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ABSTRACT. Fully homomorphic encryption (FHE) has been among the most
popular research topics of the last decade. While the bootstrapping-based, pub-
lic key cryptosystems that follow Gentry’s original design are getting more and
more efficient, their performance is still far from being practical. This leads to

several attempts to construct symmetric FHE schemes that would not be as in-
efficient as their public key counterparts. Unfortunately, most such schemes were
also based on (randomized) linear transformations, and shown to be completely
insecure. One such broken scheme was the Matrix Operation for Randomization
and Encryption (MORE). In a recent paper, Hariss, Noura and Samhat propose

Enhanced MORE, which is supposed to improve over MORE’s weaknesses. We
analyze Enhanced MORE, discuss why it does not improve over MORE, and
show that it is even less secure by presenting a highly efficient ciphertext-only
decryption attack. We implement the attack and confirm its correctness.

1. Introduction

First introduced in 1978 [9], the concept of homomorphic encryption refers
to a cryptosystem, whose decryption algorithm is a homomorphism w.r.t. a bi-
nary operation over the ciphertexts and another one over the plaintexts. If the
plaintext space is a suitable group (or a monoid), such as the group (Zn,+)
in the Pailler cryptosystem [8], the homomorphic property enables one to do
computations over encrypted data. This is very useful in several modern appli-
cations, mainly in cloud computing, where the computationally powerful cloud
needs to carry out computation over potentially sensitive data.

In 2009, G e n t r y demonstrated that it is possible to construct fully homo-
morphic encryption (FHE) [4], whose decryption algorithm is essentially a ring
homomorphism. This means, that for any circuit of “reasonable size,” whose

c© 2019 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11T71.
Keywords: Homomorphic Encryption, Symmetric encryption, Cryptanalysis, Key-recovery.

Licensed under the Creative Commons Attribution-NC-ND4.0 International Public License.

163
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gates are the two ring operations, evaluating the circuit over plaintexts would
give the same result as evaluating it over ciphertexts and then decrypting.

While Gentry’s result was a sensation, the cryptosystems [1,3,11] that follow
his, so called bootstrapping design paradigm, suffer from similar efficiency issues:
the ciphertext expansion is very large, and the homomorphic computations too
slow for any practical application. There were several designs that tried to cir-
cumvent these issues by dispensing with the bootstrapping in the symmetric key
setting [2,6,13]. To facilitate efficient FHE, they do however resort to using only
linear transformations, a practice which is known to yield very insecure designs.
Unsurprisingly, they were all completely broken [12].

One such symmetric FHE is the Matrix Operation for Randomization and
Encryption (MORE) [6], whose encryption algorithm is essentially a conjugation
by a random invertible matrix over an instance of the RSA ring. MORE came
with a security proof, which rendered it secure against ciphertext-only decryption
and key recovery attacks, assuming the uniform distribution of the plaintexts.
Such an assumption is, of course, unrealistic and MORE was shown completely
insecure in most of real-world applications. Recently, H a r i s s, N o u r a and
S am h a t have attempted to resurrect MORE by proposing Enhanced MORE

(EMORE) [5], which adds more key-dependent transformations around the core
of MORE. These are supposed to make the cryptosystem more secure and more
efficient.

In this work, we analyze EMORE , and we argue that the introduced modifica-
tions improve neither the security, nor the applicability overMORE . On the con-
trary, we demonstrate that they decrease the security by mounting a ciphertext-
-only decryption attack.

2. Notation, Syntax and Security Model

In this section, we introduce the used notation, define the syntax of symmet-
ric FHE , and define the attack model.
��������� We let ZN denote the ring of integers modulo an integer N ∈ N with
the usual operations. For a matrix A ∈ Z

m×n
N , we let A(i, j) denote the entry

in row i and column j, and let A(i, :) and A(:, j) denote the ith row and jth
column of A, respectively. We also let A(j) denote the jth column of A. Given
an implicit dimension n, we let DiagMat(d1, . . . , dn) denote the diagonal matrix
with d1, . . . , dn placed on the diagonal. Given a square matrix A of dimension
n and an integer � that divides n, we let SubM(A, �, i, j) denote the submatrix
Ai,j of A, such that

A =

⎛
⎜⎝

A1,1 · · · A1,�

...
. . .

