execution, predictive
branching.

Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

131

GREGORY MORSE

Through channels like this, an application can surreptitiously make arbitrary
calculations, or even leak data without any standard tracing tools being capable of
monitoring the subtle changes. Like a variation of the famous physics Heisenberg
uncertainty principle, even a tool capable of reading the cache states would not
only be incredibly inefficient, but thereby tamper with and modify the state.
Tools like in-circuit emulators, or specially designed cache emulators would be
needed to unmask the speculative reads, and it is further difficult to visualize
with a linear time-line.

Specifically, the AES and RSA algorithms will be studied with respect to these
ideas, looking at success rates for various calculation batches with speculative
execution, while having a summary view to see the rather severe performance
penalties for using such methods.

Either approaches could provide for strong white-box cryptography when con-
sidering a binary, non-source code form. In terms of white-box methods, both
could be significantly challenging to locate or deduce the inner workings of the
code. Further, both methods can easily surreptitiously leak or hide data within
shared memory in a seemingly innocuous manner.

1. Introduction

Study of various computational modes which execute with various layers of in-
direction is one of the primary obfuscation methods used in modern software.
Two new techniques in this regard are proposed and their difficulty in imple-
mentation and quantitative performance are evaluated. Part of the motivation
behind the techniques is based on findings from studying white box cryptogra-
phy which has placed a demand on finding mathematically or practically sound
obfuscation methods. The sophistication of tracing tools and the capabilities
of those using them has made white box schemes flimsy and highly vulnerable
to key extraction.

The first is motivated by recent processor vulnerability disclosures. Specu-
lative execution has become a trending topic in 2018 due to researchers pub-
licly disclosing large modern processor bugs which have existed for nearly two
decades. These vulnerabilities known as Spectre and Meltdown show not only
the dangers and pitfalls of speculative execution but also the utility and potential
capabilities that perhaps were previously ignored.

The second builds upon a model previously introduced for what was denoted
as pure and infinitely self-modifying code [4]. Using a less limiting definition
which allows any code which does not read data but always merely writes mem-
ory or executes control flow transfer instructions, an alternative and perhaps
more practical Turing-complete model is established.

132

SELF-SPECTRE, WRITE-EXECUTE AND THE HIDDEN STATE

2. Background

This paper will very closely follow the x86 and x86-64 processor architectures,
though there is no reason that the techniques and tactics discussed cannot be
seen in generality and adapted to other process architectures where applicable.
The models are thus presented in a general manner, while the inner-workings,
details and explanations of some design decisions can be derived from the specific
platforms. The process used and the type of low-level thinking is thus important
to keep in mind if trying to translate this work across architectures.

The Meltdown vulnerability, which is also known as Spectre-V3: Rogue Data
Cache Load (RDCL), primarily effects Intel processors. It exploits the way out-
of-order execution works on the processor. A memory space of 256 local 512-byte
pages is flushed from the cache representing every possible value of a byte.
To read a single byte of protected memory, it executes a pair of instructions
which reads the byte of protected memory followed by an indirect read based
on this previously read byte as an indexing value into the prepared flushed pages.
This protected read will ultimately not execute as it only speculatively executed
for out-of-order processing. It will silently fail the privilege check and be skipped
or conceivably fail with an interrupt exception. Yet the cache of one of the 256
local pages will have been made dirty which has opened up a straight-forward
timing side channel to determine the value.

Spectre is a term referring to the whole class of speculative execution vul-
nerabilities and the fact that the problem will be troubling the chip-makers for
some years to come. Beyond out-of-order execution, an important strategy called
branch-prediction is implemented which can significantly speed execution by cor-
rectly speculatively executing a branch in code which the processors complicated
internal state shows will be more likely to execute. The vulnerability thus lies
in mis-prediction down a branch. The vulnerability comes in 3 categories includ-
ing the Meltdown one previously mentioned. The remaining ones of the initial
vulnerability disclosure are Spectre-V1: Bounds Check Bypass (BCB), Spectre-
V2: Branch Target Injection (BTT). There are also 2 more newly discovered ones
which are Variant 3a: Rogue System Register Read (RSRE) and Variant 4: Spec-
ulative Store Bypass (SSB). The focus in this paper is only on Spectre-V1 which
is one the hardware vendors are largely choosing not to try to fix, but rather
to all software implementations to mitigate this vulnerability usually through
compiler strategies.

