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ABSTRACT. T-310 is an important Cold War cipher. The cipher is extremely
complex and it outputs extremely few bits from the internal state. A recent pa-
per [Courtois, N.T.: Decryption oracle slide attacks on T-310, Cryptologia, 42
(2018), no. 3, 191–204] shows an example of a highly anomalous key such that
T-310 can be broken by a slide attack with a decryption oracle. In this paper, we

show that the same attacks are ALSO possible for regular keys which satisfy all the
official KT1 requirements. Two other recent papers [Courtois, N.T.—Georgiou,
M.—Scarlata, M.: Slide attacks and LC-weak keys in T-310, Cryptologia 43
(2019), no. 3, 175–189]; [Courtois, N.T.—Oprisanu, M.B.—Schmeh, K.: Lin-
ear cryptanalysis and block cipher design in East Germany in the 1970s, Cryp-
tologia (published online), December 5, 2018] show that some of the KT1 keys

are very weak w.r.t. Linear Cryptanalysis. In this paper, we show that a vast
number of such weak keys exist and study the exact pre-conditions which make
them weak. In addition we introduce a new third class of weak keys for RKDC
(Related-Key Differential Cryptanalysis). We show that the original designers in
the 1970s have ensured that these RKDC properties cannot happen for 4 rounds.
We have discovered that these properties can happen for as few as 5 rounds for

some keys, and for 10 to 16 rounds they become hard to avoid. The main reason
why we study weak keys is to show that none of these properties occur by accident,
rather that they are governed by precise pre-conditions which guarantee their ex-
istence, and countless other keys with the same properties exist. Eventually, this
is how interesting attacks can be found.

1. Introduction

T-310 is an important historical cipher which was used in East Germany
during the last period of the Cold War. According to [14], in 1989 there were
some 3,800 T-310 cipher machines in active service in Eastern Germany.
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1.1. Basic description of T-310

T-310 is a synchronous stream cipher which derives its keystream from the
iteration of a relatively complex block cipher. The main component of T-310 is
a keyed permutation which also takes an IV which we will call “the T-310 block
cipher”. The block size in T-310 is 36 bits only, the secret key has 240 bits.
The IV has 61 bits which are generated at random by the sender.

1.2. Encryption keys in T-310

T-310 has a long-term key a.k.a. LZS, in German Langzeitschlüssel which is
valid for example for 1 year, and a short-term key on 240 bits which is valid and
used for 1 week typically [9]. This key is stored on punch cards.

Figure 1. An example of an original historical key with details about
encoding cf. [9].

The punch cards however are not kept inside the cipher machine. Instead
the key is read and stored electronically in volatile memory inside the machine
and the operator has no access to the key (!!!). Moreover, the machine has a
“panic button” which allows to erase this memory, in order to decrease the
chance of the capture of the key by the enemy. These details are relevant for
fault attacks: electronically stored key could be subject to some electric faults,
perturbations or instability during cipher operation. Then potentially the cipher
could be restored to the normal operation: i.e., the fault would be corrected.
In this paper, we show that such event are actually possible, cf. Section 5.
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1.3. Encryption internals with T-310

The block cipher is not used directly to encrypt, but it is iterated a large
number of times. Some 13 · 127 = 1651 block cipher rounds1 are performed in
order to extract as few as 10 bits called (Bj , rj) from the cipher’s internal state,
which will then be used to encrypt just one 5-bit character of the plaintext by a
sort of double one-time pad cf. Fig. 2.

The initial key is s1−120,1−2 which is 240 bits. The key used in different
encryption rounds repeats every 120 steps:

sm+120,1−2 = sm,1−2.

In contrast the IV bits are expanded in an aperiodic way from an initial
set of 61 bits chosen at random by the sender. The expansion is based on the
following LFSR which produces a sequence with a very large prime [16] period
of 261 − 1

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56.

This peculiar aperiodic expansion makes T-310 stronger than, for example,
GOST, where the same permutation is repeated many times, which could lead
to various self-similarity attacks.

1.4. Block cipher inside T-310

T-310 mandates a peculiar variant of a so-called “Contracting Unbalanced
Feistel cipher” with 4 branches, cf. [13]. The original Feistel cipher construction
had 2 branches and was invented around 1971 [10]. Then East German cipher
designers had already in 1970s [14] mandated a substantially more complex
structure. The actual connections depend on the so-called long-term key, a.k.a.
LZS, in German Langzeitschlüssel. Recent research shows that some LZS may be
vulnerable to certain attacks, but in general a well chosen LZS seem secure [7,8].