...
A�,1 · · · A�,�

⎞
⎟⎠ .
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Given an implicit dimension n, we let I denote the identity matrix of dimen-
sion n and we let ei denote the ith canonical unit vector, i.e., a column vector
that has a 1 in ith entry and zeros everywhere else. Given a square matrix A
of dimension n, we let CharPoly(M )(x) denote the characteristic polynomial
of M in the indeterminate x. Given a polynomial p(x) of degree d, we let pi
denote the coefficient of the ith power of x, i.e., p(x) =

∑d
i=0 = pi · xi.

�	���
� A symmetric encryption scheme is a triplet Π = (KeyGen, E ,D).
The key generator KeyGen : N → K × P is a randomized algorithm that takes
a security parameter λ, and outputs a secret key K and a public parameter P.
The possibly randomized encryption algorithm E : K × P ×M → C maps a
secret key K, a public parameter P and a plaintext M to a ciphertext C, and the
deterministic decryption algorithm D : K × P × C → M takes a secret key K,
a public parameter P and a ciphertext C, and gives a plaintext M . We silently
allow all the domains to depend on the security parameter, and the plaintext
spaceM and ciphertext space C can additionally depend on the secret key and
the public parameter.

We require perfect correctness, i.e., for any security parameter λ ∈ N, and
for all K,P,M ∈ K×P ×M, we require that Pr

[D(K,P, E(K,P,M )
)
=M

]
= 1.

���������� �����	� For the homomorphic property, we use the no-
tion of circuits. We assume that (M,⊕,⊗) and (C,�,�) are both commutative
rings. A circuit c :Mμ →M maps a μ-tuple of plaintexts to a single plaintext
by applying the binary operations ⊕,⊗ to the inputs and intermediate results
(we can think of the operations as gates).

A transformed circuit Transf(c) : P × Cμ → C is a circuit over the ciphertext
space that is obtained by replacing each application of ⊕ in c by �, and doing
similarly for ⊗ and �. The transformed circuit additionally takes the public
parameter.

We say that a symmetric encryption scheme Π is fully homorphic, if for every
λ∈N, for every circuit c :Mμ→M and for all K,P, (M1, . . . ,Mμ)∈K×P×Mμ,
we have that

Pr
[
D
(
K,P,Transf(c)

(
P, E(K,P,M1), . . . , E(K,P,Mµ)

)) �= c(M1, . . . ,Mµ)
]
= negl(λ).

������	 ������ Since the scheme we study in this paper is based on linear
transformations, it obviously does not resist to any standard attacks, e.g., cho-
sen plaintext decryption attacks. We therefore work with a very weak security
model (in the sense that the task of the adversary is very hard). We mount
ciphertext-only decryption attacks with the plaintexts being sampled with a
uniform distribution.
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More precisely, we consider a security experiment parameterized by λ, which
first runsK,P ← KeyGen(λ), and then gives P to an adversary, and lets him/her
to query r ∈ N. Then, the experiment samples r plaintexts uniformly fromM,
encrypts each of them, and gives the corresponding ciphertexts to the adversary.
The adversary then wins if it finds all r plaintexts.

3. The MORE and EMORE constructions

In this section, we first recall MORE and then describe the scheme EMORE.
We discuss what we see as flaws in the design of EMORE , and then we introduce a
simplified version of EMORE , whose security is equivalent to the original version
presented by the authors.

3.1. MORE

The MORE scheme [6] works over an RSA ring, i.e., over ZN with N a product
of two large primes (whose bit-length is determined by the security parameter).
The plaintext space of MORE is M = ZN , the ciphertext space is the matrix
space C = Z

2×2
N , and the key space K is the set of all invertible matrices in Z

2×2
N .

The encryption algorithm creates a diagonal matrix from the plaintext and a
uniform element of ZN , and conjugates it with the secret key. The result is the
ciphertext. The algorithms of MORE are described in Figure 1.

1: Algorithm KeyGen(λ)
2: Pick primes p(λ), q(λ)
3: N ← p · q
4: K ←$ {A ∈ Z

2×2
N | A−1 exists}

5: return N,K
6: end Algorithm

1: Algorithm E(K,N,m)
2: u←$ ZN

3: M ← DiagMat(m,u)
4: return K ·M ·K−1

5: end Algorithm

1: Algorithm D(K,N, C)
2: M ← K−1 ·M ·K
3: return M1,1

4: end Algorithm

Figure 1. The symmetric FHE scheme MORE.

