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ABSTRACT. In this paper we study two-round key-alternating block ciphers

with round function f(x) = x(2t+1)2s, where t, s are positive integers. An algo-
rithm to compute the distribution weight in respect to input and output masks
is described. Also, in the case t = 1 the correlation distributions depending on
input and output masks are completely determined for arbitrary pairs of masks.

1. Introduction

Linear cryptanalysis is one of the most powerful attacks on symmetric-key
block ciphers. It investigates the correlation between chosen bits of the input and
the output in order to make conclusions about some bits of the key. Nowadays
ciphers are designed to be resistant against linear cryptanalysis by analyzing
some statistical properties of the cipher.

The study presented herein is inspired by a paper [1, M. A. A b d e l r a h e e m,
M. A g r e n, P. B e e l e n and G. L e a n d e r]. In the paper the authors give an
example of two-round key-alternating block cipher (see Figure 1) with correlation
distribution for masks (1, 1) that is behaving differently from what is expected.
It takes only five different values whereas previously it was assumed that the
distribution would be normal [7]. The cryptanalysis of two-round key-alternating
block ciphers is interesting because it is the basic step of the cryptanalysis of any
multi-round block cipher.
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Figure 1. Two round key-alternating cipher.

In this paper we consider the same cipher but with a round function of more
general form and we determine the correlation distribution in dependence of the
key for arbitrary input and output masks (σ, ω), where σ, ω ∈ F

n
2 , n odd.

Our methods are based on finite-field theory, see, e.g., [3,10,11,13] and some
general results on correlation analysis and linear cryptanalysis [5,8,12].

In the next section we give the necessary notions and notations. In Section 3,
we prove several general facts about correlation distribution and introduce the
notion distribution weight. In Section 4, we give some theoretical results and
describe how to compute the distribution weight for round function of the form

f(x) = x(2t+1)2s

. How to compute the correlation distribution in the case t = 1
is described in Section 5. Computational results are presented in Section 6.
For the sake of reader’s convenience the proofs of the theorems in Section 2 are
given in Appendix A.

2. Preliminaries

Let f : Fn
2 → F

n
2 be a bijection and 〈u,v〉 def

= uvτ = u1v1 + · · ·+ unvn be the
inner product of u and v. Note that 〈u,v〉 ∈ F2, thus, it takes values 0 or 1.

���������� 2.1� The correlation of the linear approximation (u,v) of f
is referred to be the difference

cf (u,v)
def
=

1

2n−1

∣∣{x ∈ F
n
2 | 〈u,x〉+ 〈v, f(x)〉 = 0}∣∣− 1.

The vectors u and v are commonly called input and output masks of the
approximation.

Let f, g : Fn
2 → F

n
2 be bijections and let fk : Fn

2 → F
n
2 be defined by

fk(x) = f(x) + k, k ∈ F
n
2 .

Let us denote by Fk the composition Fk(x) = g ◦ fk(x) = g
(
f(x) + k

)
.
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����� 2.2�

cfk(u,v) = (−1)〈v,k〉cf (u,v).

	
����� 2.3�

cFk
(u,v) =

∑
w∈F

n
2

cfk(u,w)cg(w,v) =
∑
w∈F

n
2

(−1)〈w,k〉cf (u,w)cg(w,v).

Remark� Theorem 2.3 can be found in [5] formulated and proved in the terms
of correlation matrices. A different proof in manner that follows the style of this
paper is given in [9]. The proofs of Theorem 2.2, Theorem 2.3, and Theorem 2.4
are also given in Appendix A.

	
����� 2.4� ∑
k∈F

n
2

c2Fk
(u,v) = 2n

∑
w∈F

n
2

c2f (u,w)c2g(w,v).

Theorems 2.1–2.3 concern the composition of two functions. They can be
generalized to composition of several functions:

f = fr ◦ · · · f2 ◦ f1, fi : F
n
2 → F

n
2 .

���������� 2.5� A linear trail of length r is an ordered set of intermediate
masks

θ = (θ0 = u, θ1, . . . θr = w).

A linear hull is the set of all trails starting with the same input mask and
ending with the same output mask.

In this paper we deal only with trails of length two and refer the reader
to [6, Chapter 7] for more information about the general case.

Another measure which is used for evaluating how well the round function f
is approximated by (u,v) is the following

���������� 2.6� Fourier transformation (or Walsh transform) of f in re-

gard to (u,v) is a function f̂ : Fn
2 × F

n
2 → Z defined by

f̂(u,v) =
∑
x∈Fn

2

(−1)〈u,x〉+〈v,f(x)〉 ∈ [−2n, 2n].

The Fourier transformation of f gives some advantages when algebraic meth-
ods are involved. It is connected with correlation by the following equality.

���������� 2.7�

cf (u,v) =
1

2n
f̂(u,v).
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Hence, whenever we say correlation distribution in this paper, we understand

the distribution of f̂(u,v) in dependence of the masks.

