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A CRYPTOGRAPHIC SYSTEM BASED ON A NEW

CLASS OF BINARY ERROR-CORRECTING CODES

Pál Dömösi∗—Carolin Hannusch∗∗—Géza Horváth∗

Faculty of Informatics, University of Debrecen, Hungary

ABSTRACT. In this paper we introduce a new cryptographic system which is
based on the idea of encryption due to [McEliece, R. J. A public-key cryptosystem
based on algebraic coding theory, DSN Progress Report. 44, 1978, 114–116].
We use the McEliece encryption system with a new linear error-correcting code,
which was constructed in [Hannusch, C.—Lakatos, P.: Construction of self-dual

binary 22k, 22k−1,2k-codes, Algebra and Discrete Math. 21 (2016), no. 1, 59–68].
We show how encryption and decryption work within this cryptosystem and we
give the parameters for key generation. Further, we explain why this cryptosystem
is a promising post-quantum candidate.

1. Introduction

In 2016 it was stated in the report of the NIST (National Institute of Standards
and Technology, US Department of Commerce) [7] that we probably can not con-
sider encryption by RSA [28] or by ECDH [11] (cryptography based on elliptic
curves) to be still secure in some decades. Thus it is topical to think about new
principles of encrypting and decrypting information and to develop new crypto-
graphic systems. One possibility for developing such systems, which also have a
public key (public-key cryptography was invented by D i f f i e and H e l l m a n n
[8]), is cryptography based on linear codes. Such a scheme was published by
M c E l i e c e [19] in 1978. Its vulnerability is discussed in [6, 16, 26]. A detailed
overview of the McEliece cryptosystem and its security can be found in [27].
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PÁL DÖMÖSI—CAROLIN HANNUSCH—GÉZA HORVÁTH

In addition, the McEliece system has two further big disadvantages. One is its
key size, which is much bigger than in the case of other cryptosystems, like RSA.

The other disadvantage is that McEliece encryption uses Goppa codes. The
generation of a Goppa code inquires computing with primitive elements of a finite
field, which is a long and complicated computation for efficient code length.

W a n g [30] could improve the McEliece system in such a way that it works
with a random linear code instead of a Goppa code. Even before W a n g,
N i e d e r r e i t e r [23] suggested the usage of generalized Reed-Solomon codes
and B e r g e r and L o i d r e a u [3] suggested the usage of a subcode of general-
ized Reed-Solomon codes. S i d e l n i k o v [29] suggested Reed-Muller codes for
use in the McEliece cryptosystem and J a n w a and M o r e n o [18] suggested
algebric-geometric codes. B a l d i, B o t r a d o and C h i a r a l u c e [1] worked
on a McEliece cryptosystem based on LDPC codes, M i s o c z k i , T i l l i c h,
S e n d r i e r and B a r r e t o [22] on MDPC codes. L ö n d a h l and J o h a n s s o n
[17] suggested convolutional codes. B e r g e r, C a y r e l, G a b o r i t , and
O tm a n i [2] as well, as M i s o c z k i and B a r r e t o [20] suggested quasi-cyclic
and quasi-diadic structures for a compact version of the McEliece cryptosystem.
Most of these cryptosystems were attacked successfully. Cryptosystems among
these which were recognized until very recently as secure systems are those based
on MDPC (Moderate Density Parity Check)-codes [22], QC-LDPC (Quasi-Cyclic
Low Density Parity Check)-codes [1] and the original system based on binary
Goppa codes. On the other hand, G u o, J o h a n s s o n, and S t a n k o v s k i [14]
showed a key recovery attack on MDPC with CCA security using decoding errors
in 2016. In addition, F a b š i č , H r o m a d a, S t a n k o v s k i , Z a j a c, G u o,
J o h a n s s o n [12] also showed a reaction attack on the QC-LDPC McEliece
Cryptosystem in 2017. Therefore, these systems can not be considered secure
anymore.

In contrast to the systems mentioned above, the cryptosystem due to
W a n g [30] is considered to be secure.