The details of how the original C source code [5] for the vulnerability posted
on Github as a proof of concept (PoC) is functioning are necessary to continue
further with making a model based on it. When generalizing Spectre for all
processor models in the x86 family over recent generations, up to 3 processor
intrinsic instructions need to be used. It should also be noted that malware

133

GREGORY MORSE

scanners are currently flagging the code pattern of the PoC due to the potential
malicious capability.

These processor instructions all revolve around flushing pages from the cache
and measuring precise timing information. The modern CLFLUSH instruction will
flush cache memory, marking it to be fetched from memory on the next read.
On older processors this would be implemented by the long Streaming Single In-
struction, Multiple Data (SIMD) Extensions (SSE) instruction _mm_stream_ps
which flushes the cache 4 bytes at a time. For precision timing, RDTSCP, if avail-
able, provides the current processor ticks when serialized. If the serialized timing
instruction is not available, then using a memory fence instruction MFENCE with
the older RDTSC processor tick retrieval instruction will avoid instruction reorder-
ing for correct measurement. If MFENCE is not present on the processor either,
then RDTSC can be used alone as these older processors fortunately do not appear
to reorder timing measurement instructions.

There are two more notable parts of the implementation to understand.
Namely the branch predictor must be mis-trained and fooled so that speculative
execution can be controlled as it is seen in Fig.[Il and lastly that when reading
out cache timings, stride prediction where the processor starts fetching memory
pages in advance based on in-order reading patterns must also be prevented.
Instead of reading forward in a linear order, the following simple strategy is
used: mix_i = ((i * 167) + 13) & 255;.

for (volatile int z = 0; z < 100; z++) {}
x = ((j % 6) - 1) & ~OxFFFF;
x = (x| (x > 16));

X = training_x (x & (malicious_x training_x));

FIGURE 1. Mis-training the Branch Predictor with C code.

3. Self-Spectre

A so-called “Self-Spectre” implementation thus begins with determination of
the required properties for the actual speculative function where the precise code
will execute. This code must be maximally efficient in net clock cycles required
to execute on a CPU at least on average. This is an unusual methodology as gen-
erally code optimization does not focus on squeezing performance into a precise
code location. By minimizing both the number of assembler instructions, and
minimizing the clock cycles of each instruction, a near optimum can be achieved.
Further this code would need to be pre-compiled or built in-memory and emitted
on the fly before its invocation. Compiler optimizations are sophisticated and
well tested enough to rely on for generation of such optimal code, or at least

134

SELF-SPECTRE, WRITE-EXECUTE AND THE HIDDEN STATE

a skeletal basis which can be converted both manually or at runtime by code into
a final code slice. Further inside this critical section, the maximal performance is
needed, while outside the region, more complex and slow code can run without
harming the technique.

By custom assembling the execution code in-memory, unnecessary reads in the
critical code can be eliminated by replacing for example memory reads with the
memory actually read at those addresses as immediate values. This is why the
level of optimization is quite unique when compared to the normal perspective
applied in industry. Of course, some obvious factors based on processor archi-
tecture are observed such as: 64-bit operations will perform faster on a 64-bit
processor, 32-bit operations are often faster than 64-bit operations, and 64-bit
addressing is typically faster than 32-bit addressing.

A key question that must be determined is: How deep is the speculative
branching pipeline? This is a difficult to answer question with any simple for-
mulas, as the modern processors have become complex state machines whose
behavior is so influenced by parallel and prior execution factors, not to mention
hardware algorithms hidden behind trade secrets and so forth. Parallelism and
task switching are particularly unpredictable. The types of cache on the pro-
cessor are reasonable well-known including the last-level (often L2 or in newer
processors where L2 has become unique per core, L3) cache, a form of cache
which is shared between cores on a multi-core processor. This also adds a factor
of potential interference in the cache. Instruction clock cycles can be used to
determine the expected maximal execution time, but it is not capable of giving
the minimal or average time. Empirical analysis is the easiest way to determine
the average time, while very technical and detailed knowledge of processor in-
ternals are the only way to find the minimal. It is however known and assumed
that later models of processors and later processors in a given model, are getting
the same or further execution depth. The measurement of speculative branching
depth, is the net time taken from the time the speculative processing starts until
the actual branch is reached.