1The number of 13 iterations with 127 rounds each is what is specified in the main historical
document [16] from 1980. There is some controversy whether in the actual encryption machines
this have been modified and 13 maybe needs to be replaced by 14, see Appendix I.3. of [9].
This has a very small impact on research on T-310 and all known attacks translate in a
straightforward way. In this paper, we will assume that we have 13 iterations and it appears

that it makes no difference to any of claims or results inside this paper.
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Figure 2. T-310 Cipher.

1.5. Inside the block cipher of T-310

Following [14] we denote by um,1−36 the 36-bit state of the cipher at moment
m = 0, 1, . . . We denote by

φ : {0, 1}3 × {0, 1}36 → {0, 1}36

the function of one round. We have

(um,1−36) = φ (sm,1, sm,2, fm; um−1,1−36) .

The numbering in the cipher is such that the bits numbered 1, 5, 9, . . . , 33
will be those created in one encryption round, and the bits numbered 4, 8, . . . , 36
are those which are replaced, and all the other bits get shifted by one position,
i.e.,

um+1,i+1 = um,i for any i �= 4k.
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Figure 3. The internal structure of one encryption round for T-310 in the KT1 case.

1.6. One block cipher round φ

Let U1−9 be the 9 newly created bits. By definition after one round we have

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) = (U1, U2, U3, . . . , U8, U9) .

It remains to specify how the U1−9 are computed inside one round. To cut a long
story short, we recall from [8, 9] that when D(i) = 0 (mandatory for KT1 keys)
we assign input

um,0
def
= sm+1,1, m ≥ 0

which is a part of the secret key and a constant for any given round and that
overall for all KT1 keys we have the following equations (1-9):

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕ uP (27), (1)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕ Z4(uP (21−26)), (2)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕ uP (20), (3)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕ Z3(uP (14−19))⊕ s2, (4)

U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕ uP (13), (5)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕ Z2(uP (7−12)), (6)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕ uP (6), (7)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5)), (8)

U9 ⊕ uD(9) = f. (9)
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Figure 4. Internal structure of one round of T-310 based on original draw-
ings [16].

Finally, in the above, Z are four identical copies of a Boolean function

Z : IF6
2 → IF2

which is

Z(e1, e2, e3, e4, e5, e6) = e1 ⊕ e5 ⊕ e6

⊕e1e4 ⊕ e2e3 ⊕ e2e5 ⊕ e4e5 ⊕ e5e6

⊕e1e3e4 ⊕ e1e3e6 ⊕ e1e4e5 ⊕ e2e3e6 ⊕ e2e4e6 ⊕ e3e5e6

⊕e1e2e3e4 ⊕ e1e2e3e5 ⊕ e1e2e5e6 ⊕ e2e3e4e6

⊕e1e2e3e4e5 ⊕ e1e3e4e5e6.

1.7. How encryption is performed — double one-time pad

In this paper, we ignore the question how the encryption is performed.
Extremely few bits extracted from the cipher state, 1 every 1651 rounds are
used for the actual encryption. The exact single bit which is used for encryption
is Ui,α for a fixed α ∈ {1, . . . , 36} which can be viewed as a part of the long-term
key LZS, and for certain i distant by multiples of 127 rounds. We refer to [9]
for a detailed description. In KT1 specification there are also rules which forbid
to use certain α values, cf. [9].

2. On three classes of weak keys

Numerous types of weak keys for T-310 exist and have been already studied [9].
This includes old Eastern-German sources which, for example, contain a list
of various historical anomalous keys such as 27, which are very clearly marked
as bad keys which should never ever be used [9].

In this paper, we study almost exclusively weak keys which are expected to be
strong: i.e., weak keys which satisfy all numerous requirements for the so called
KT1 keys specified by the designers cf. [16]. Such keys could have been approved
for being used in actual government communications.
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Cryptanalysis of such a cipher can be seen as a combinatorial constraint sat-
isfaction problem: what are the constraints on D() and P (), which will lead
to particular weakness and attack. We call such constraints pre-conditions.
This question requires numerous weak key classes to be studied one by one and
determine the exact pre-conditions for each case. The ability to generate and
validate such pre-conditions is an important task in cryptanalysis. Most of the
results in this paper are of this type and have been constructed as paper and
pencil mathematical proofs. Machine learning was also used for this purpose and
the results were disappointing: the process is quite slow and not always accu-
rate. Therefore we only present exact results with proofs. With pre-conditions
it becomes easier to know if a specific attack can be compatible with the KT1

conditions or if two properties could be combined in an advanced attack.