By fixing a basis of F2n over F2 we define a bijection between F2n and F
n
2

and can identify f with a permutation polynomial over F2n . When this basis is
self-dual we have 〈u,v〉 = Tr(uv). Such a basis exists for any finite field with
characteristic 2, see [13, 5.1.18]. We can obtain some advantages in computer
computation if the basis is also normal. Self-dual normal basis exists in F2n

if n �≡ 0 (mod 4), see [13, 5.2.23] and [10].

In this paper during our considerations, we assume that the chosen basis is

self-dual and normal, namely, α, α2, . . . , α2n−1

with Tr(α2i

α2j

) = 0, where α
is a primitive element of F2n . The fact that the basis is normal has no effect
on the theoretical results but is useful for computations.

In the studied key-alternating cipher the nonlinear function f is the polyno-
mial f(x) = xa with a = 3.2s, s integer, although we will prove some properties
in the more general case a = (2t + 1).2s, s, t positive integers. In order to assure
that f is a permutation polynomial we assume that n is odd.

Since the keys k0 and k2 do not change the distribution, for simplicity we
do not consider them and denote k1 = k. Let x ∈ F2n correspond to the input
n-tuple x. Then the output x̄ of the studied block cipher corresponds to

Fk(x) = f
(
f(x) + k

)
= (xa + k)a.

Let χ : F2n → {±1} be the additive character of F2n defined by

χ(x)
def
= (−1)Tr(x).

Obviously, we have

χ(x+ y) = χ(x)χ(y) and χ(x2) = χ(x), x, y ∈ F2n .

Recall also the following well known property

���������� 2.8� ∑
x∈F2n

χ(x) = 0.

Now, we can write that

F̂k(σ, ω) =
∑

x∈F2n

(−1)Tr(σx+ωFk(x))

=
∑

x∈F2n

χ
(
σx+ ωFk(x)

)
.
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3. Several general results

Our goal is to determine the distribution of F̂k(σ, ω) (instead of cF (σ, ω))
depending on the pair of masks (σ, ω) and the key k. To achieve this goal we

evaluate F̂ 2
k (σ, ω).

����� 3.1� For any σ and ω of F2n , and f : F2n → F2n

f̂2(σ, ω) =
∑

x∈F2n

[
χ
(
σx+ ωf(x)

)∑
y∈F2n

χ
(
ωh(x, y)

)]
,

where h(x, y) = f(x+ y)− f(x)− f(y).

P r o o f.

f̂2(σ, ω) =

⎛
⎝ ∑

y∈F2n

χ
(
σy + ωf(y)

)⎞⎠
⎛
⎝ ∑

z∈F2n

χ
(
σz + ωf(z)

)⎞⎠
=

∑
y∈F2n

∑
z∈F2n

χ
(
σy + ωf(y)

)
χ
(
σz + ωf(z)

)
=

∑
y∈F2n

∑
z∈F2n

χ
(
σy + ωf(y) + σz + ωf(z)

)
.

Substituting z = x+ y we obtain

f̂2(σ, ω) =
∑

x∈F2n

∑
y∈F2n

χ
(
σy + ωf(y) + σ(x+ y) + ωf(x+ y)

)
=

∑
x∈F2n

∑
y∈F2n

χ
(
σx+ ωf(y) + ωf(x+ y)

)
=

∑
x∈F2n

∑
y∈F2n

χ
(
σx+ ωf(x) + ωh(x, y)

)
=

∑
x∈F2n

∑
y∈F2n

χ
(
σx+ ωf(x)

)
χ
(
ωh(x, y)

)
,

where h(x, y) = f(x+ y)− f(x)− f(y). �

Let us consider the set H(x) = {h(x, y) | y ∈ F2n} ⊆ F2n . For many
polynomials f(x) the set H(x) = F2n and thus ωH(x) = F2n for any ω �= 0.
Then, according to Proposition 2.8 we have∑

y∈F2n

χ
(
ωh(x, y)

)
= 0.

Hence f̂2(σ, ω) (as we will see below) is a sum of a relatively small number
of addends and can be evaluated.
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����� 3.2� Let f : F2n → F2n and g(x) = f(x)2
t

. For any σ and ω of F2n

ĝ2(σ, ω) = f̂2(σ, μ),

where μ = ω2n−t

.

P r o o f. According to Lemma 3.1

ĝ2(σ, ω) =
∑

x∈F2n

[
χ
(
σx+ ωg(x)

) ∑
y∈F2n

χ
(
ωH(x, y)

)]
,

where H(x, y) = g(x+ y) + g(x) + g(y) =
(
f(x+ y) + f(x) + f(y)

)2t

= h(x, y)2
t

.

ĝ2(σ, ω) =
∑

x∈F2n

[
χ(σx)χ

(
μ2t

f(x)2
t) ∑

y∈F2n

χ
(
μ2t

h(x, y)2
t)]

=
∑

x∈F2n

[
χ(σx)χ

(
μf(x)

) ∑
y∈F2n

χ
(
μh(x, y)

)]

=
∑

x∈F2n

[
χ
(
σx+ μf(x)

) ∑
y∈F2n

χ
(
μh(x, y)

)]

= f̂2(σ, μ),

where ω = μ2t

. �

As a corollary we obtain the following

����� 3.3� Let f(x) = xa and g(x) = xa2t

. Then for any σ ∈ F2n

Ĝ2
k(σ, 1) = F̂ 2

τ (σ, 1),

where τ = k2
n−t

.