With N as the public parameter, MORE is easily seen to have perfect homo-
morphic properties. The authors of MORE proved that when the adversary is
restricted to ciphertext-only attacks and MORE is used with plaintexts that are
uniform and independent, then a decryption attack is equivalent with finding
square roots in ZN , which is believed to be hard. Such an assumption on plain-
texts is of course unrealistic, and it was shown that in most realistic settings,
even side channel information about the plaintexts is enough to break MORE .
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3.2. Enhanced MORE

The EMORE scheme [5] is supposed to overcome the drawbacks of MORE,
according to the authors. We first give a brief, informal description of the original
EMORE, as proposed by its authors.

������� ������ The original description of EMORE is not very precise. Here
we give our interpretation of this description. EMORE works over ZN with N a
product of two large primes. It is parameterized by three integers �, n and w,
with n even. The plaintexts live in Z

�
N . The key space is a set of bit strings of an

unspecified length (possibly λ would work). The key generation is thus a dummy
algorithm that just samples a uniform bit string.

The encryption algorithm of EMORE takes a secret key K and a plaintext
vector (m1, . . . ,m�). It consists of the following stages:

(1) Key derivation. First, the key K is used to derive three bit strings DKp,
DKd and DKs of 23 · 8, 16 · 8 and 23 · 8 bits, respectively. Then, we
further derive a pseudorandom permutation π of the set {1, . . . , �} using
DKp, a collection of w, n×n matrices K1, . . . , Kw from a special set SN,n

(defined below) using DKd, and a pseudorandom permutation Δ of the
set {1, . . . , w} using DKs.

(2) Partitioning and permutation. The plaintext vector (m1, . . . ,m�) is per-
muted by π to obtain m̄ = (mπ(1), . . . ,mπ(�)). Then, m̄ is partitioned into

H = ��/n� smaller vectors of dimension n (m̄i
1, . . . , m̄

i
n) for 1 ≤ i ≤ H

(the last one possibly padded with zero-elements).

(3) MORE-like encryption.We construct matricesM i = DiagMat(m̄i
1, . . . , m̄

i
n)

for 1 ≤ i ≤ H. Then we compute the conjugate matrices

Ci = (KΔ(i))−1 ·M i ·KΔ(i) for 1 ≤ i ≤ H.

We note that the secret matrix KΔ(i) used to encrypt the ith block of
plaintext is selected with the secret permutation Δ. The final ciphertext
is the list of matrices C1, . . . , CH.

The decryption algorithm of the original EMORE is easy to derive. We first go
through the same key derivation stage as in the encryption. Then, we reverse
the MORE -like encryption, concatenate the obtained vectors of dimension n and
finally apply the inverse of π. The encryption algorithm of EMORE is illustrated
in Figure 2.

To derive DKp, DKd and DKs, the authors suggests to use an unspecified
hash function. The pseudorandom permutations are supposed to be generated
using a technique proposed by N o u r a and C o u r r o u s é [7], and the collec-
tion of special matrices is generated using the streamcipher RC4. The matri-
ces K1, . . . , Kw are constructed in a way that facilitates their easy inversion.
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Figure 2. The encryption algorithm of the Enhance MORE (the original
version). Picture taken from the original paper [5].

Each Ki and its inverse (Ki)−1 have the following structure:

Ki =

(
A A+ I

A− I A

)
, (Ki)−1 =

(
A −A− I

−A+ I A

)
,

where A is an invertible matrix from Z
n
2 ×n

2

N . This is why n is required to be even.
It is easy to verify that if A is invertible, then det(Ki) = 1, and (Ki)−1 ·K = I.
Generating such a matrix randomly is equivalent with sampling A from the
domain of these matrices defined as

SN,n =

{(
A A+ I

A− I A

) ∣∣∣∣A ∈ Z
n
2 ×n

2

N and invertible

}
.

Complaints about EMORE . The design of Enhanced MORE contains several
flaws and redundancies which limit security and applicability. We enumerate
them here.