The actual function to use for hidden computation which is speculatively
executed resides in the PoC C code (in file spectre.c). It has a function that is
treated in the original security vulnerability context as a victim function and
named thereby. The memory cache pages are cleared, where each page represents
one possible byte value that will be determined by which cache page was loaded.
The branch predictor is trained to make a false detection. This compiled code
has 3 assembly instructions for the jump and comparison portion of the code,
followed by either 7 or 11 instructions for the cache read, depending if on a 32
bit or 64 bit architecture. Fig. 2 shows this function which the original PoC code
uses for exploitation. In our new context, it will be used for secret computation
as opposed to an exploit that reads protected memory.

135

GREGORY MORSE

char * secret =

"The Magic Words are Squeamish Ossifrage.";
uint8_t temp = 0; /* Used so compiler

won’t optimize out victim_function() */
void victim_function(size_t x) {

if (x < arrayl_size) {

temp &= array2[arrayl[x] * 512];
¥

FIGURE 2. The chance to hide the state.

Whatever operations will be used, it is at least a weak requirement that the
computation is divisible into roughly equal chunks of work. And the smallest
such chunk of work should be sufficiently one-way. For a practical application of
the technique, a couple of common cryptographic one-way operations were cho-
sen. Namely the Advanced Encryption Standard (AES) in Electronic Codebook
(ECB) mode and Rivest-Shamir-Adleman (RSA) encryption primitives. AES with
an unknown key can be implemented solely using table lookups and logical xor
operations. More specifically AES-128 has 10 rounds where the first and last
round are slightly incongruent. The first round only used logical xor operations,
while the last is just a single byte table lookup and recombination. RSA on the
other hand is merely modular exponentiation. Realistically RSA must use big
integer libraries to achieve good encryption strengths starting least at RSA-1024
or RSA-2048. However for a PoC, 32-bit RSA would of course only require a
32-bit multiplication with a 64-bit output. This is quite natural to implement
in efficient assembly code. It also requires a 64-bit divisor divided by a 32-bit
dividend with a 32-bit remainder. Although the quotient cannot overflow 32-bits
of output, the remainder potentially can. These math primitives mention comes
from the fact that modular exponentiation is simply some rounds of modular
multiplication. In a naive and inefficient implementation, it requires E modular
multiplications where E is the exponent of modular exponentiation. Contrast this
to an efficient implementation which requires log, £ 4+ count_bits(E) modular
multiplications.

To further assist with AES are processor intrinsics, which x86 fully supports
from both Intel and AMD. Sébastien Riou (3rd place for Strawberries
in 2017 WhiBox contest) has provided code for this [6] in an AES brute force
toolkit with a reference AES-128 implementation. The key data is in a slightly
different form than typical reference C implementations. A snippet of this code
doing the encryption is shown in Fig.

The collected results for the depth of modern processors showed a remark-
ably deep speculative pipeline. Statistics are provided for both AES-128 with
10 rounds and RSA-32 in Tables [I] and 2] respectively. Sample collected output
is shown in Fig. M highlighting where the boundary of speculative execution

136

SELF-SPECTRE, WRITE-EXECUTE AND THE HIDDEN STATE

#include <wmmintrin.h>

const u32 *rk = key->rd_key;

_ml128i m = _mm_loadu_si128((__m128i*)in);
= _mm_xor_sil28(m, *((__m128i*)&rk[0]));
= _mm_aesenc_si128(m, *((__m128ix*)&rk[4]));
= _mm_aesenc_si128(m, *((__m128i*)&rk[8]));
_mm_aesenc_sil128(m, *((__m128ix*x)&rk[12]));
_mm_aesenc_si128(m, *((__m128ix*)&rk[16]));
_mm_aesenc_si128(m, *((__m128i*)&rk[20]));
= _mm_aesenc_sil128(m, *((__m128ix*)&rk([24]));
= _mm_aesenc_sil128(m, *((__m128ix*)&rk[28]));
= _mm_aesenc_sil128(m, *((__m128ix*)&rk[32]));
= _mm_aesenc_sil128(m, *((__m128ix*)&rk[36]));
= _mm_aesenclast_sil128(m, *((__m128i*)&rk[40]));
_mm_storeu_sil128((__m128i*)out, m);

8B B B B B B B B B B B
1]

FI1GUure 3. AES-128 encryption via processor instrinsics.

left incomplete results. Since the interpretation of these results still requires
processor knowledge, these are drawn for the reader. First note that modu-
lar multiplication for 6 rounds always fails on 32-bit compiled C or assembly,
93+5*44 or 70 instructions respectively, while 64-bit compiled C and assem-
bly require 47 or 46 instructions respectively. Multiplication and division are
expensive and require many more clock cycles which explains why less instruc-
tions can execute in RSA than with AES. As AES will use table lookups and
logical xor operations, about three times as many instructions can potentially
execute more than with the expensive arithmetic instructions. Since the quotient
of the division instruction is not needed when computing remainder, hand writ-
ten assembly can use two division calls to avoid overflow which is much faster

TABLE 1. AES-128 Speculative (10 rounds).