3. On keys with alpha to alpha correlations

In [2] a slide attack on T-310 is presented. The possibility to execute this
specific attack is restricted to the case where certain type of correlations exist,
between the exact single bit which is used for encryption Ui,α and the same bits
7 round later Ui+7,α. At this moment the attack surface seemed very very small.
Not only we knew only one very special key such that this attack would work,
but also this key was clearly very bad and could never been adopted or used by
anyone: it is possible to see that for key 701 presented in [2], the round function
is not bijective. In this paper, we do better: we show that the same sort of attack
can be made to work for keys of type KT12. For example, the key 741 is of type
KT1, and has the same property also for d = 7 rounds. This shows that the
attack presented in [2] is in fact a realistic attack which can break T-310 in a
real-life setting, which is not at all obvious if we read [2].

701: P= 31,10,33,6,32,8,5,3,9,15,13,26,19,28,21,7,16,25,34,12,

22,17,35,29,30,23,4;

D= 4,2,17,32,12,35,0,24,20.

741: P= 15,24,33,27,19,12,5,22,9,31,3,7,8,34,21,36,32,25,18,28,

35,20,4,29,16,14,2;

D= 0,36,24,4,32,16,8,12,20.

2Therefore the round function is bijective cf. [7].

67



NICOLAS T. COURTOIS—MATTEO SCARLATA—MARIOS GEORGIOU

Here are the interesting correlations for these 2 keys:

Table 1. Some one-bit invariant correlations in T-310.

LZS nb Rounds Input → Output Bias Prop./Keys

701 7 [30] → [30] 2−11.2 0.2

741 7 [29] → [29] 2−4.4 TBC

741 7 [30] → [30] 2−4.4 TBC

741 7 [31] → [31] 2−4.4 TBC

741 7 [32] → [32] 2−4.4 TBC

3.1. A short explanation for key 741

Here is a short explanation why key 741 has the properties stated above. First
we observe that [29] → [30] → [31] → [32]. Then we are going to show that:

Table 2. A detailed explanation for key 741.

LZS nb Rounds Input → Output Bias Prop./Keys

741 3 [29] → [32] 2−1.0 1.0

741 1 [32] → [10,17,25] 2−3.0 1.0

741 3 [10,17,25] → [29] 2−2.4 1.0

Figure 5. One round of T-310 for key 741.
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(1) Let X(j) denote values inside round j.

(2) We observe that P (13) = D(7) = 8, therefore, v13 = u
(1)
8 = uD(7).

Then D(5) = 32. We have

u
(2)
25 ⊕ u

(1)
8 ⊕ Z2(1)(v7 − v12)⊕ u

(1)
8 ⊕ u

(1)
32 = u

(2)
17

here u
(1)
8 appears twice and is eliminated, and we have

Z2(1)(v7− v12) = u
(2)
25 ⊕ u

(1)
32 ⊕ u

(2)
17 .

Now we add u
(1)
9 on both sides

Z2(1)(v7 − v12)⊕ u
(1)
9 = u

(2)
25 ⊕ u

(1)
32 ⊕ u

(2)
17 ⊕ u

(1)
9

and observe that this bit becomes number 10 in the next round

Z2(1)(v7− v12)⊕ u
(1)
9 = u

(2)
25 ⊕ u

(1)
32 ⊕ u

(2)
17 ⊕ u

(2)
10 .

Finally, we observe that Z2 is correlated to u
(1)
9 which is one of its inputs.

Therefore, the following expression is biased

u
(1)
32 ⊕ u

(2)
10 ⊕ u

(2)
25 ⊕ u

(2)
17 .

(3) Thus we have shown that we have [32] → [10, 17, 25] in one round.

(4) It remains to see that [10, 17, 25] → [29] in 3 rounds.

(5) After first 2 rounds bits u
(1)
10 , u

(1)
17 , u

(1)
25 become u

(3)
12 , u

(3)
19 , u

(3)
27 which are

v6, v5, v4 inside 3rd round. Furthermore,

D(8) = 12 = P (6).

The output of Z1(3) is correlated to XOR of 2 of its inputs u
(3)
19 ⊕ u

(3)
27 .

(6) Moreover, f (3) ⊕ Z1(3) ⊕ u
(3)
12 = u

(4)
29 . Thus we have

Z1(3) ⊕ u
(3)
19 ⊕ u

(3)
27 = u

(4)
29 ⊕ f (3)

and if the left hand side is biased, the right hand side is also biased.