P r o o f. Gk = (xa2t

+ k)a2
t

= (xa + τ)a2
2t

=
(
(xa + τ)a

)22t

= F 22t

τ (x).
Now Lemma 3.2 gives the statement. �

Lemma 3.3 can be formulated for an arbitrary ω, not only for ω = 1, but it
is not necessary due to the statement given below.

Let f : F2n → F2n be a permutation polynomial with the property:

������� 3.4� For any λ ∈ F2n there exists η = η(λ) ∈ F2n such that λf(x) =
f(ηx) for any x.
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Let f, g : F2n → F2n be permutation polynomials with the above property.
Then for any σ, ω ∈ F2n there exist λ(ω), η(ω) ∈ F2n such that

σx+ ωg
(
f(x) + k

)
= σx+ g

(
λf(x) + λk

)
= σx+ g

(
f(ηx) + kω

)
= ση−1y + g

(
f(y) + kω

)
, (1)

where kω = λk.

Therefore we can formulate the following lemma:

����� 3.5� For suitable η and kω of F2n,

F̂k(σ, ω) = F̂kω
(ση−1, 1).

P r o o f. Let us first note that any permutation polynomial of the form f(x) = xa

satisfies the Property 3.4 since there exists a unique η such that λ = ηa. Then
repeating (1) we get

σx+ ωFk(x) = σx+ ωf(f(x) + k) = ση−1y + f(f(y) + kω) = ση−1y + Fkω
(y).

Hence ∑
x∈F2n

χ
(
σx+ ωFk(x)

)
=
∑

y∈F2n

χ
(
ση−1y + Fkω

(y)
)
. �

The aforesaid shows that ω has influence on the correspondence between
distributions and pairs (σ, k) but not on the structure of the set of distributions.
If a given distribution corresponds to (σ, ω, k), it corresponds to (ση−1, 1, kω),
too. That is, the set of distributions (in regard to (σ, k)) is one and the same
for all ω. Therefore the case ω = 1 assures enough generality for our study.
From now on we assume ω = 1 and we will follow the ideas presented in [1]
in order to evaluate the correlation distribution depending on the triple (σ, 1, k).

����� 3.6�

F̂k(σ
2, 1) = F̂k1/2(σ, 1) and F̂k2(σ, 1) = F̂k(σ

1/2, 1).

P r o o f. Since Fk(y
2) = (y2a + k)a = (ya + k1/2)2a = Fk1/2(y)2 we have

F̂k(σ
2, 1) =

∑
x∈F2n

χ
(
σ2x+ Fk(x)

)
=
∑

y∈F2n

χ
(
σ2y2 + Fk(y

2)
)

=
∑

y∈F2n

χ
((

σy + Fk1/2(y)
)2)

=
∑

y∈F2n

χ
(
σy + Fk1/2(y)

)
= F̂k1/2(σ, 1).

The proof of the second equality is similar. �
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In the case a = (2t + 1)2s the following fact holds.

����� 3.7� If f(x) = x(2t+1)2s

, then for any k ∈ F2n we have

F̂k+1(σ, 1) = −F̂k(σ, 1).

P r o o f. According to Lemma 3.3 with a = 2t + 1 it is sufficient to give a proof

only when f(x) = x(2t+1). Since

Fk+1(x) = (x2t+1 + k + 1)(2
t+1)

=
[
(x(2t+1) + k)2

t

+ 1
]
(x2t+1 + k + 1)

= Fk(x) + (x2t+1 + k)2
t

+ (x2t+1 + k) + 1

and

χ
(
(x2t+1 + k)2

t
)
= χ

(
(x2t+1 + k)

)
,

we get

χ
(
σx+ Fk+1(x)

)
= χ

(
σx+ Fk(x)

)
χ
(
(x2t+1 + k)

)2
χ(1)

= −χ
(
σx+ Fk(x)

)
.

Therefore,

F̂k+1(σ, 1) =
∑

x∈F2n

χ
(
σx+ Fk+1(x)

)
= −

∑
x∈F2n

χ
(
σx+ Fk(x)

)
= −F̂k(σ, 1).

�

The previous lemma shows that for a given σ the values of F̂k(σ, 1) separate
in pairs of opposite numbers. Hence the set of correlations values has the form

{D0 = 0,±D1(σ),±D2(σ), . . . ,±Ds(σ)}. (2)

Let A0, A1, . . . , As denote the numbers of keys for which F̂ 2
k (σ, 1) = D2

i ,
respectively. Obviously Ai are even numbers and the following corollary holds.

��������� 3.8�
s∑

i=0

AiD
2
i (σ) = Wσ =

∑
k∈F2n

F̂ 2
k (σ, 1).