Intrinsics | C Ref. | 1 round Instrinsics | 1 round C Ref.
32-bit Correct 0% 0% 100% 0%
32-bit Confident - - 100% -
32-bit instrs.: 201 1030 145 313
64-bit Correct 100% 0% 100% 0%
64-bit Confident 100% - 100% -
64-bit instrs.: 133 737 115 195

137

GREGORY MORSE

TABLE 2. RSA Speculative (number of modular multiplications
(a * (uint64_t)b) 7% c).

2round C | 4 .asm | 4 round C | 5 .asm | 5 round C
32-bit Correct 100% 100% 0% 100% 0%
32-bit Confident 100% 100% - 100% -
32-bit instrs.: 53-+2%44 54 73+4%44 62 83+5%44
64-bit Correct 100% 100% 100% 0% 0%
64-bit Confident 100% 100% 100% - -
64-bit instrs.: 31 38 39 42 43

than using library instructions, hence why 32-bit C compiled code is very lim-
ited with multiplication and division involving 64-bit operands. This is largely
a compiler issue as the type system in C has historically had input and out-
put of arithmetic instructions as the same bit size despite that the assembly
language instructions never have followed such an inefficient paradigm. 64-bit
code can sometimes execute slower due to instruction size increase and larger
arithmetic units. But ultimately 64-bit code typically executes faster because far
less instructions are needed. Due to out-of-order execution, and the complex na-
ture of modern processors, it is impractical to even calculate precise clock cycles
by hand, though precise information is available through the processor based
on the actual clock counter. Basically empirical analysis such as those tabu-
lated, are required to determine the depth of specific operations before finalizing
a solution.

Correct AES Intrinsic = 0xF487F82611599E2562D2555AF60E9642 . .. Time: 0.003426 seconds
Unclear: Incorrect 0xF487F82611599E2562D2555AFFBIFFB3 score=770 821 813 811 718 510
814 747 228 149 70 50 1 0 1 (second best: 0xCA663B8380FFFF8181FFFFBEFES0FE79 score=1 1
2110021001010 1) Time: 0.500205 seconds

Unclear: Incorrect 0xF487F82611599E2562D2555AF6FGF1FF score=757 806 795 799 687 479
798 715 184 113 76 2 1 1 1 0 (second best: 0xFF81BEF1BESABEF1BEFFF6F62EB7TBEFE
score=0121111120111110) Time: 0.504171 seconds

Success: Incorrect 0xF487F82611599E2562D2555AFFFFFFFF score=787 832 826 822 726 553
816 749 236 195 821 0 0 0 0 (second best: 0xF1F679C1F6FFFFB3F6EAFFFFFEFEFEFE score=1
1111001110000 00) Time: 0.491277 seconds

Unclear: Incorrect 0xF487F82611599E2562D2555AF6BEFFBE score=743 793 787 780 659 507
776 707 259 186 852 1 1 0 2 (second best: 0x33FFF6F1A36466FF2E28FFED3966FEB3 score=2 0
1111102101110 1) Time: 0.500223 seconds

Unclear: Incorrect 0xF487F82611599E2562D2555AEBF6B922 score=701 741 729 722 613 486
716 647 238 162 81 211 1 1 (second best: 0x41BECACBFIFFFF867TBF6BE0186BEG6FF score=1
111100111111110) Time: 0.528884 seconds

Total Successes: 0 Confidence Success: 0 Time: 5.117587

FIGURE 4. Depth Statistical Results — Sample Output: 32-bit AES using
intrinsics with 12 bytes correct.