Summary� We have shown that there exist KT1 keys with α → α correla-
tions suitable for the attack described in [2]. Therefore this attack is not only
theoretical.

4. On LC-weak keys

There exist numerous distinct classes of keys which are weak w.r.t Linear
Cryptanalysis.

���������� 4.0.1 (LC-weak keys)� We say that a long-term key LZS is
LC-weak if it exhibits at least one invariant linear characteristics true with
probability 1.
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An interesting question is whether keys which are compliant with KT1 specifi-
cation can also be weak. We found that the answer is yes. There exist numerous
classes of weak keys which we need to study one by one. Some examples are
given in [8]. As a proof of concept two classes of such keys are detailed below.

4.1. A detailed example of how T-310 can be weak w.r.t. LC

	
����� 4.1.1 (A class of 2R properties)� For each long term key such that
D(1) = 0, D(2) = 4 and P (27) = 6 and for any short term key on 240 bits,
and for any initial state on 36 bits, we have the following two linear approxi-
mations [1, 2, 3] → [2, 4, 6] → [1, 2, 3] which are true with probability exactly 1.0
for 2 rounds.

P r o o f. We recall the first equation of Section 1.6. We replace U1 and U2 by
um+1,1 and um+1,5 which is where these bits are connected in the next round

um+1,1 = uD(1) ⊕ um+1,5 ⊕ uD(2) ⊕ uP (27).

We have D(1) = 0 which makes um,0 = sm+1,1 and D(2) = 4 and P (27) = 6.
Therefore, we have

um+1,1 = sm,1 ⊕ um+1,5 ⊕ um,4 ⊕ um,6,

and this leads to the following linear approximation for one round:

[4, 6] → [1, 5] 1R P = 1.

Figure 6. For convenience we show the bits involved here.

Using that fact that bits �= 4k are just shifted in our Feistel with 4 branches,
this can be trivially extended for one earlier round as follows

[3, 5] → [1, 5] 2R P = 1.
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Finally, it is trivial to see that [1] → [2] → [3] for two rounds also with
certainty, which property can be combined with the previous one and we obtain
finally

[1, 3, 5] → [1, 3, 5] 2R P = 1.

It follows that the same linear characteristic works for any even number
of rounds. It is also easy to see that

[2, 4, 6] → [2, 4, 6] 2R P = 1.

�

4.2. A second detailed example for 6 rounds

Here is another more complex result.

	
����� 4.2.1 (A class of 6R properties)� For each long term KT1 key such
that D(7) = 16, {D(3)/D(4), P (20)} ⊂ {4, 8, 36}, P (27) = 10, and finally,
{D(2), D(9)} ⊂ {28, 32} and for any short term key on 240 bits, and for any

initial state on 36 bits, we have the linear approximation [1, 5, 15, 33, s
(6)
1 , f (6)] →

[1, 5, 15, 33] which is true with probability exactly 1.0 for 6 rounds.

P r o o f. We will show that the following holds

Rounds Input → Output Probability

2 [1,5,15,33] → [3,7,25,29,35] 1.0

2 [3,7,25,29,35] → [9,13,27,31] 1.0

2 [9,13,27,31] → [1,5,15,33] 1.0

Let X(i) denote values inside round i. We recall a subset of equations from
Section 1.6.

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕ uP (27), (1)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕ uP (20), (3)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕ uP (6), (7)

U9 ⊕ uD(9) = f. (9)

First of all, we observe that [1] → [3], [5] → [7] and [33] → [35] for 2 rounds.
We also see that [15] → [16] for 1 round. So

u
(1)
1 = u

(3)
3 , u

(1)
5 = u

(3)
7 , u

(1)
33 = u

(3)
35 and u

(1)
15 = u

(2)
16 .
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Figure 7. Explanations for our proof for key 706.

From the KT1 properties in [9], we know that for all KT1 keys P (6) = D(8).
We also assumed D(7) = 16. Hence, equation (7) becomes

u
(3)
25 ⊕ u

(3)
29 = u

(2)
16 .

Thus, we have [16] → [25, 29] for 1 round and, combining all the linear properties
discussed so far,

[1, 5, 15, 33]→ [3, 7, 25, 29, 35] for 2 rounds.

Then we observe that

u
(3)
25 = u

(5)
27 , u

(3)
29 = u

(5)
31 , u

(3)
3 = u

(4)
4 , u

(3)
7 = u

(4)
8 and u

(3)
35 = u

(4)
36 .

