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ON PARTITIONS AND PERIODIC SEQUENCES

Milan Paštéka

Department of Mathematics, Faculty of Education, University of Trnava, Trnava, SLOVAKIA

ABSTRACT. In the first part we associate a periodic sequence with a partition
and study the connection the distribution of elements of uniform limit of the
sequences. Then some facts of statistical independence of these limits are proved.

Introduction

This paper is inspired by the papers [CIV], [CV], [K] where the uniformly
distributed sequences of partitions of the unit interval are studied. For technical
reasons we will study the systems of finite sequences of the unit interval — an
equivalent of partitions.

Let VN =
{
vN (1), . . . , vN (BN )

}
, N = 1, 2, 3, . . . , limN→∞ BN = ∞ be a sys-

tem of finite sequences of elements of interval [0, 1]. We say that this system is
uniformly distributed if and only if

lim
N→∞

1

BN

BN∑
n=1

f
(
vN (n)

)
=

1∫
0

f(x) dx.

By the standard way we can prove

������� 1� The system VN , N = 1, 2, 3, . . . is uniformly distributed if and
only if

lim
N→∞

1

BN

∣∣{n ≤ BN ; vN (n) < x
}∣∣ = x

for every x ∈ [0, 1].
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The notion of the uniformly distributed sequence was first introduced by
H. W e y l in his famous paper [WEY]. An equivalent of this definition is that
a sequence v of elements of interval [0, 1] is uniformly distributed if and only
if the system of finite sequences

{
v(1), . . . , v(N)

}
, N = 1, 2, 3, . . . is uniformly

distributed. This means that the sequence
{
v(n)

}
is uniformly distributed if and

only if the equality

lim
N→∞

1

N

∣∣{n ≤ N ; v(n) < x
}∣∣ = x

holds for arbitrary x ∈ [0, 1]. This can be formulated in an equivalent form:
Let N be the set of positive integers. Denote by D the system of sets A ⊂ N

such that the limit d(A) := limN→∞ 1
N |{n ≤ N ; n ∈ A}| exists. In this case

we say that the set A has asymptotic density and we call the value d(A) the
asymptotic density of A. For details, we refer the reader to [PAS]. Clearly, the
sequence {v(n)} is uniformly distributed if and only if

{
n ∈ N; v(n) < x

} ∈ D
and d({n ∈ N; v(n) < x}) = x for each x ∈ [0, 1].

In 1946 R. C. B u c k [BUC] constructed the measure density. He started from
the asymptotic density and applied some methods of measure theory. Denote
r + (m) = {n ∈ N; n ≡ r (mod m)}—the arithmetic progression, where m ∈ N,
r = 0, 1, 2, . . . , 0 + (m) := (m). If A ⊂ N, then we shall call the value

μ∗(A) = inf

⎧⎨
⎩

k∑
j=1

1

mj
;A ⊂

k⋃
j=1

rj + (mj)

⎫⎬
⎭

the Buck’s measure density of A. A set A ⊂ N is called Buck measurable if
and only if μ∗(A) + μ∗(N \ A) = 1. Denote Dµ the system of all Buck mea-
surable sets. Then Dµ is an algebra of sets and μ = μ∗|Dµ

is a finitely addi-
tive probability measure on Dµ. For the details, we refer the reader to [PAS].
A sequence of elements of [0, 1] is called Buck uniformly distributed if and only
if
{
n ∈ N; v(n) < x

} ∈ Dµ and μ({n ∈ N; v(n) < x}) = x for all x ∈ [0, 1].
(See also [PAS2].)

We say that a sequence v is polyadicly continuous on the set A ⊂ N if and
only if for each ε > 0 there exists a positive integer m so that for all n1, n2 ∈ A
we have

n1 ≡ n2 (mod m) =⇒ |v(n1)− v(n2)|< ε.

We say that v is polyadicly continuous if and only if it is polyadicly continuous
on N.

Denote for a sequence v and N—positive integer

EN (v) =
1

N

N∑
n=1

v(n).
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If there exists the proper limit

lim
N→∞

EN (v) := E(v),

then we say that v has a mean value and E(v) is called the mean value of v.
(In literature this is also known as (C, 1) summable sequence and (C, 1) limit.)

We say that a sequence of positive integers {kn} is uniformly distributed in Z

if and only if for every m ∈ N and r = 0, 1, . . . the set
{
n ∈ N; kn ∈ r + (m)

}
belongs to D and its asymptotic density is 1

m . (First introduced and studied by
I. N i v e n in the paper [N]).

������� 2� A sequence v of elements [0, 1] is Buck uniformly distributed if
and only if for each sequence {kn} of positive integers uniformly distributed in Z

the equality

lim
N→∞

EN

(
g
(
v(kn)

))
=

1∫
0

g(x) dx

holds for every continuous function g defined on [0, 1].

For the proof we refer the reader to [PAS, p. 122].

Almost polyadic continuity and almost
uniform convergence

The following two propositions proved in [PAS, pp. 106–108] will be useful
for the next results.

���	�
���� 1� Let v be a periodic sequence with the period B ∈ N. Then v
has the mean value

E(v) =
B∑

j=1

v(j)

and for each sequence {kn} uniformly distributed in Z we have

lim
N→∞

1

N

N∑
n=1

v(kn) = E(v).

Every polyadicly continuous sequence can be uniformly approximated by the
periodic functions thus we have

���	�
���� 2� Each polyadicly continuous sequence v has a mean value and

lim
N→∞

1

N

N∑
n=1

v(kn) = E(v)

for each sequence {kn} of positive integers {kn} uniformly distributed in Z.
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A sequence v will be called almost polyadicly continuous if and only if for
every δ > 0 there exists a Buck measurable set B ⊂ N that μ(B) ≤ δ and v is
polyadicly continuous on the set N \B.