• Bad key derivation. The key derivation stage of EMORE contains some de-
sign choices that seem arbitrary. For instance, the authors choose to use an
unspecified hash function to derive DKp, DKd and DKs, but opt for RC4

when generating the matrices K1, . . . , Kw. We find it preferable to keep
both components unspecified and treat them as parameters of EMORE

(especially, since RC4 is known to be biased). Beside this, the sizes of DKp,
DKd and DKs are inexplicably fixed, while the number of keys w and
the dimension n are left as parameters. This limits the effective security
of EMORE , regardless of the security parameter.

168



CRYPTANALYSIS OF ENHANCED MORE

• Limited usefulness of the homomorphic properties.The homomorphic prop-
erties of MORE encryption scheme are based on the fact, that all cipher-
texts are a diagonal matrices conjugated with the same key matrix;
this is why the multiplication and addition of ciphertexts is preserved by
the decryption.

However in EMORE , any two plaintext sub-vectors m̄i, m̄j with i 
= j
get encrypted with two independent matrices KΔ(i), KΔ(j). Thus it will be
impossible to do any homomorphic computations that involve both m̄i and
m̄j, unless m̄j is included in another plaintext vector on the position i or
vice-versa. With � > n, EMORE is thus something like H = ��/n� parallel
instances of a smaller symmetric FHE . Moreover, all of them can only
execute the same circuit when doing the homomorphic computations.

• Useless key components. The key selection by the permutation Δ is com-
pletely useless. Assuming the matrices K1, . . . , Kw are uniformly sampled
from SN,n, it is equivalent to simply sample H key matrices and use them
without permutation.

The initial permutation π is also of limited use. We demonstrate that
given a matrix Ci and N , it is possible to extract the underlying plaintext
sub-vector (m̄i

1, . . . , m̄
i
n), regardless of π, It is debatable whether the fact

that they are shuffled has any security benefits.

���������	 ����� ������ Based on our critique of EMORE , we define sim-
plified EMORE (sEMORE). In sEMORE, we work with plaintext vectors from Z

n
N ,

so there is no partitioning of plaintexts. We also dispense with the permutation
π. Because the plaintexts are now treated as monolithic vectors, we also use just
a single key matrix. We treat the dimension n as an implicit parameter of the
scheme. The algorithms of sEMORE are defined in Figure 3.

1: Algorithm KeyGen(λ,n)
2: Pick primes p(λ), q(λ)
3: N ← p · q
4: K ←$ SN,n

5: return N,K
6: end Algorithm

1: Algorithm E(K,N, (m1, . . . ,mn))
2: M ← DiagMat(m1, . . . ,mn)
3: return K−1 ·M ·K
4: end Algorithm

1: Algorithm D(K,N,C)
2: M ← K ·M ·K−1

3: return (M1,1, . . . ,Mn,n

4: end Algorithm

Figure 3. The symmetric FHE scheme of simplified EMORE.

A decryption attack on sEMORE will easily translate to EMORE . We describe
such an attack in the next section.
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4. Decryption attack on sEMORE

In this section, we analyze the security of sEMORE. Contrary to their inten-
tions, the authors of EMORE have not improved, but decreased security of their
construction compared to MORE . In MORE , a ciphertext-only attack in a set-
ting with uniform plaintexts was not possible. Here, we show that sEMORE (and
thus also EMORE ) succumb to a single-ciphertext decryption attack in just such
a setting.

Formally, we mount an attack in the model described in Section 2 using
a single ciphertext C.

��������� �������� We first exploit the known structure of the key
matrix K to obtain some information about the underlying plaintext vector
(m1, . . . ,mn). We note that (m1, . . . ,mn) are eigenvalues of C.

We do not know A, but we know that the eigenvector of C associated to mi

is of the form(
A(i)

−A(i) + ei

)
for 1 ≤ i ≤ n

2
and

( −A(i− n/2)− ei−n/2

A(i− n/2)

)
for

n

2
< i ≤ n.