We assumed {D(3)/D(4), P (20)} ⊂ {4, 8, 36}. Therefore, equation (3) becomes

u
(4)
4 ⊕ u

(4)
8 ⊕ u

(4)
36 = u

(5)
9 ⊕ u

(5)
13 .

Thus, we have shown that

[3, 7, 25, 29, 35]→ [9, 13, 27, 31] for 2 rounds.

We recall that our goal is to show the following sequence of linear equalities:

[1, 5, 15, 33]s1f → [2, 6, 16, 34] → [3, 7, 25, 29, 35] →
[4, 8, 26, 30, 36] → [9, 13, 27, 31] →

[10, 14, 28, 32]→ [1, 5, 15, 33].

72



HOW MANY WEAK-KEYS EXIST IN T-310 ?

Figure 8. Further illustration for our proof.

It is clear that

u
(5)
13 = u

(7)
15 , u

(5)
9 = u

(6)
10 , u

(5)
27 = u

(6)
28 , and u

(5)
31 = u

(6)
32 .

The remaining conditions from the theorem 4.2.1 hypothesis are

P (27) = 10 and {D(2), D(9)} ⊂ {28, 32}.
Hence, equation (1) becomes

u
(6)
10 ⊕ s

(6)
1 ⊕ u

(6)
D(2) = u

(7)
1 ⊕ u

(7)
5

and equation (9) becomes
u
(6)
D(9) ⊕ u

(7)
33 = f (6).

Finally,

u
(6)
10 ⊕ u

(6)
D(2) ⊕ u

(6)
D(9) ⊕ s

(6)
1 ⊕ f (6) = u

(7)
1 ⊕ u

(7)
5 ⊕ u

(7)
33 .

It follows that if
{D(2), D(9)} ⊂ {28, 32},

we have
[10, 28, 32, s

(6)
1 , f (6)] → [ 1, 5, 33 ] for 1 round.

Finally, we have also shown that

[9, 13, 27, 31]→ [1, 5, 15, 33] for 2 rounds.

This ends the proof that if the conditions of the theorem are satisfied, we have

[1, 5, 15, 33, s
(6)
1 , f (6)] → [1, 5, 15, 33] for 6 rounds. �
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4.3. How to use LC-weak keys in cryptanalysis?

For a long time an open problem was whether LC-weak keys can be used in
cryptanalysis. One solution to this problem is presented in a new paper [6]. Not
all key bits can yet be recovered by this method, therefore the question is not
completely settled yet.

4.4. On frequency of LC-vulnerable KT1 keys

We have approximately 283.2KT1 keys total, cf. Section 8.6. of [9] and [8]. Our
computer simulations on generating and testing vast quantities of KT1 keys at
high speed indicate that about 3.0 % of all KT1 keys are LC-weak. Some 10% or
0.3 % of the total are those of Section 4.1 In addition we found by a computer
simulation that overall there exist many other similar classes of keys for a total
of 3.0 % of all KT1 keys. We refer to another recent paper on this question
which in particular shows that Linear Cryptanalysis was known and studied by
the designers of T-310 in the 1970s, [8].

4.5. What about the other 97.0 % and non-linear invariants

We have seen that union of a number of results such as our Thm. 4.1.1 and
Thm. 4.2.1 above leads overall to 3.0 % of all KT1 keys which are LC-weak
and have linear invariant properties true with probability 1. An open important
problem is to find an attack on any of the 97.0 % of KT1 keys resistant to Linear
Cryptanalysis. We need to look at the question of non-linear invariants or
Generalised Linear Cryptanalysis (GLC) [3, 11]. In a recent paper [4] we show
that it IS possible to construct some non-trivial non-linear invariants for T-310.

4.6. A proof of concept - an example of a non-linear invariant

There are several very serious problems in constructing non-linear invariants
and in the last 20 years in most cases research has failed to find suitable non-
linear invariants, and it is not clear if they exist or not. We give one example
of a non-linear invariant which is a proof of concept for GLC in T-310 setting.
We consider the following polynomial invariant

P = efg + efh+ egh+ fgh+ fg.

It is possible to verify, cf. [4], that this invariant works when F = 0, S1 = 0 and
S2 = 0 in one round and if we use the following long-term key :

317: P = 27,29,31,21,33,19,26,25,22,32,23,17,24,

16,18,9,5,10,35,13,36,30,34,11,2,28,14.