Herein we call Wσ the distribution weight in respect to σ.
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4. The number of nonzero trails and the distribution
weight in the case f(x) = x2t+1, t < n

Let f : F2n → F2n be a permutation polynomial and let us approximate
it linearly with masks σ and π. Let g : F2n → F2n be another permutation
polynomial and let us linearly approximate it with masks π and ω.

���������� 4.1� For any σ, ω ∈ F2n the equality∑
k∈F2n

F̂ 2
k (σ, ω) =

1

2n

∑
π∈F2n

f̂2(σ, π)ĝ2(π, ω) (3)

holds.

P r o o f. According to Theorem 2.4 we have∑
k∈F

n
2

c2Fk
(u,v) = 2n

∑
w∈F

n
2

c2f (u,w)c2g(w,v).

Taking into account Proposition 2.7 we obtain

1

22n

∑
k∈F2n

F̂ 2
k (σ, ω) =

2n

24n

∑
π∈F2n

f̂2(σ, π)ĝ2(π, ω).

Multiplying by 22n we obtain the statement. �

The Proposition shows that we have to evaluate the number of intermediate

masks π for which the product f̂2(σ, π)ĝ2(π, ω) �= 0.

According to Lemma 3.1 we have

f̂2(σ, π) =
∑

x∈F2n

⎡
⎣χ(σx+ πf(x)

) ∑
y∈F2n

χ
(
πh(x, y)

)⎤⎦ ,

where f(x+ y) = f(x) + f(y) + h(x, y).

If f(x)=x2t+1, then (x+y)2
t+1=

(
x2t

+ y2
t)
(x+ y), thus h(x, y)=x2t

y+xy2
t

.

Hence,

χ
(
πh(x, y)

)
= χ

(
πx2t

y
)
+ χ

(
πxy2

t
)
= χ

(
π2t

x22t

y2
t
)
+ χ

(
πxy2

t
)

= χ
((
π2t

x22t

+ πx
)
y2

t
)
.

Therefore,

f̂2(σ, π) =
∑

x∈F2n

⎡
⎣χ(σx+ πx2t+1

) ∑
y∈F2n

χ
((
π2t

x22t

+ πx
)
y2

t
)⎤⎦
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If
Pπ(x) = π2t

x22t

+ πx �= 0,

then (π2t

x22t

+ πx)y2
t

runs through all elements of F2n , thus

∑
y∈F2n

χ
((
π2t

x22t

+ πx
)
y2

t
)
=

{
2n if π2t

x22t

+ πx = 0,

0, otherwise.

Therefore,

f̂2(σ, π) = 2n
∑

Pπ(x)=0

χ
(
σx+ πx2t+1

)
.

Similarly,

ĝ2(π, 1) = 2n
∑

P1(x)=0

χ
(
πx+ x2t+1

)
.

The equation

Pπ(x) = π2t

x22t

+ πx = 0

has 2d solutions see [4, Theorem 3.1], where d = (t, n) for n odd. Indeed, the
set of roots coincides with the set x0F2d , where x0 is an arbitrary root and

F2d = F2t ∩ F2n . One possible value is x0 = π−1/(2t+1). Note also that

F2d =
{
0, 1, αq, α2q, . . . , α(2d−2)q

}
,

where α is a primitive element of F2n and q = (2n − 1)/(2d − 1).

Since for any x = x0y ∈ F2d we have

σx0y + π(x0y)
2t+1 = σπ

− 1
2t+1 y + ππ−1y2

t+1 = σπ
− 1

2t+1 y + y2 (note d|t)
and then

χ
(
σx+ πx2t+1

)
= χ

(
σπ

− 1
2t+1 y + y2

)
= χ

((
σπ

− 1
2t+1 + 1

)
y
)
.

Therefore,

f̂2(σ, π) = 2n
∑

y∈F
2d

χ
((
σπ

− 1
2t+1 + 1

)
y
)
, (4)

ĝ2(π, 1) = 2n
∑

y∈F
2d

χ
(
(π + 1)y

)
.
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4.1. The case d = 1.

For odd n ≤ 19 the value of d differs from 1 only for n = 9, t = 3, 6;
n = 15, t = 3, 6, 9, 12; and n = 15, t = 5, 10.

For the rest values d = 1 and thus

f̂2(σ, π) = 2n
(
1 + χ

(
σπ

− 1
2t+1 + 1

))
= 2n

(
1− (−1)Tr(σπ

− 1
2t+1 )

)
,

(5)

ĝ2(π, 1) = 2n
(
1 + χ(π + 1)

)
= 2n

(
1− (−1)Tr(π+1)

)
.

Therefore,

f̂2(σ, π) =

{
2n+1 if Tr

(
σπ

− 1
2t+1

)
= 1,

0, otherwise.

(6)

ĝ2(π, 1) =

{
2n+1 if Tr(π) = 1,

0, otherwise.

The product f̂2(σ, π)ĝ2(π, 1) �= 0 if and only if π belongs to the set

Mσ =
{
π | Tr(π) = Tr

(
σπ

− 1
2t+1

)
= 1
}
.