138

SELF-SPECTRE, WRITE-EXECUTE AND THE HIDDEN STATE

4. Write-Execute

The next proposed model termed based on its memory access properties is
Write-Execute. This is somewhat of an assembly language programming chal-
lenge due to the awkward constraint of not using direct memory read instructions
which is the norm. The three basic memory access flags have been read, write
and execute. In some contexts, “execute” is also sometimes considered to be
a form of read, as implicitly instructions must be read to be executed. But from
the strict point of view of the processor, reading is explicitly done by the code,
and the implicit memory fetch read for instruction execution is only requiring
the execute flag. So there can be no reads from memory besides the read re-
quired to fetch a current instruction. This is exactly what the technique refers to.
From the point of view of a tracing tool, it will see a linear fetch-write sequence
but no patterns unless the execution loops. Just as had occurred with pure,
infinitely self-modifying code, a novel machine code pattern emerges.

The model is further inspired from the traditional von Neumann view of com-
puter architecture where data and code are effectively synonymous. However,
in practical modern computers, the traditional view is that all memory is data,
some of which just so happens to be code. So an alternative view would be that
all memory is code, some of which just so happens to be data flowing through it.
This alternative view continues expanding knowledge for obfuscation, efficiency
and complexity problem issues. The processor view, it should be noted, is merely
to fetch, decode and execute the contents of the instruction pointer.

The model requires some primitives that will require table lookups or in
the case of binary operations, double table lookups. These operations include
firstly unary bitwise left shifts by a constant amount between 1 and 7 from
8-bits to 16-bits for relative jumps. The unary not primitive is required, and
negation via neg is optional. Pure 8-bit binary operations required are and,
or and xor. Finally 8-bit binary operations with an extra single shift or carry
bit needed are bitwise shift left, bitwise shift right, addition and subtraction.
By building up from these primitives, next higher level primitives can be con-
structed including: copying data and conditional jump via unconditional jumps.
Finally higher bit sizes can be constructed including 32-bit addition and subtrac-
tion, 32-bit multiplication with 64-bit output and division with a 64-bit divisor,
and 32-bit dividend, quotient and remainder. This effectively allows simulation
of 32-bit processor instructions which only operate with read addressing memory
modes.

The practical details are also very assembly language involved and specific.
First of all, no registers are used in the instructions, and only jumps and data
movement instructions are used. The stack could be made as an exception to this
by allowing the call, push and pop instructions thus avoiding a rather tedious

139

GREGORY MORSE

emulation of the stack through a no-operation reserved code area. 32-bit in-
equalities, comparisons with a conditional jump, modular exponentiation, and
even the table lookups and boolean operations for AES-128 are easily imple-
mented at this point. Because 64-bit addressing mode uses RIP-relative in-
struction addressing, a simple macro introduced here as ONLY64 will evaluate
to its value on 64-bit machines and simple to 0 on 32-bit platforms. 32-bit abso-
lute addressing is generally disadvantageous and slower in this context, causing
more complicated code for double table lookups specifically and that opera-
tion being the worst performance difference area between the two addressing
modes.

To appreciate the implementation of the model, some code snippets will be
introduced to demonstrate the specific assembler techniques. The first technique
of using jump tables is seen in Fig.[Bl A macro is used to define a table of ev-
ery possible byte value of the unary logical negation primitive, and shift left
by a constant from 8-bits to 16-bits is used to scale the jump.

Copying memory is demonstrated via the implementation of the xor binary
instruction. Since there is a double table lookup, one of the arguments must
not only specify a jump to modify, but modify a location to where the other

DEFINENOT macro Index, Lbl
&Lbl&_&Index&: mov byte ptr [Lbl+6], not Index

jmp [Lbl] ;; preprocessor wrongly assumes 10 bytes for jump
;; unfortunately not 2 or 5 bytes
IF Index GT O0f6h ;; preprocessor cannot look at distance to future labels
db 7 dup (090h)
ELSE
db 4 dup (090h)
ENDIF
endm

WriteExecNOT PROC

notarg:: mov byte ptr [shlargé4+2], 0

mov dword ptr [shlres4+1+2], notargshl + 1 - shlret4
mov dword ptr [shlret4+1], notargshl - shlret4 - 5
jmp WriteExecSHL4

notargshl: jmp notres_0+08000h ;; E9 00 80 00 00
idx_value = 0
WHILE idx_value LT 100h

DEFINENOT %idx_value , notres

idx_value = idx_value + 1
ENDM
notres:: mov byte ptr [notres+6], O
notret:: jmp $+80000000h ;; force long jump

WriteExecNOT ENDP

FIGURE 5. Example of not instruction.