D = 17,25,26,35,18,34,30,32,28.

In addition, this works only for a special (weak) Boolean function

Z(a, b, c, d, e, f) = 1 + a+ c + d.

and only for such quite weak Boolean functions.
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An open important problem is to construct non-linear invariants which would
be also resistant to Linear Cryptanalysis (which the example above already does)
AND which would work not only when key and IV bits F, S1, S2 are fixed to 0,
some solutions are provided in [4]. An open problem is to further do the same
for either of any LZS which is of the form KT1 or when the round function is a
bijection on 36 bits. None of these is true with 317 above but is possible in other
cases, see our tutorial paper on this topic [4]. It remains an open problem to find
a non-linear invariant attack on a real-life historical key. Another open problem
is to find an invariant attack on any LZS which would have non-linear invariants
and which would work with the original Boolean function, and which would have
no simpler linear invariants such as linear invariants. One example of an attack
where the Boolean function differs from the original by only one linear term we
found after this paper had been written and can be found in [5].

In spite of all these, the very existence of non-linear invariants is an impor-
tant discovery for T-310 which answers an open problem from Section 7 of [8].
They are subject to the exactly same methodology as in the present paper: with
the right pre-conditions such as Thm. 4.1.1, the existence of the invariant can
be guaranteed. One simple example of a pre-condition in the GLC case can be
found in Section 7.6 in [4] showing that a specific weak key 827 does in fact lead
to a larger class of weak keys, which is systematically the case.

We conjecture that up to 100 % of all KT1 keys will be vulnerable to non-
linear invariants when the degree and complexity of these invariants increase.
The number of non-linear invariants grows double-exponentially and a system-
atic exploration is not possible. Even for quadratic invariant the space of GLC

attacks cannot be explored systematically: we have 2(
36
2 ) ≈ 2600 possible in-

variants P to try. This is why at this moment extremely few working examples
of non-linear invariants are known.

5. On collisions on the cipher state in T-310

A recent paper shows that if the round function φ is not bijective, the cipher
can be broken in ciphertext-only scenario, cf. [7]. In this paper, we will only
look at the hard case: when φ is bijective. We recall from [7, 9] that from a
pure functional/encryption point of view, nothing forces φ to be invertible.
Being able to compute the previous states of our T-310 generalized Feistel cipher
variant, is not needed in the normal operation of the cipher. Bijectivity is a
feature which makes the cipher substantially more secure cf. [7]. Mathematical
proofs that the two main historical key classes KT1 and KT2 have bijective round
functions are given in [8].
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5.1. Vanishing differential attacks

One reason for φ to be bijective is that it prevents some quite strong attacks
not only on T-310 cf. [7,9] but also on block ciphers at large. Most modern block
ciphers have been built to specifically avoid such attacks and they are known
under different names such as vanishing differentials, all-zero output difference
attacks, cf. slide 253 in [1] and [3], a.k.a. collision attacks. In this paper, we
consider one extension of the concept of vanishing collision attacks, where the
attacker is in presence of [or can provoke] also some localised flips on the key
bits. This implies that there are either some electrical faults inside the machine
or that the attack is able to produce such faults, for example, by manipulating
the power supply or injecting short electrical glitches at some wires which are
accessible to him such as wires connecting the command unit with the cipher
machine unit. It remains however an open problem how to exploit such events
in cryptanalysis: if and how such keys could be used to recover the secret key.

5.2. Related key collision attacks

The following result - or requirement - is expected to hold for all good3 long-
term keys for T-310, cf. page 49 in [16].

	
����� 5.2.1 (Local injectivity result for φ4)� For four rounds φ4 if we fix
the block input u on 36 bits, and vary the 12 of the key and IV bits, we obtain 212

pairwise distinct φ(u) values on 36 bits.

A similar result also holds for 1,2 and 3 rounds of T-310, with 23n images
cf. page 49 in [16]. Then it does NOT hold for 5 rounds, and we show here some
counter-examples. We have found the following KT1 key which we will call 716
and another similar key 722:

716: P = 16,6,33,11,20,24,5,13,9,7,31,19,36,12,

21,30,34,25,17,32,23,28,4,29,26,8,3.

D = 0,4,16,28,12,20,36,24,8.

722: P = 15,11,33,28,27,8,5,30,9,24,35,22,16,34,

21,18,7,25,12,36,14,20,4,29,32,1,17.

D = 0,4,28,32,12,20,16,8,24.