In the current paper we introduce an encryption scheme [9] based on linear
error-correcting codes, which were introduced in [15]. Computing a generator
matrix for this code inquires only binary multiplication and addition. Thus op-
erations are very easy to perform, which is an advantage of our cryptosystem.

2. The encryption scheme

We denote the field of two elements (namely {0, 1}) by F2. Further,Mk×m(F2)
denotes the set of matrices with k rows and m columns over F2.

Let u = (u0, . . . , u2047) be a message, where ui ∈ F2 for i ∈ {0, . . . , 2047}.
Furthermore, let S ∈ M2048×2048(F2) be a nonsingular matrix, i.e. its determi-
nant is not zero.
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Let G be a generator matrix of a binary (4096, 2048, 64)-code, which was
constructed in [15]. Such a code is not unique, therefore we will introduce this
class of codes (also called HL-codes) in the next section in detail. The code
generated by G can correct t errors, if t ≤ �64−1

2 � = 31.

Let P ∈ M4096×4096(F2) be a permutation matrix, i.e., it has exactly one 1
in each row and it has no coinciding rows. We denote the usual matrix multipli-
cation by ∗.

Public key: (S ∗G ∗ P, 31).

Private key: (S,G, P ).

Encrypting a plaintext u:

c = u ∗ S ∗G ∗ P + e,

where ∗ denotes the usual matrix multiplication and e is a binary random vector
with at most 31 non-zero elements. Thus the encrypted message c is a vector
of length 4096.

3. Construction of the HL-code

In Theorem 1 of [15] there is constructed a class of binary self-dual codes
of length 2m with dimension 2m−1 and with minimum distance 2

m
2 . In this

section we show the construction of one such code for m = 12.

Now we explain how a matrix G can be generated. The generator matrix G
consists of 2048 rows and 4096 columns. The first 13 rows are the vectors vi,
for i ∈ {0, . . . , 12}, defined by the following:

v0 = (1, 1, 1, 1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
4096

),

v1 = (0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1, 0, 1, 0, 1, 0, 1),

v2 = (0, 0, 1, 1, 0, 0, 1, 1, . . . , 0, 0, 1, 1, 0, 0, 1, 1),

v3 = (0, 0, 0, 0, 1, 1, 1, 1, . . . , 0, 0, 0, 0, 1, 1, 1, 1),
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v4 = (0, . . . , 0︸ ︷︷ ︸
8