Setting Ci,j = SubM(C, 2, i, j) for i, j ∈ {1, 2}, we then deduce the following
equalities for 1 ≤ i ≤ n/2 and n/2 < j ≤ n:(

C1,1 C1,2

C2,1 C2,2

)
·
(

A(i)
−A(i) + ei

)
= mi ·

(
A(i)

−A(i) + ei

)
, (4.1)

(
C1,1 C1,2

C2,1 C2,2

)
·
( −A(j − n/2)− ej−n/2

A(j − n/2)

)
= mj ·

( −A(j − n/2)− ej−n/2

A(j − n/2)

)
.

(4.2)

After evaluating the matrix multiplication on the left side, the equality (4.1)
will yield (4.3) and (4.4), and the equality (4.2) will yield (4.5) and (4.6):

(C1,1 − C1,2)·A(i) + C1,2 · ei = mi ·A(i), (4.3)

(C2,1 − C2,2)·A(i) + C2,2 · ei = −mi ·A(i) +mi · ei, (4.4)

(−C1,1 + C1,2)·A(j − n/2)− C1,1 · ej−n/2 = −mj · A(j − n/2)−mj · ej−n/2, (4.5)

(−C2,1 + C2,2)·A(j − n/2)− C2,1 · ej−n/2 = mj · A(j − n/2). (4.6)

We next compute a sum of (4.3) and (4.4), obtaining (4.7), and the sum of (4.5)
and (4.6) that will yield (4.8):

(C1,1 − C1,2 + C2,1 − C2,2)·A(i) + (C1,2 + C2,2) · ei = mi · ei, (4.7)

(−C1,1 + C1,2 − C2,1 + C2,2)·A(j − n/2)− (C1,1 + C2,1) · ej−n/2 = −mj · ej−n/2.
(4.8)

We now set j = i+ n/2 and sum the equalities (4.7) and (4.8):

(−C1,1 + C1,2 − C2,1 + C2,2) · ei = (mi −mi+n/2) · ei. (4.9)
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Let D = (−C1,1+C1,2−C2,1+C2,2). We see that for every 1 ≤ i ≤ n/2, the ith
column of D is the ith canonical unit vector, multiplied by a difference of two
eigenvalues of C. Thus the matrix D, which can be computed using only the
ciphertext, is a diagonal matrix, whose entries on the diagonal leak differences
of eigenvalues of C. This can be used to circumvent the computation of roots
in ZN , and to extract the eigenvalues easily.

�
������� ��� �������
� ������ Let δi = D(i, i) denote the ith en-
try on the diagonal of D. We consider the characteristic polynomial p(x) =
CharPoly(C)(x) of the ciphertext C. Note that the roots of p(x) are the ele-
ments of the plaintext vector m. We define n new polynomials p−i(x) and pi(x)
for 1 ≤ i ≤ n/2 as p−i(x) = p(x− δi) and pi(x) = p(x+ δi).

For any 1 ≤ i ≤ n/2, mi must be a root of p−i(x). Thus mi will also
be a root of gcd

(
p(x), p−i(x)

)
. If there are no (j, k) 
= (i, i + n/2) for which

mj − mk = δi, then p(x) and p−i(x) can only have a single root in common,
and gcd

(
p(x), p−i(x)

)
will be of degree one, allowing to compute mi easily.

Similar applies with pi(x) and mi+n/2.

This allows us to mount the decryption attack described in Figure 4. We give
a toy example of the attack in Section A.

1: Algorithm DecAttack(N,C)
2: D ← (−C1,1 + C1,2 − C2,1 + C2,2)
3: p(x) = CharPoly(C)
4: for i← 1 to n/2 do
5: p−i(x) = p(x−D(i, i)); pi(x) = p(x+D(i, i))
6: q(x)← gcd(p(x), p−i(x)); q′(x)← gcd(p(x), pi(x))
7: if gcd computation failed due to bad division then
8: return factors of N
9: else if deg(q(x)) > 1 or deg(q′(x)) > 1 then

10: abort
11: end if
12: mi ← −q0/q1; mi+n/2 ← −q′0/q′1
13: if division failed then
14: return factors of N
15: end if
16: end for
17: return (m1, . . . ,mn)
18: end Algorithm

Figure 4. Decryption attack on the symmetric FHE scheme sEMORE.

171
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������
��	 ��� ������� ���������	� The complexity of the attack is
dominated by the iterated computation of the gcd of two polynomials over ZN

of degree n, so the complexity is bounded by O(n3 · log(N)2) binary operations.