For these keys there exist differentials on the key only, which can be anni-
hilated leading to no difference on the full 36-bit state of the cipher, this for
only 5 rounds. This is closely related to the notion of “missing bits” in T-310,
studied in [9]. We observe that several bits of the state are not equal to any

3It is not entirely clear if these statements and many other found in Chapter III in [16] are
actual properties (claims/lemmas) or just desirable properties (e.g., security requirements).
There is no justification (or mathematical proofs) provided, and it is not clear which exact

long-term keys are concerned by this property.
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of the P (j) and these bits are inevitably not used in the round function inside
next round of T-310. This allows certain differentials to remain constrained and
to “propagate” more easily which makes related-key differential attacks some-
what easier than expected, cf. [9].

Table 3. Missing bits for some keys vulnerable to related-key differential attacks.

LZS nb Bits which are not used in P (j)

716 1, 2, 10, 14, 15, 18, 22, 27, 35

722 2, 3, 6, 10, 13, 19, 23, 26, 31

Notation� In this paper, we use very compact notations in order to represent
our related-key collision events. For example, the notation 1, 2 > 3 means that a
differential at a certain round i occurs only on bits 1, 2 out of 1-36 possible, and
in the next round only on bit 3. All the other bits are unchanged. Furthermore
we can extent this notation with key bits, for example, s1 > 1 indicates that
a difference on a secret key bit s1 inside one round (there is only one such bit
per round) provokes a difference on the cipher state entering the next round at
bit 1. If both events occur in the same round we use commas like 2 > 3, s1 >
4 meaning that in the middle round both keys and the cipher states are not
identical in two encryptions.

Observations on key 716� With these notations, the exact form of internal
differential that is eventually annihilated by some differences on key bits during
the two encryptions is 1 > 2 > 3 > 4. For example, we have observed the
following types of events with key 716: we have s1 > 1 > 2 > 3, s1 > 4, s1.
Overall the two states become identical after only 5 rounds. This is quite unusual
and 716 is an example of an exceptionally weak KT1 key. This sort of properties
were a subject of considerable care by the designers of T-310, see Thm. 5.2.1
which states that the same result should not hold for 4 rounds.

5.3. A detailed example

More precisely, we have the following sequence of events for 5 rounds:

1) In the 1st round, the difference on key bit s1 becomes a difference on U1=u1,
cf. Fig. 9 page 79. A formal explanation is as follows. We have

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕ uP (27)

following the first equation (1) in Section 1.6. Then we have

s1 = u0 and D(1) = 0
and we obtain

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕ uP (27).
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The right hand side does not change and a flip on key bit s1 in round 1
will affect bit u1 at the input of the second round. Accordingly bit 1 and
only this bit is flipped after the first round.

2) Then inside round 2, according to Table. 3 this input bit 1 is NOT used, it
does NOT enter the round function, and it simply becomes bit 2 [this is,
a substantial weakness]. Thus only bit 2 is flipped after the 2nd round.

3) Then in round 3, according to Table. 3 this bit 2 is still NOT used otherwise
than it becomes bit 3. Thus only bit 3 is flipped after the 3rd round.
We have the following differential characteristic s1 > 1 > 2 > 3.

4a) Then in round 4, we have P (27) = 3 and bit 3 is used. Again we have
U1 ⊕ s1 = U2 ⊕ uD(2) ⊕ uP (27) so the only thing a difference 1 on bit 3
would do is to flip the bit T9 = U2⊕uD(2)⊕uP (27) which will be annihilated
by a flip in bit s1 inside the same round and overall the bit u1 is not flipped
after round 4. We have s1 > 1 > 2 > 3, s1.

4b) At the same time, the flip will still be copied from wire u3 which becomes u4

now. We have s1 > 1 > 2 > 3, s1 > 4.

5a) Then in round 5, we have a difference on the entering bit 4. The con-
struction of T-310 prevents this from being cancelled too easily. We have
P (23) = 4 which is one of the inputs s4 of Z4 in 4th round. A detailed
examination of the truth table of Z() shows that the difference on bit s2
is cancelled with probability close to 1/2 no matter what all the other
5 input bits are in each case, systematically and uniformly4 over such
choices.

5b) At the same time we have D(2) = 4. In the fifth round the bit 4 has
another effect: it would normally flip u1, except for that we have again
U1 ⊕ s1 = U2 ⊕ uD(2) ⊕ uP (27), and this modification can be cancelled
by flipping bit s1 inside the 5th round.