, 1, . . . , 1︸ ︷︷ ︸
8

, . . . , 0, . . . , 0︸ ︷︷ ︸
8

, 1, . . . , 1︸ ︷︷ ︸
8

),

v5 = (0, . . . , 0︸ ︷︷ ︸
16

, 1, . . . , 1︸ ︷︷ ︸
16

, . . . , 0, . . . , 0︸ ︷︷ ︸
16

, 1, . . . , 1︸ ︷︷ ︸
16

),

v6 = (0, . . . , 0︸ ︷︷ ︸
32

, 1, . . . , 1︸ ︷︷ ︸
32

, . . . , 0, . . . , 0︸ ︷︷ ︸
32

, 1, . . . , 1︸ ︷︷ ︸
32

),

v7 = (0, . . . , 0︸ ︷︷ ︸
64

, 1, . . . , 1︸ ︷︷ ︸
64

, . . . , 0, . . . , 0︸ ︷︷ ︸
64

, 1, . . . , 1︸ ︷︷ ︸
64

),

v8 = (0, . . . , 0︸ ︷︷ ︸
128

, 1, . . . , 1︸ ︷︷ ︸
128

, . . . , 0, . . . , 0︸ ︷︷ ︸
128

, 1, . . . , 1︸ ︷︷ ︸
128

),

v9 = (0, . . . , 0︸ ︷︷ ︸
256

, 1, . . . , 1︸ ︷︷ ︸
256

, . . . , 0, . . . , 0︸ ︷︷ ︸
256

, 1, . . . , 1︸ ︷︷ ︸
256

),

v10 = (0, . . . , 0︸ ︷︷ ︸
512

, 1, . . . , 1︸ ︷︷ ︸
512

, . . . , 0, . . . , 0︸ ︷︷ ︸
512

, 1, . . . , 1︸ ︷︷ ︸
512

),

v11 = (0, . . . , 0︸ ︷︷ ︸
1024

, 1, . . . , 1︸ ︷︷ ︸
1024

, 0, . . . , 0︸ ︷︷ ︸
1024

, 1, . . . , 1︸ ︷︷ ︸
1024

),

v12 = (0, . . . , 0︸ ︷︷ ︸
2048

, 1, . . . , 1︸ ︷︷ ︸
2048

).

In order to construct all rows of G, we will take the products of the vectors
vi according to some conditions. We multiply two vectors by multiplying its
coordinates. The next rows will be the following in lexicographical order:

• all possible products of two different vi vectors (v1v2, v1v3, . . .),

• all possible products of three different vi vectors (v1v2v3, v1v2v4, . . .),

• all possible products of four different vi vectors (v1v2v3v4, v1v2v3v5, . . .),

• all possible products of five different vi vectors (v1v2v3v4v5, v1v2v3v4v6, . . .).

Remark 1. So far, we know 1586 rows of G. The code generated by these rows
is a Reed-Muller code RM (5, 12).

In order to compute the last 462 rows of the generator matrix G, we need the
following definition.

���������� 2� Let X be the following set

X = {a = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)|,

ai ∈ F2,

12∑
i=1

ai = 6, i ∈ {1, . . . , 12}}.
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We call the binary tuple 1− a the complement of a, where

1 = (1, . . . , 1︸ ︷︷ ︸
12

).

Further we say that a subset Y of X is complement-free, if each a ∈ Y implies
1− a /∈ Y.

Remark 3. The order of such a complement-free set Y is 1
2

(
12
6

)
= 462.

The last 462 rows of G are constructed according to the complement-free
set Y. For each element (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) ∈ Y we add
the row

va1
1 va2

2 va3
3 va4

4 va5
5 va6

6 va7
7 va8

8 va9
9 va10

10 va11
11 va12

12 ,

where v0i = v0 and v1i = vi.

	
����� 4� The linear code generated by G is an error-correcting binary self-
-dual (4096, 2048, 64)-code, which can correct 31 errors.

P r o o f. Theorem 4 is a special case of Theorem 1 in [15] for m = 12. �

4. Creating a complement-free set

Imagine we write down all binary 12-tuples with exactly six 1-s into a table,
such that on the left-hand side a1 = 1 for all elements a. Then we write down
the complement of each 12-tuple on the righthand side of the table:

Table 1. This table has 462 rows (see Remark 3).

Row a 1− a

1 (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

2 (1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1)
...

...
...

462 (1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

Now, we take a random binary string with 462 coordinates

r = (r1, r2, . . . , r462),

where each

ri ∈ {0, 1} for all i ∈ {1, . . . , 462}.
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If ri = 0, then we choose the element a in the ith row. If ri = 1, then we
choose the element 1− a in the ith row for all i ∈ {1, . . . , 462}. By this method,
we get a randomly created complement-free set Y.

Remark 5. Since the first 1586 rows of G are fixed, it is enough to share r
in the private key.

5. Key generation

The public key is the matrix S ∗G ∗ P ∈ M2048×4096, i.e., the size of the key
is 8 Mbit. The key generation works in the following steps:

(1) Build up the first 1586 rows of G as described in Section 3. These can be
saved for further computations.

(2) Create a complement-free set Y as described in Section 4.

(3) Construct the last 462 rows of G according to the complement-free set Y.
For each element

(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12) ∈ Y

we add the row

va1
1 va2

2 va3
3 va4

4 va5
5 va6

6 va7
7 va8

8 va9
9 va10

10 va11
11 va12

12 ,

where

v0i = v0 and v1i = vi.