The attack can abort due to two reasons. Either there is a division by an
integer that is not coprime with N , or one of the computed polynomials q(x)
or q′(x) has a degree higher than one. In the former case, we succeed because
after factoring N , computing the eigenvalues of any ciphertext will become easy
thanks to the Chinese remainder theorem.

If the plaintexts are indeed distributed uniformly (or else with a high min-
entropy), the latter reason for an abort is highly unlikely. More precisely, the
probability that the attack fails is at most the probability that there exist
1 ≤ i, j, � ≤ n such that (i, i + n/2) 
= (j, �) and (mi −mi+n/2) = (mj −m�).
Under the mild assumption that all plaintext components mi are distributed
identically and independently, the probability of such a collision with fixed i, j, �
is at most pmax, Thus, the probability that any such i, j, k exist is (rather loosely)
upper bounded by n3 · pmax, where pmax = maxμ Pr[mi = μ]. The probability
of success of this attack is then at least 1− n3 · pmax.

We can generalize the attack by requesting several ciphertexts C1, . . . , Cr

at the beginning of the experiment, and applying the attack from Figure 4
to each Ci independently. If we succeed for at least one of the ciphertexts Ci,
the knowledge of the eigenvalues of Ci lets us compute K, which in turn allows
us to decrypt all remaining ciphertexts.

The success probability of the generalized attack is at least 1 − (n3 · pmax)
r.

In order for this strategy to succeed with a probability of at least 1/2, we must
have | log(pmax)| > 3 log(n) and we would have to use

r ≥ − log(2)

3 log(n) + log(pmax)
.

If the distribution of plaintexts is such that the probability pmax is high, this
estimation becomes meaningless.

4.1. Attacking EMORE with High pmax.

If pmax is high, EMORE will not offer any meaningful security, as we will
be able to easily verify whether a ciphertext C’s underlying plaintext matrix
contains any plaintext element μ that is very likely to occur by checking if
p(μ) = 0 for p(x) = CharPoly(C). This observation can be used to extend the
attack from Figure 4 and increase its success probability if pmax is high, at the
cost of increased computational complexity.

More precisely, we select a positive constant k for which the setMhi = {μ ∈
ZN |Pr[mi = μ] ≥ 1/k · n3} will be non-empty. Instead of simply aborting if the
condition on line 9 of Figure 4 evaluates as true, we iterate through all μ ∈Mhi,
and for each μ check if it is a root of either the current q(x) or the current q′(x),
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which would imply that μ is one of the plaintext elements. For each such μ we
further check whether p

(
μ−D(i, i)

)
= 0 (respectively, p

(
μ+D(i, i)

)
= 0), which

would further imply that μ−D(i, i) (respectively, μ+D(i, i) ) is also among the
plaintext-vector elements. We store all thus identified distinct plaintext elements.
At the end of the main loop, we keep dividing the characteristic polynomial p(x)
by monomials constructed using the identified plaintext elements and abort only
if we cannot completely decompose p(x).

������
��	 ��� ������� ���������	� The complexity of the attack is now
increased. In the worst case, each of the n/2 iterations of the main loop consists
of computing the polynomial GCDs and iterating over all elements ofMhi. Each
iteration of the inner loop is dominated by the evaluation of two polynomials
of degree no greater than n in some value. As we have |Mhi| ≤ k·n3 by definition,
the worst case complexity of the extended attack is

n/2 ·
(
n2 · O(

log(N)2
)
+ k · n3 · n ·O(

log(N)2
))

= O
(
k · n5 · log(N)2

)
.

To analyze the probability of success of the extended attack, we first note that we
surely succeed if, for every i = 1, . . . , n/2, in the ith iteration of the main loop, ei-
ther deg

(
gcd(q(x), q′(x))

)
= 1, or else if we havemi = μ andmi+n/2 = μ−D(i, i)

(respectively, mi+n/2 = μ and mi = μ+D(i, i) ) for one of the values μ ∈ Mhi

(then we will surely have q(μ) = 0 and p
(
μ − D(i, i)

)
= 0 or q′(μ) = 0 and

p
(
μ+D(i, i)

)
= 0).