!!) Overall our differential is extinguished with probability 1/2 over 5 rounds
as follows: s1 > 1 > 2 > 3, s1 > 4, s1.

4This is quite surprising, and due to the requirement (3) listed on page 53 of [15], and in
Section 3.3. of [8] which is as follows:

|{X ∈{0, 1}6|Z(X1, . . . , Xi, . . . , X6) = Z(X1, . . . , Xi ⊕ 1, . . . , X6)}| ≈ 25, i = 1, . . . , 6. (3)
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Figure 9. The internal structure of T () inside one round of T-310.

5.4. A general result

From the above we see immediately that

	
����� 5.4.1 (A 5-round related-key differential)� The extinguishing related-
key differential property s1 > 1 > 2 > 3, s 1 > 4, s1 works for each long term key
such that D(1)=0, D(2)=4, P (23)=4 and such that ∀jP (j) /∈{2, 3}. For such
LZS, the property is triggered by imposing the s 1 key difference for 5 rounds is
0x19, and for any s 2 key, for any IV, and for any cipher state on 36 bits and the
differences are extinguished after 5 rounds with probability almost exactly equal
to 1/2, cf. requirement (3) above.

Table 4. Some LZS vulnerable to related-key differential attacks.

LZS nb Related-key differential trail

716 1 > 2 > 3 > 4

Remark� A similar yet weaker result could be obtained for key 722. In this
case, the differential property is rather s1 > 1 > 2 > 3 > 4, s1 and the difference
on s1 key bits is 0 x 11 which has only 2 active bits as we do longer need to flip
a bit at round 4 as P (27) �= 3 and bit 3 is not used. The propagation probability
is 1/4, half of the previous result, due to the fact that in round 2 bit 1 is used
as input of Z4 with P (26) = 1, therefore, the property (3) is used twice.
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5.5. Weak keys which combine LC-weakness with RKDC

To illustrate this we found that there exist keys which are simultaneously very
weak w.r.t. LC and RKDC, for example, key 718.

718: P = 3,18,33,12,36,8,5,27,9,19,14,23,20,16,

21,26,7,25,31,28,32,15,4,29,24,22,6.

D = 0,4,36,12,24,16,20,8,32.

5.6. How many RKDC weak keys exist

We found that this sort of weak keys are almost inevitable. If we increase the
number of rounds, the percentage of weak keys increases. At 16 rounds, nearly
100 % of keys are weak including the actual historical keys used in real life.

6. Conclusion

T-310 is an important Cold War cipher. Cryptanalysis of such a cipher can be
seen as a combinatorial constraint satisfaction problem: find some constraints or
pre-conditions on D() and P () leading to particular weakness and attack which
would also be compatible with the KT1 conditions which are required by the
designers. This question requires numerous weak key classes to be studied one
by one. In this paper, we studied three major classes of weak keys. For each class
we attempt to construct also KT1 keys which would be weak. Our first contri-
bution is to show that there exist KT1 keys with 1 bit correlations. Our second
contribution is to show that LC-weak keys can be constructed step by step rather
than found at random, and that we can compute precise pre-conditions which
allow each type of weak keys to exist, cf. Thm. 4.1.1 and Thm. 4.2.1. Our third
contribution is a new class of weak keys with related-key differential properties.
We found that up to 100 % of T-310 long-term keys are vulnerable w.r.t. this
new class of weak keys.

In contrast only 3.0 % of all KT1 keys have linear invariant properties true
with probability 1. What about the other 97 % of KT1 keys? A recent paper [4]
shows how to construct some non-linear invariants for T-310. In this paper, we
provide one example and a proof concept. Most non-linear invariants known
at this moment are very far from being relevant or satisfactory. They are just
special. An important open problem is to construct non-linear invariants which
are of type KT1. If KT1 does not protect against linear invariants, we see no
reason why it would protect against their direct generalizations. However this
has yet to be demonstrated. We conjecture that the vulnerability of this cipher
to non-linear invariants increases as the degree of these invariants increases and
we conjecture that possibly it approaches 100 % as the degree of invariants
grows. It could however also stagnate somewhere very near the 3 %. We have
interesting new open problems to study.
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������������ An interesting question is if any of our weak keys can be used
in cryptanalysis and how. Very few can, and if this works, not all key bits can be
recovered, cf. Section 4.3 and [6,9]. One method to actually break T-310 would be
to combine more than one vulnerability in one single long-term key. To illustrate
this we show that there exist keys which are simultaneously very weak w.r.t. LC
and RKDC, cf. our example in Section 5.5.
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