(4) Take a nonsingular matrix S ∈ M2048×2048(F2).

(5) Take a permutation matrix P ∈ M4096×4096.

(6) Compute S ∗G ∗ P.

6. The decryption scheme

Notice that we know the matrices S, G and P.

Decrypting a ciphertext c

Consider
w = c ∗ P−1 = (u ∗ S ∗G ∗ P + e) ∗ P−1

and apply the Reed-type majority logic decoding scheme [25] deriving u ∗ S
from w. Then compute the original plaintext as

u = u ∗ S ∗ S−1.
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Example 6. We show an example for the decoding scheme of Reed for m = 4.
For simplicity, we suppose S is the identity matrix I8×8 and P is the identity
matrix I16x16 in this example.

Let G be the following generator matrix of a (16, 8, 4)-code due to the comple-
ment-free set

Y = {(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)} :

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

v1

v2

v3

v4

v3v4

v2v4

v1v4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(Then m = 2, and thus there are no rows of G with products of 2, 3. . . . ,m− 1
different vi vectors in {v1v2, v1v3, v4}. Moreover, by

(0, 0, 1, 1) ∈ Y, v01v
0
2v

1
3v

1
4 = v3v4,

by

(0, 1, 0, 1) ∈ Y, v01v
1
2v

0
3v

1
4 = v2v4,

and by

(1, 0, 0, 1) ∈ Y, v11v
0
2v

0
3v

1
4 = v1v4.)

We encode the message u = (u0, u1, u2, u3, u4, u5, u6, u7) into

w = u ∗G = (w0, w1, w2, . . . , w15).

Decoding due to the majority logic principle is a useful tool in this case,
see [21]. In the case m = 4 the code is able to correct 1 error. We will see how.
First we have:

u ∗G = u0g0 + · · ·+ u7g7,

where g0, . . . g7 are the column vectors of G. In more details,
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u ∗G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0

u0 + u1

u0 + u2

u0 + u1 + u2

u0 + u3

u0 + u1 + u3

u0 + u2 + u3

u0 + u1 + u2 + u3

u0 + u4

u0 + u1 + u4 + u7

u0 + u2 + u4 + u6

u0 + u1 + u2 + u4 + u6 + u7

u0 + u3 + u4 + u5

u0 + u1 + u3 + u4 + u5 + u7

u0 + u2 + u3 + u4 + u5 + u6

u0 + u1 + u2 + u3 + u4 + u5 + u6 + u7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

w13

w14

w15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

If u = (1, 1, 0, 0, 0, 0, 0, 0), then w = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).
Imagine that 1 error occurred in the second position, thus we receive

w� = (1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).

Since

w = u0v0 + u1v1 + u2v2 + u3v3 + u4v4 + u5v3v4 + u6v2v4 + u7v1v4, (2)

we will be able to recover the symbols u5, u6 and u7.We get from the equation (1)
and from the relations proved in [25]

u5 = w0 + w4 + w8 + w12 = 0,
u5 = w1 + w5 + w9 + w13 = 1,
u5 = w2 + w6 + w10 + w14 = 0,
u5 = w3 + w7 + w11 + w15 = 0.

(3)

Since we have four possibilities for the value of u5, but each wi is only appear-
ing once for all i ∈ {0, . . . , 15}, we can decode the right value by the majority
principle, i.e., u5 = 0.

We recover the values for u6 and u7 similarly:

u6 = w0 + w2 + w8 + w10 = 0,
u6 = w1 + w3 + w9 + w11 = 1,
u6 = w4 + w6 + w12 + w14 = 0,
u6 = w5 + w7 + w13 + w15 = 0.

(4)
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Thus u6 = 0 and by

u7 = w0 + w1 + w8 + w9 = 1,
u7 = w2 + w3 + w10 + w11 = 0,
u7 = w4 + w5 + w12 + w13 = 0,
u7 = w6 + w7 + w14 + w15 = 0.