140

SELF-SPECTRE, WRITE-EXECUTE AND THE HIDDEN STATE

argument must modify its jump. This is due to there being 256 different sec-
ond table lookups, and that jump must be put at the right indexed place.
Otherwise the code is relatively straight forward compared to a unary operation.
Fig. [@ gives the relevant assembly code to understand what is involved in code
copying which implements a clever and simple looping structure which is safely
re-executable.

mov dword ptr [xorargshll + 1+2], xorj+2-0NLY64 (xorargshll -1-2-4-2)
mov byte ptr [xorloop + 1], xorhead-xorloop -2

jmp xorargshll

xorhead: mov byte ptr [xorloop+1], O ;exit loop

xorargshll: mov word ptr [xorj+2], 8000h

ifdef X64

mov dword ptr [xorargshll + 1+2], xorargshl2+2+2-xorargshll -1-2-4-2
else

mov dword ptr [xorargshll + 1+2], xorargshl2jmp+1

endif

xorloop: jmp xorhead

ifndef X64

xorargshl2jmp: jmp xorargshl2begin+08000h ;; E9 00 80 00 00
$\1ldots$

xorargshl2: mov word ptr [xorargl_0+1], 8000h

xorj: jmp xorargl_0+0800000h ;; E9 00 00 80 00

FIGURE 6. Example snippet from the xor binary operation which copies
the first argument to modify its jump, and modify the location where the
second argument should modify its jump.

The last important operation is that of an explicit conditional jump, which
given the loop structure in the copy operation can already be deduced as being
possible. This is in fact even simpler than constructing a loop and simply using
the constant bit shifting operation and an unconditional jump whose displace-
ment is overwritten precisely. Fig. [demonstrates this last construct from the
context of the middle of a chain of adders where the carry bit may or may not
be transferred to the next adder.

A full compiler can be written and Turing-completeness could be readily
proven from the model as already presented. As for its white-box cryptographic
implications, then to undo Write-Execute, this would at least require a custom
coded tool. This tool would need to identify math primitives including boolean
operations, bit shifts, addition, subtraction, multiplication, division and modulo
operations. It would need to unwind the data copying and conditional jump con-
structs. Then it would need to determine data which was encoded as effectively
no-operation instructions. At this point it could construct a semantic equivalent
with simple assembly instructions. As for tracing tools, they would see execution
paths and memory writes. This model would certainly not be strong enough for
white-box cryptography with well-known algorithms like AES-128.

141

GREGORY MORSE

mov byte ptr [shlarg+2], 0
carry&Idx&retval + 1 - ONLY64 (shlret)
carry&Idx&shlret - shlret - 5

carry&Idx&:
mov dword ptr [shlres+1+2],
mov dword ptr [shlret+1],
jmp WriteExecSHL1

carry&Idx&retval: jmp nocry&Idx&+8000h ;; E9 00 80 00 00
nocry&Idx&: jmp add&Sz&argl_&NxtIdx© ;; EB xx
hascarry&Idxé&:

FIGURE 7. Example snippet from 32-bit add to conditionally perform the
carry increment.

5. Performance

Simulation results for AES-128 are presented in Table Bl while those for 32-bit
RSA are in Table @l The grayed out results which took over 500 seconds for

TABLE 3. AES-128 (1000 operations in succession).

Intrinsics | C Ref. Spec. I. | S.I.1 | Spec. C.R. | Write-Exec
32-bit | 0.000047 | 0.00096s | 569s | 2.06s 558s 1.35s
64-bit | 0.000051s | 0.00027s | 2.35s | 1.38s 549s 1.22s

TABLE 4. 32-bit RSA/modular exponentiation (100 operations in succession).

Fast C | Write-Execute | Simple C | Speculative
32-bit | .000067s 55.33s 0.000036s | 0.40s (5 .asm)
64-bit | .000057s 48.80s 0.000019s | 0.43s (4 .asm)

AES-128 represent the worst case speed when failure occurs for speculative exe-
cution and no clear cache pages can be determined as having the correct value
after some number of bytes. The AES-128 intrinsics were compared to C refer-
ence (C Ref.) implementations. Then speculative intrinsics (Spec. I.), speculative
intrinsics with only a single round of AES-128 (S.1.1), and the speculative C ref-
erence implementations (Spec. C.R.) were compared. Sometimes a single round
of AES could perform with intrinsics, while all 10 rounds could not, as it is seen
in 32-bit mode on the processor.