Then according to Proposition 4.1

Wσ =
∑

k∈F2n

F̂ 2
k (σ, 1) =

1

2n

∑
π∈Mσ

2n+12n+1

Therefore,

Wσ = 2n+2|Mσ| (7)

Let us consider the product

(
1− (−1)Tr(π)

)(
1− (−1)Tr(σπ

− 1
2t+1 )

)
.

It equals 2.2 = 4 for π ∈ Mσ and zero otherwise. Hence

S =
∑

π∈F2n

(
1− (−1)Tr(π)

)(
1− (−1)Tr(σπ

− 1
2t+1 )

)
= 4|Mσ|.
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On the other side,

S = 2n −
∑

π∈F2n

(−1)Tr(π) −
∑

π∈F2n

(−1)Tr(σπ
− 1

2t+1 )

+
∑

π∈F2n

(−1)Tr(π)(−1)Tr(σπ
− 1

2t+1 )

= 2n +
∑

π∈F2n

(−1)Tr(σπ
− 1

2t+1 +π)

=
∑

π∈F2n

[
1 + (−1)Tr(σπ

− 1
2t+1 +π)

]

= 2
∣∣∣{π | Tr

(
σπ

− 1
2t+1 + π

)
= 0
}∣∣∣ .

Therefore, substituting τ = π
1

2t+1 we obtain

	
����� 4.2�

Wσ = 2n+2|Mσ| = 2n+1
∣∣∣{τ | Tr(στ−1 + τ2

t+1
)
= 0
}∣∣∣ . (8)

In [1] a formula for |Mσ| when σ = 1, thus for W1, is given, namely

	
����� 4.3 ( [1])� For σ = 1 and t = 1 we have

W1 = 2n(2n + 1− Sn),

where Sn is power-sum of roots of x4 + x3 + 2x+ 4 in C.

Unfortunately, the approach based on algebraic curves over F2 which is used
to find the above formula does not work in the case σ �= 1. But for a given F2n

it is not difficult (for reasonable size of n) to compute the number of

τ with Tr
(
στ−1 + τ2

t+1
)
= 0.

It can be done even only by shifting and permuting the elements of binary
vectors.

4.2. The case d > 1.

For any x ∈ F2n the set {Tr(xF2d)} is a binary vector of length 2d and a zero
in the first position. Hence the elements of the set {Tr(F2n .F∗

2d)} form a binary

linear space of vectors of length 2d− 1. Indeed it consists of all codewords of the
[2d − 1, d, 2d−1] simplex code (see [14]) where each codeword is repeated 2n−d

times.
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Let T denote the set of x, for which Tr(xF2d) is the zero vector. Hence∑
y∈F

2d

(−1)Tr(xy)

equals 2d if x ∈ T and equals zero, otherwise. Obviously, |T | = 2n−d. Therefore,

f̂2(σ, π) =

{
2n+d if σπ

− 1
2t+1 + 1 ∈ T,

0, otherwise,

(9)

ĝ2(π, 1) =

{
2n+d if π + 1 ∈ T,

0, otherwise.

In this case,

Mσ = {π | π ∈ (1 + T ) and σπ
− 1

2t+1 ∈ (1 + T )}.
Therefore,

Mσ = (1 + T ) ∩ (1 + T )−(2t+1)σ(2t+1).

Let the symbol αCi denote the set of all powers whose exponents form the

cyclotomic coset Ci of i for 2 modulo 2n − 1. E.g., αC1 = {α, α2, . . . , α2n−1}.
It is easy to see that T, 1+T and (1+T )−(2t+1) are unions of subsets αCi ⊂F2n .

Unfortunately (1 + T )−(2t+1)σ(2t+1) is not such an union. Nevertheless after
determining the set T as a set of powers of the primitive element of F2n we can
compute Wσ working only with integers modulo 2n − 1, that is, we can avoid
the computations in F2n .

Example. Consider the case n = 9, t = 3, which are the smallest possible
parameters. In this case,

T ={0} ∪ αC3 ∪ αC19 ∪ αC23 ∪ αC79 ∪ αC85 ∪ αC111 ∪ αC119,

1 + T ={1} ∪ αC39∪ αC45 ∪ αC47 ∪ αC51 ∪ αC91 ∪ αC171 ∪ αC223,

(1+T )−(2t+1)={1} ∪ αC5 ∪ αC11 ∪ αC13 ∪ αC37 ∪ αC53 ∪ αC91 ∪ αC127.
Then

(1+T ) ∩ (1+T )−(2t+1)={1} ∪ αC91,

thus, for σ = 1 we have W1 = 215.10. For σ ∈ αC1 one can find that Wσ = 215.8,
and so on.

According to Lemma 3.3 and Lemma 3.5 the results obtained in this section

hold for f(x) = x(2t+1)2s

, too.
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5. Correlation distribution in the case f(x) = x3.2s

In this section we determine the possible values for F̂k(σ, ω) depending on the
triple (σ, ω, k). According to Lemma 3.3 and Lemma 3.5 we can assume without
loss of generality that f(x) = x3 and ω = 1.