(5)

we have u7 = 0. Now we subtract

u5v3v4 + u6v2v4 + u7v1v4

from w and we get

w − u5v3v4 + u6v2v4 + u7v1v4 = u0v0 + u1v1 + u2v2 + u3v3 + u4v4 = w′. (6)

We denote w′ = (w′
0, w

′
1, . . . , w

′
15). In our example w′ = w. By the equa-

tion (6) and the relations proved in [25] we obtain eight possibilities for each
value of u1, u2, u3, and u4 :

u1 = w0 + w1 = 0,
u1 = w2 + w3 = 1,
u1 = w4 + w5 = 1,
u1 = w6 + w7 = 1,
u1 = w8 + w9 = 1,
u1 = w10 + w11 = 1,
u1 = w12 + w13 = 1,
u1 = w14 + w15 = 1.

u2 = w0 + w2 = 0,
u2 = w1 + w3 = 1,
u2 = w4 + w6 = 0,
u2 = w5 + w7 = 0,
u2 = w8 + w10 = 0,
u2 = w9 + w11 = 0,
u2 = w12 + w14 = 0,
u2 = w13 + w15 = 0.

u3 = w0 + w4 = 0,
u3 = w1 + w5 = 1,
u3 = w2 + w6 = 0,
u3 = w3 + w7 = 0,
u3 = w8 + w12 = 0,
u3 = w9 + w13 = 0,
u3 = w10 + w14 = 0,
u3 = w11 + w15 = 0.

u4 = w0 + w8 = 0,
u4 = w1 + w9 = 1,
u4 = w2 + w10 = 0,
u4 = w3 + w11 = 0,
u4 = w4 + w12 = 0,
u4 = w5 + w13 = 0,
u4 = w6 + w14 = 0,
u4 = w7 + w15 = 0.

Thus major logic decision will also lead us to the right values of u1 = 1, u2 = 0, u3 = 0
and u4 = 0. Afterwards, we subtract

u1v1 + u2v2 + u3v3 + u4v4

from

w − u5v3v4 + u6v2v4 + u7v1v4

and we get

w′′ = u0v0 + e,

where e is the error vector, whose coordinates are all 0, except at most one coordinate,
which may be 1.
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In our case w − v1 = (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) = u0v0 + e. Thus we obtain
u0 = 1 and e = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

In general, the value of u0 depends on the number of 1-s in w′′.

The decoding principle works similarly for our C − (4096, 2048, 64)-code.

In [13, G o p a l a n, K l i v a n s and Z u c k e r m a n] showed that list decoding
is possible for Reed-Muller codes with polynomial complexity of n3,where n is the
code length. In [10, D um e r, K a b a t i a n s k y and T a v e r n i e r ] improved

this bound to n lns−1 n for the Reed-Muller code RM (s,m) with code length
n = 2m. In our case m = 2k and the code C generated by G is between two
RM-codes

RM (k − 1,m) ⊆ C ⊆ RM (k,m).

We denote the lower complexity order for the full list decoding of C by λ.
Then

n lnk−2 n ≤ λ ≤ n lnk−1 n.

Further decoding algorithms for Reed-Muller codes with low complexity were
given in [24]. It is a question of implementation which decoding scheme invented
for Reed-Muller codes will be used for the HL-code.

7. Performance of the cryptosystem

Regarding the key generation of the classical McEliece cryptosystem, we can
see the following performance results in [5]: The key generation of mceliece-
-8192128 software took billions of cycles, with medians of 4,010,278,828 cycles,
6,008,245,724 cycles (about 2 seconds), and 4,005,886,024 cycles. Each key-
generation attempt took about 2 billion cycles.

We have already implemented a key generation software in C++ for our pro-
posed novel cipher. It took 0.5 second running time on Dell Lattitude PC having
a single processor with performance of 1.6GHz. Of course, further investigations
are necessary for the correct comparison.

Unfortunately, we have no performance results for coding and decoding this
time.

The keyspace is appropriate, because the size of the keyspace is bigger
than 2128. So it cannot be attacked by a brute-force algorithm.