We let E(i, j, �) denote the event ∃(j, �) 
=(i, i+n/2) :D(i, i)=mj−m�, and let
F(i) denote the event (mi /∈Mhi) ∧ (mi+n/2 /∈Mhi). By using the union bound
on the iterations of the main loop, we get

Pr[success] ≥ 1−n·Pr[E(i, j, �) ∧ F(i)]

≥ 1−n·Pr[E(i, j, �)|F(i)]·Pr[F(i)]

≥ 1−n·
⎛
⎝ ∑

(j,�)�=(i,i+n/2)

∑
μ∈ZN

Pr[mi = mj −m� + μ|F(i)]·

Pr[mi+n/2 = μ|F(i)]
⎞
⎠·Pr[F(i)]

≥ 1−n·
⎛
⎝n2 · 1

k ·n3
·
∑
μ∈ZN

Pr[mi+n/2 = μ|F(i)]
⎞
⎠

≥ 1− 1

k
.
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The extended attack works with any k for which Mhi is non-empty, and we
can use the parameter k to fine-tune the trade-off between the complexity and
success probability.

We further see that the worst-case complexity of the extended attack be-
comes practical when pmax ≈ 1/n3 or higher, which is exactly where the loose
estimation of the attack described in Figure 4 falls off Thus sEMORE yields
to a ciphertext-only decryption attack under any possible circumstances.

4.2. Experimental verification

We implemented the attack in the SAGE mathematical software [10], to verify
its correctness. We conducted all experiments using a sEMORE instance with
a random 2048-bit modulus and n = 16.

When the messages are uniform in ZM , the attack practically always succeeds,
as expected. We tested this with 27 independent iterations of the attack and all
of them succeeded.

We further investigated the success rate of the simple attack with low-entropy
distributions, for which the loose lower bound on the success probability is mean-
ingless. We carried out two sets of experimental measurements, each set with
a different type of distribution of the plaintext. In the first set, we sampled each
plaintext element using a uniform distribution over a subset of ZN of varying size.
In the second set, we used a rounded Gaussian distribution with varying param-
eter σ. The results of the measurements are depicted in Figure 5. We can see
that the lower bound of the success probability is indeed too restrictive as the
basic attack does succeed with non-zero probability initially, but the success
probability quickly drops as pmax increases.

Figure 5. The empirically measured success probability of the attack
from Figure 4, compared to the predicted lower bound for an instance
of sEMORE with a 2048-bit modulus, n = 16, and plaintext elements dis-
tributed uniformly in a subset of ZN (left) or according to a rounded
Gaussian distribution (right). Here pmax = maxµ∈ZN

(Pr[mi = µ]).
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Figure 6. The empirically measured success probability of the extended
attack described in Section 4.1, compared to the predicted lower bound
for an instance of sEMORE with a 2048-bit modulus, n = 16, and
plaintext elements distributed uniformly in a subset of ZN . Here pmax =
maxµ∈ZN

(Pr[mi = µ]).

We also implemented the extended attack, and empirically measured it success
probability on an instance of sEMORE with 2048-bit modulus, n = 16, and
plaintexts distributed uniformly in subsets of ZN of varying size. In the attack,
we set k = 1, so the setMhi always covered all elements of ZN that occurred with
non-zero probability. The results of the measurements can be found in Figure 6.

We see, that in the interval of pmax, in which the basic attack stops being
efficient, the extended attack already works flawlessly. This further confirms our
assertion, that sEMORE and EMORE are completely broken.

5. Conclusion

In this paper, we analyze the security of Enhanced MORE , a reincarnation
of the MORE symmetric FHE scheme. Even though MORE was badly broken, the
authors of EMORE not only reused the linear encryption method, but introduced
additional vulnerabilities. We make this explicit by mounting a decryption at-
tack. We believe it is important to demonstrate concrete and precisely described
attacks on weak schemes like EMORE so that their propagation in the literature
and their potential use in practice is limited.
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[7] NOURA, H.—COUROUSSÉ, D.: HLDCA-WSN: Homomorphic Lightweight Data Con-

fidentiality Algorithm for Wireless Sensor Network, IACR Cryptology ePrint Archive

(2015/928).

[8] PAILLIER, P.: Public-key cryptosystems based on composite degree residuosity classes.