����� 5.1� If f(x) = x3, then

F̂k
2
(σ, 1) = 2n

∑
x:Lk(x)=0

χ(σx+ Fk(x) + k3), (10)

where

Lk(x) = x64 + (k16 + k4)x16 + (k8 + k2)x4 + x. (11)

P r o o f. Fk(x) = (x3 + k)3, thus H(x, y, k) = k3 +H1(x, y, k), where

H1(x, y, k) = x y8 + kx2 y4 + (k2x+ kx4) y2 + (x8 + k2x2) y.

We apply Lemma 3.1 and since

χ
(
H(x, y, k)

)
= χ(k3)χ

(
H1(x, y, k)

)
we have

F̂k
2
(σ, 1)=

∑
x∈F2n

[
χ
(
σx+ Fk(x) + k3

)∑
y∈F2n

χ
(
H1(x, y, k)

)]
.

But using the properties of χ(.) we can write that

χ
(
H1(x, y, k)

)
= χ

(
x y8 + k2x4 y8 + (k2x+ kx4)4 y8 + (x8 + k2x2)8 y8

)
= χ

(
[x+ k2x4 + (k8x4 + k4x16) + (x64 + k16x16)] y8

)
= χ

(
Lk(x)y

8
)
.

Hence,

F̂k
2
(σ, 1) =

∑
x∈F2n

[
χ
(
σx+ Fk(x) + k3

)∑
y∈F2n

χ
(
Lk(x)y

8
)]
.

If Lk(x) �= 0, then z = Lk(x)y
8 runs through all elements of F2n and thus∑

y∈F2n

χ
(
Lk(x)y

8
)
=
∑

z∈F2n

χ(z) = 0.

If Lk(x) = 0, then, ∑
y∈F2n

χ
(
Lk(x)y

8
)
=
∑

y∈F2n

χ(0) = 2n

This proves the lemma. �
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The polynomial Lk(x) is a linearized polynomial and Lk(x) = x �(x3), where

�(y) = y21 + (k16 + k4)y5 + (k8 + k2)y + 1. (12)

It coincides with the polynomial P (x) studied in [1] and we can use the results
given there.

����� 5.2 ([1])� The possible number of roots of Lk(x) in F2n is 2 or 8.

	
����� 5.3� F̂k(σ, 1) = {0, ±2
n+1
2 , ±2

n+3
2 }.

P r o o f. According to (10)

F̂k
2
(σ, 1) = 2n

∑
x:Lk(x)=0

χ(σx+ Fk(x) + k3),

Denote, T (x) = Tr
(
σx+ Fk(x) + k3

)
. Then, χ

(
σx+ Fk(x) + k3

)
= (−1)T (x).

Note also that T (0) = 0.

Let L denote the set of roots of Lk(x) in F2n . According to the properties
of linearized polynomials L is a linear subspace of F2n over F2.

In the case |L| = 2, i.e., L = {0, x0}, we have∑
χ
(
σx+ Fk(x) + k3

)
= 1 + (−1)T (x0) = {0 or 2}.

Hence

F̂k
2
(σ, 1) = {0 or 2n+1}.

Let |L| = 8. Since L is a linear subspace over F2, there are three elements
x1, x2, x3 of L which form a basis, that is

L = {x = ax1 + bx2 + cx3 | a, b, c ∈ F2}.
Then T (x) = aT (x1) + bT (x2) + cT (x3) = aT1 + bT2 + cT3 and we have∑

x∈L

χ
(
σx+ Fk(x) + k3

)
=
∑

(a,b,c)

(−1)aT1(−1)bT2(−1)cT3 .

Depending on how many Ti are zeros and how many ones, the following cases
are possible (up to permutation of a, b, c):

∑
x∈L

χ(σx+ Fk(x) + k3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
1a1b1c,∑
1a1b(−1)c,∑
1a(−1)b(−1)c,∑
(−1)a(−1)b(−1)c.

In any case, with the exception of the first one, the numbers of 1s and (-1)s are
equal, thus the sum is zero. In the first case the sum is equal to 8. Therefore,

F̂k
2
(σ, 1) = {0 or 2n+3}

and the proof of the theorem is completed. �
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The proof of Lemma 5.2 shows how to find x1, x2, x3. The cubes x3
1, x

3
2, x

3
3

are the three roots of p1(y) = y3 + k2y + 1, if Tr(k3) = 1 and the roots
of p2(y) = y3 + (k2 + 1)y + 1 if Tr(k3) = 0, where p1(y)p2(y) divides �(y).

As a corollary of previous theorem and (7) we have

A1(σ)2
n+1 +A2(σ)2

n+3 = 2n+2|Mσ|.
Hence we can formulate

	
����� 5.4�

A1(σ) + 4A2(σ) =
∣∣{τ ∈ F2n | Tr(τ3 + στ−1) = 0

}∣∣ .
Our main goal is to find the numbers A1 and A2 for any σ. After computing

the right side of the above equality it is sufficient to find only A1 or A2. Below
we describe a method for computing A2(σ).