Since there exist 2462 complement-free sets Y (see Remark 3), there ex-
ist 2462 different generator matrices G, which all generate a binary self-dual
(4096, 2048, 64)-code. Thus if someone wants to recreate G and attack the sys-
tem, up to 2462 tries are needed.
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The only requirement for the matrix S is to be nonsingular, thus we have
|GL(2048, 2)| possibilities for the choice of S, where GL(n, q) denotes the general
linear group of dimension n over Fq.

In [19, M c E l i e c e ] described the following attack on his cryptosystem:
We choose k columns of the generator matrix G randomly (i.e., as many as the
number of rows in G) and we try to build up the message from these columns.
The probability that there is no error in the set of these k columns is(

n−t
k

)(
n
k

) ,

where n is the number of rows in G and t is the number of errors. In order to
thwart such attack McEliece advised the use of n = 1024,k = 524, t = 50.

B e r n s t e i n, L e n g e and P e t e r s [4] advise other parameters:

(1) n = 1362, k = 1269, t = 34 or

(2) n = 2048, k = 1751, t = 27.

The ratio, in the case which McEliece advised, is 1
1.37·1016 and in the other

two cases, it is 1
5.46·1022 and 1

1.24·1023 . In our case, the ratio is 1
2.421·109 which is

greater than in the two mentioned cases. In all cases the ratio is greater than
the expected ratio of

c =
1

2128
=

1

3.402 · 1038 .

The situation can be radically improved by applying the cryptographic system
again, regarding the ciphertext as a message to be encrypted.

Of course, after the first turn the ciphertext will be two times longer than the
plaintext. Thus, using the same public key in the second turn, we should encrypt
again the prefix of length n of the ciphertext of the first turn and also the suffix of
length n of it. Then the ciphertext of the second turn will be the concatenation
of the two further encryptions generated after the second turn. (During the
decryption procedure, first we decrypt the prefix of length 2n of the ciphertext
of the second turn and also the suffix of length 2n of it. Then we concatenate
the generated plaintext of the prefix and the generated plaintext of the suffix
and then we apply the decryption procedure again for this concatenation.)

Applying the mentioned attack, we should repeat it three times because we
can use three binary random error vectors which are independent of each other.
Therefore, the probability that there is no error in the set of 3 portions of the
considered k columns is ((

n−t
k

)(
n
k

) )3 .
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For example, in our case the ratio is

r =

(
1

2.421 · 109
)3

=
1

1.419 · 10729 , and we have r < c.

We remark that the size of the ciphertext grows in our cryptosystem, as well
as in the McEliece cryptosystem, by applying the algorithm more than once.
This improves the security of our cryptosystem, therefore it is a useful property.
When applying our cryptosystem for key exchange, the larger ciphertext does
not pose a problem since symmetric keys are small in general (128-256 bits). The
growth ratio of the cipher is in McEliece cryptosystem 1.95, in the other two
mentioned systems 1.28 and 1.16 respectively. In our cryptosystem the growth
ratio is 2.

8. Conclusions and Further Research

In this paper we proposed a novel McEliece type cipher based on Hannusch-
Lakatos error correcting codes. We consider this paper as the first step of our
investigations in this subject. Therefore, several questions and problems remain
for our future investigations.

A further challenge in research is to give an exact comparison of our discussed
cryptosystem with the original McEliece system and its variants. Moreover, we
would like to overcome the following shortcomings of this paper:

In this paper we considered only information set decoding attacks. Of course,
investigations regarding more state-of-the-art attacks (ISD attacks including
quantum attacks, structural attacks, etc.) are necessary. In addition, measurable
improvements are discussed (partly) only for the key generation in comparison
to Goppa codes based McEliece ciphers. We should give a more exact compari-
son for key generation, and detailed investigations are necessary for the decoding
procedures. (It seems that there are no measurable differences in coding proce-
dures.) Implementation comparisons and deep theoretical complexity analysis
would also be necessary.
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