In: Advances in Cryptology—EUROCRYPT ’99, International Conference on the Theory

and Application of Cryptographic Techniques, Prague, Czech Republic, May 2–6, 1999,

Proceeding Lecture Notes in Computer Science Vol. 1592 (J. Stern, ed.), Springer-Verlag,

Berlin, 1999. pp. 223–238.

[9] RIVEST, R. L.—ADLEMAN, L.—DERTOUZOS, M. L.: On data banks and privacy

homomorphisms, In: Foundations of Secure Computation, (Workshop, Georgia Inst. Tech.,

Atlanta, Ga., 1977) Academia Press, New York, 1978, pp. 169–179.

[10] STEIN, W. et al.: Sage Mathematics Software (Version 6.8). The Sage Development Team,

2015. http://www.sagemath.org

[11] VAN DIJK, M.—GENTRY, C.—HALEVI, S.—VAIKUNTANATHAN, V.: Fully homo-

morphic encryption over the integers. In: EUROCRYPT 2010, pp. 24–43.
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Appendix A. Toy example of the attack

In this section, we define a toy instance of the simplified Enhanced MORE en-
cryption scheme and mount the attack described in Figure 4.

We let p = 11 and q = 13, so we have N = 143. We set the dimension
of plaintext space to n = 4. We next run the key generation algorithm, sample
a random invertible matrix A, and compute K, obtaining:

A =

(
92 45
92 62

)
and K =

(
A A+ I

A− I A

)
=

⎛
⎜⎜⎝

92 45 93 45
92 62 92 63
91 45 92 45
92 61 92 62

⎞
⎟⎟⎠ .

Then we sample a uniform plaintext vector from Z143, and place it on the
diagonal of a matrix M . We run the encryption C = E(K,N,M ). We have:

M =

⎛
⎜⎜⎝

32 0 0 0
0 52 0 0
0 0 36 0
0 0 0 25

⎞
⎟⎟⎠ and C =

⎛
⎜⎜⎝

25 74 50 2
43 23 104 99
72 32 43 104
10 103 92 54

⎞
⎟⎟⎠ .

We now compute the matrix D that will leak the differences of the plaintext
values. For this, we first partition the ciphertext C into four submatrices:

C1,1 =

(
25 74
43 23

)
, C1,2 =

(
50 2
104 99

)
,

C2,1 =

(
72 32
10 103

)
, C2,2 =

(
43 104
92 54

)
.

Using these, we compute the matrix D, using the formula

D = (−C1,1 + C1,2 − C2,1 + C2,2)

D =

(
139 0
0 27

)
.

Next, we compute the characteristic polynomial p(x) of C:

p(x) = x4 + 141 · x3 + 109 · x2 + 73 · x+ 104.

Using the diagonal entries of D, we compute the polynomials

p−i(x) = p
(
x−D(i, i)

)
and pi(x) = p

(
x+D(i, i)

)
for i ∈ {1, 2}.

For each i, we then compute

q(x) = gcd
(
p−i(x), p(x)

)
and q′(x) = gcd

(
pi(x), p(x)

)
.

These will be polynomials of degree one, that will allow us to recover

mi as − q0 · q−1
1 and mi+2 as − q′0 · q′1−1

.
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We follow through the computation for i = 1:

p−1(x) = x4+14 ·x3+38 ·x2+104 ·x+123, and we have q(x) = 14 ·x+124

and

p1(x) = x4+125 ·x3+86 ·x2+136 ·x+81, and we have q′(x) = 129 ·x+75.

We can verify that

M (1, 1) = 32 ≡ −124 · 14−1 (mod 143)

and
M (3, 3) = 36 ≡ −75 · 129−1 (mod 143).

For i = 2, we have

p−2(x) = x4 +33 ·x3+69 ·x2 +27 ·x+39, and we have q(x) = 36 ·x+130

and

p2(x) = x4+106 ·x3+31 ·x2+94 ·x+38, and we have q′(x) = 107 ·x+42.

We can verify that

M (2, 2) = 52 ≡ −130 · 36−1 (mod 143)

and
M (4, 4) = 25 ≡ −42 · 107−1 (mod 143).

Thus the attack successfully recovered all entries of the plaintext vector.
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