	
����� 5.5�

A2(σ) = 2

∣∣∣∣∣
{
k ∈ F2n

∣∣∣∣∣ p1(y) has 3 roots x3
1, x

3
2, x

3
3 :

Tr(σx1) = Tr(σx2) = Tr(σx3) = 1

}∣∣∣∣∣ .
P r o o f. Let x1, x2, x3 be such that the cubes x3

1, x
3
2, x

3
3 are the three roots of

p1(y) = y3+k2y+1, if Tr(k3) = 1 and the three roots of p2(y) = y3+(k+1)2y+1
if Tr(k3) = 0. It is easy to prove that x1, x2, x3 are linearly independent, thus
they form a basis of L when |L| = 8. The number A2(σ) is equal to the number

of keys with F̂k
2
(σ, 1) = 2n+3. According to (10)

F̂k
2
(σ, 1) = 2n

∑
x∈L

(−1)Tr(σx+Fk(x)+k3) = 2n+3,

if and only if Tr(σxi) = Tr(Fk(xi)+k3) for i = 1, 2, 3. But it can be proved that
Tr(Fk(xi) + k3) = 1. Therefore,

F̂k
2
(σ, 1) = 2n+3 if and only if Tr(σx1) = Tr(σx2) = Tr(σx3) = 1.

Since p1(y) ⇒ p2(y), by replacing k with k + 1 and vice versa we can con-
clude that required number of sets {x1, x2, x3} is two times the number of ones
obtained by p1(y).

Note: If x3
1, x

3
2, x

3
3 are the three roots of p1(y) for a given k, they are

the roots of p2(y) but for k := k + 1. Also,

Tr
(
(k + 1)3

)
= Tr(k3 + 1) = 1 + Tr(k3).

�
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Table 1. Polynomials generating self-dual normal basis

n Generating polynomial

3 x3 + x2 + 1

5 x5 + x4 + x2 + x+ 1

7 x7 + x6 + x4 + x+ 1

9 x9 + x8 + x6 + x3 + x2 + x+ 1

11 x11 + x10 + x8 + x7 + x6 + x5 + 1

13 x13 + x12 + x10 + x7 + x4 + x3 + 1

15 x15 + x14 + x12 + x9 + x7 + x5 + 1

17 x17 + x16 + x14 + x9 + x6 + x5 + x4 + x3 + 1

Algorithm description

y ∈ F
∗
2n : p1(y) = 0 ⇔ k2 = y2 + y−1 ⇔ k = y + y2

n−1

.

While y runs trough F∗
2n we obtain all k for which p1(y) has a root. The values

of k that appear three times correspond to the case three roots. Also,

p1(y; k) = y3 + k2y + 1 = 0 if and only if p1(y
2; k2) = 0.

Hence if y0 = αi is a root of p1(y;α
j), then p1(α

Ci , αCj ) = 0, where Ci, Cj are
cyclotomic cosets and α is a primitive element of F2n .

Therefore the set of k for which p1(y; k) has 3 roots is a union of αCj and
we have to check only for representatives if Tr(σxi) = 1.

6. Computations

In our computations we use self-dual normal basis α, α2, . . . , α2n−1

, where
α is a primitive element of F2n . The list of used generation polynomials (i.e, the
irreducible polynomials of α) for odd n is given in Table 1.

Let us consider the set of nonzero input masks as powers of the primitive
element α ∈ F2n , that is, σ : α0, α, α2, . . . , α2n−2. Lemma 3.6 shows that the
elements of each set αCi lead to one and the same distribution. Hence we can
compute distribution only for the leaders of the cyclotomic cosets. The same is
true for keys k, too.

We have determined the correlation distributions for odd n ≤ 17 but the
tables are too large to be given in a paper. We present here only the results for
n = 5 and n = 7 (see Tables 2 and 3)
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Table 2. Correlation distribution for n = 5.

σ # σ −2
n+3
2 −2

n+1
2 0 2

n+1
2 2

n+3
2

σ = αC0 ;αC7 6 0 6 20 6 0

σ = αC1 ;αC3 10 1 4 22 4 1

σ = αC5 ;αC11 10 1 6 18 6 1

σ = αC15 5 0 8 16 8 0

Table 3. Correlation distribution for n = 7.

σ # σ −2
n+3
2 −2

n+1
2 0 2

n+1
2 2

n+3
2

αC0 1 0 22 84 22 0

αC1 ;αC5 ;αC9 ;αC11 28 3 20 82 20 3

αC3 7 1 24 78 24 1

αC7 7 1 26 74 26 1

αC13 ;αC19 ;αC21 ;αC63 28 3 22 78 22 3

αC15 7 2 24 76 24 2

αC23 7 2 20 84 20 2

αC27 7 4 22 76 22 4

αC29 7 5 16 86 16 5

αC31 ;αC43 14 2 22 80 22 2

αC47 7 3 18 86 18 3

αC55 7 2 28 68 28 2

7. Conclusion

In this paper we study two-round key-alternating block ciphers with nonlinear
function f(x) = xa and prove several facts about their correlation distribution.
In the case a = 2s(2t + 1) we derive a formula for their distribution weights.
The correlation distribution is obtained completely only for t = 1, but we hope
that the used approach will enable the general case to be also solved. As a future
work this analysis can be applied to a recently proposed lightweight block cipher
MiMC [2] which uses x3 as a round function.
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Appendix A. Proofs

We prove Theorems 2.2–2.4 in terms which correspond better to the style and
terms of this paper.