142

SELF-SPECTRE, WRITE-EXECUTE AND THE HIDDEN STATE

Note that Write-Execute implements fast modular exponentiation and hence
its C implementation is termed “Fast C”. Yet the simple naive C implementation
used for the speculative execution to make dividing it into chunks easier, shows
a better performance with “Simple C”. This is explained by the fact that the
Simple C and speculative execution used small fixed exponents while the other
model allowed random 32-bit exponents.

6. Conclusion

For the first hidden state model, unlike with the Spectre and Meltdown se-
curity vulnerabilities, there is no software mitigation here as it is by hardware
design, and at the discretion of the software designer to use or not use mitiga-
tions. Compiler authors have released versions of libraries, and compiler options
to enable such mitigations with the cost of performance. One way this can be
detected by an adversary is through looking for low-level memory flushing and
precision clock reading assembly instructions. Hardware mitigation is theoreti-
cally possible but at a great cost for such a marginal issue easily mitigated by
software. The state machine complexity would increase dramatically and this
has not even been discussed as a possibility for the time being given the exces-
sive complexity to mitigate something that can be merely documented and left
to software designers. In order to do this, all speculative state changes would
have to be unwound, and it is beyond the scope of any known security vulner-
ability. Further research is however needed in techniques involving mis-training
of the branch predictor for advanced code hiding. Furthermore, leaking data sur-
reptitiously across non-memory protected boundaries is also a new potentially
dangerous security risk for future study.

Write-Execute has provided a fully Turing-complete proof of concept for a new
type of pure self-modifying code. Although it is slow, it would provide a good
obfuscation method for custom code where such performance penalty can be
tolerated.

The two techniques provide new perspective and insight into ways future
protection schemes can be built. Although quite different, they both provide
software designers further paradigms based on the hardware that effectively
obfuscate and hide or alter computation, including exploiting the complex state
machine the processor is built on top of, or using assembly language in very
limited ways to achieve generality. Future work in this area could hopefully
even have an effect on processor architecture itself as making it more easy for
those legitimately protecting commercial software, while simultaneously making
it more difficult for malicious software to be written would positively effect the
bottom line of the whole IT software industry.

143

(1]

GREGORY MORSE

REFERENCES

KOCHER, P.—GENKIN, D.—GRUSS, D.—HAAS, W.—HAMBURG, M.—LIPP, M.—
-MANGARD, S.—PRESCHER, T—SCHWARZ, M.—YAROM, Y.: Spectre attacks:
Ezxploiting speculative ezecution, CoRR, abs/1801.01203, 2018.

SWANSON, S.—MCDOWELL, L. K.—SWIFT, M. M.—EGGERS, S. J.—LEVY H.M.:
An evaluation of speculative instruction ezxecution on simultaneous multithreaded
processors, ACM Trans. Comput. Syst. 21 (2003), 314-340.

NORDIN, P..—BANZHAF, W.: Evolving turing-complete programs for a register machine
with self-modifying code. In: Proc. of the 6th Internat. Conf. on Genetic Algorithms,
Pittsburgh, PA, USA, 1995, Morgan Kaufmann Publ., San Francisco, CA, 1995,
pp. 318-327.

MORSE, G.: Pure infinitely self-modifying code is realizable and turing-complete, Inter-
nat. J. Electron. Telecomm. 64 (2018), 123-129.

AUGUST, E.: Spectre attacks: exploiting speculative execution,
https://github.com/crozone/SpectrePoC. [Accessed: 2018.03.30].

Using Intel AES-NI and c++ threads to search an AES128 key,
https://github.com/sebastien-riou/aes-brute-force| [Accessed: 2018.06.01].

Received August 23, 2018 Faculty of Informatics

144

Eétvos Lordnd Tudomdnyegyetem/University
(ELTE)

Pdzmdny Péter sétany 1/C
H-1117-Budapest

HUNGARY

E-mail: gregory.morse@live.com

https://github.com/crozone/SpectrePoC
https://github.com/sebastien-riou/aes-brute-force

	1. Introduction
	2. Background
	3. Self-Spectre
	4. Write-Execute
	5. Performance
	6. Conclusion
	REFERENCES