A.1. Proof of Theorem 2.2

cfk(u,v) = 2Pr
(〈u,x〉+ 〈v, f(x)〉+ 〈v,k〉 = 0

)− 1

= 2Pr
(〈u,x〉+ 〈v, f(x)〉 = 〈v,k〉)− 1.

Denote P = Prx∈F
n
2

(〈u,x〉+ 〈v, f(x)〉 = 0
)
. Then

Pr
x∈F

n
2

(〈u,x〉+ 〈v, f(x)〉 = 〈v,k〉) =
{
P if 〈v,k〉 = 0,

1− P if 〈v,k〉 = 1.

Hence

cfk(u,v) =

{
cf (u,v) if 〈v,k〉 = 0,

−cf (u,v) if 〈v,k〉 = 1.

�

A.2. Proof of Theorem 2.3

Let

PFk
(u,v) = Pr

x∈F
n
2

(〈u,x〉+ 〈v, Fk(x)〉 = 0
)
,

Pfk(u,v) = Pr
x∈F

n
2

(〈u,x〉+ 〈v, fk(x)〉 = 0
)
,

Pg(u,v) = Pr
x∈F

n
2

(〈u,x〉+ 〈v, g(x)〉 = 0
)
.

But fk(x) is bijection, that is, {fk(x) | x ∈ F
n
2} = F

n
2 , thus, we can write

Pg(u,v) = Pr
x∈F

n
2

(〈u, fk(x)〉+ 〈v, g(fk(x))〉 = 0
)
,

= Pr
x∈F

n
2

(〈u, fk(x)〉+ 〈v, Fk(x)〉 = 0
)
.

Since 〈u,x〉+ 〈v, Fk(x)〉 = 0 if and only if

〈u,x〉+ 〈w, fk(x)〉 = 〈w, fk(x)〉+ 〈v, Fk(x)〉.
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Let Xw and Yw be the random binary variables 〈u,x〉 + 〈w, fk(x)〉 = 0 and
〈w, fk(x)〉+ 〈v, Fk(x)〉 = 0, respectively. Then according to Piling-up lemma

εXw⊕Yw
= 2

(
Pfk(u,w)− 1

2

)(
Pg(w,v)− 1

2

)

= 2Pfk(u,w)Pg(w,v)− Pfk(u,w)− Pg(w,v) +
1

2
.

Hence

PFk
(u,v)− 1

2
=
∑
w∈F

n
2

εXw⊕Yw

=
∑
w∈F

n
2

(
2Pfk(u,w)Pg(w,v)− Pfk(u,w)− Pg(w,v) +

1

2

)
.

Therefore we have

cFk
(u,v)=

∑
w∈F

n
2

[4Pfk(u,w)Pg(w,v)− 2Pfk(u,w)− 2Pg(w,v) + 1]

=
∑
w∈F

n
2

(
2Pfk(u,w)− 1

)(
2Pg(w,v)− 1

)

=
∑
w∈F

n
2

cfk(u,w)cg(w,v).

On the other hand,∑
w∈F

n
2

cfk(u,w)cg(w,v)=
∑
w∈F

n
2

(
2Pfk(u,w)−1

)(
2Pg(w,v)−1

)

=
∑
w∈F

n
2

[4Pfk(u,w)Pg(w,v)−2Pfk(u,w)−2Pg(w,v)+1]

Hence

cFk
(u,v) = 2PFk

(u,v)− 1

=
∑
w∈F

n
2

(4PfkPg−2Pfk−2Pg + 2)− 1

=
∑
w∈F

n
2

cfk(u,w)cg(w,v).

�
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A.3. Proof of Theorem 2.4

According to the previous theorem

c2Fk
(u,v) =

⎛
⎝∑

w∈F
n
2

(−1)〈w,k〉cf (u,w)cg(w,v)

⎞
⎠

×
⎛
⎝∑

t∈F
n
2

(−1)〈t,k〉cf (u, t)cg(t,v)

⎞
⎠

=
∑
w∈F

n
2

∑
t∈F

n
2

(−1)〈k,w+t〉cf (u,w)cg(w,v)cf (u, t)cg(t,v).

Hence,

∑
k∈F

n
2

c2Fk
(u,v) =

∑
w∈F

n
2

∑
t∈F

n
2

⎛
⎝∑

k∈F
n
2

(−1)〈k,w+t〉

⎞
⎠ cf (u,w)cg(w,v)cf (u, t)cg(t,v),

But ∑
k∈F

n
2

(−1)〈k,w+t〉 =

{
0, w + t �= 0,

2n, w + t = 0.

Therefore, ∑
k∈F

n
2

c2Fk
(u,v) = 2n

∑
w∈F

n
2

cf (u,w)cg(w,v)cf (u,w)cg(w,v).
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