������� 3� If v is a bounded almost polyadicly continuous sequence, then v
has a mean value and for each sequence of positive integers {kn} uniformly
distributed in Z we have

lim
N→∞

1

N

N∑
n=1

v(kn) = E(v). (1)

P r o o f. Suppose that v is an almost polyadicly continuous sequence and C > 0
is such contant that |v(n)| < C, n ∈ N. Consider δ > 0. Then there exists such
m ∈ N , r1, . . . , rk ∈ {0, . . . ,m−1} that k

m > 1−ε and v is polyadicly continuous

on the set A = ∪k
j=1rj + (m). Define a sequence

{
v0(n)

}
in the following way:

v0(n) = v(n) for n ∈ A and v0(n) = 0 otherwise. Clearly,

|EN (v)−EN (v0)| ≤ C

N

∑
n≤N,
n�∈A

1, N = 1, 2, 3, . . . .

We see immediately that the sequence
{
v0(n)

}
is polyadicly continuous thus it

has a mean value. Thus, from the inequality above, we get that the distance
between the upper and lower limit of EN (v) is smaller than 2Cδ. For δ → 0+

we get that the limN→∞ EN (v) exists. The same reasons provide also the equal-
ity (1). �

By combining Theorem 3 and Theorem 2 we get:

������� 4� An almost polyadicly continuous sequence of elements of [0, 1] is
Buck uniformly distributed if and only if it is uniformly distributed.

We say that a system of sequences vN converges almost uniformly forN → ∞
to sequence v if and only if for every δ > 0 there exists a Buck measurable set
S ⊂ N, where μ(S) < 0 and vN converges uniformly for N → ∞ to v on the
set N \ S.
���	�
���� 3� If vN , N = 1, 2, 3, . . . is a system of polyadicly continuous
sequences of elements of [0, 1] and it converges almost uniformly to a sequence v,
then v is almost polyadicly continuous and

lim
N→∞

E(vN ) = E(v).

Each finite sequence VN , N = 1, 2, 3, . . . can be extended to a periodic se-
quence ωN in the following way

ωN (n) = vN (j) ⇐⇒ n ≡ j (mod BN ), j = 1, . . . , BN , n ∈ N.
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From Theorem 4 and Proposition 3 we get immediately

������� 5� Let the system of sequences ωN converge almost uniformly to a se-
quence ω for N → ∞ uniformly for n ∈ N. Then the system of finite sequences
VN , N = 1, 2, 3, . . . is uniformly distributed if and only if the sequence ω is Buck
uniformly distributed.

The following fact can be proved directly from Cauchy Bolzano criterion
of uniform convergence:

���	�
���� 4� Let
∑∞

N=1 aN be a convergent series with positive elements.

Suppose that
{
αN (n)

}
, N = 1, 2, 3, . . . is system of sequences that

|αN (n)− αN+1(n)| ≤ aN , n ∈ N.

Then
{
αN (n)

}
converges uniformly to a suitable sequence

{
α(n)

}
.

Example 1. Let {BN} be an increasing sequence of positive integers such that
BN |BN+1, N = 1, 2, 3, . . . . Then the series

∑∞
N=1

1
BN

converges. If we con-

struct a system of periodic sequences
{
ωN (n)

}
, where ωN (n) is periodic modulo

BN , N = 1, 2, 3, . . . such that

r ≡ n (mod BN ) =⇒ |ωN (r)− ωN+1(n)| ≤ c

BN

for n, r ∈ N and N = 1, 2, 3, . . . for some c > 0, then {ωN (n)} converges to
a suitable polyadicly continuous sequence for N → ∞ uniformly for n ∈ N.

Statistical independence

This notion is introduced in [Ra]. Let v1, . . . , vn be sequences of elements
of [0, 1]. We say that these sequences are statistically independent if and only if
for continuous functions g1, . . . , gk defined on [0, 1] and the sequence u = g(v1) . . .
. . . gk(vk) we have

EN (u)−EN

(
g(v1)

)
. . . EN

(
gk(vk)

) → 0

for N → ∞.

For almost polyadicly continuous sequences this has the following more simple
form

���	�
���� 5� If v1, . . . , vk are almost polyadicly continuous sequences of el-
ements of [0, 1] and u has the same meaning as above, then they are statistically
independent if and only if

E(u) = E
(
g1(v1)

)
. . . E

(
gk(vk)

)
for each function g1, . . . , gk continuous on [0, 1].
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���	�
���� 6� Let
{
v1(n)

}
be a periodic sequence with the period M1 and{

v2(n)
}
be a periodic sequence with the period M2. If (M1,M2) = 1, then

E(v1v2) = E(v1)E(v2).

P r o o f. From the Chinese reminder theorem we get that for each

r1 ∈ {1, . . . ,M1} and r2 ∈ {1, . . . ,M2}
there exists uniquely determined r ∈ {1, . . . ,M1M2} such that r ≡ r1 (mod M1),
r ≡ r2 (mod M1). Thus

E(v1v2) =
1

M1M2

∑
r1,r2

v1(r1)v2(r2) = E(v1)E(v2).

�

If v is a periodic sequence, then for each function g defined on the set of
values of v the sequence g(v) is also periodic. And so from Proposition 6 we can
conclude:

���	�
���� 7� If v1, . . . , vn are periodic sequences with mutually relative prime
periods, then these sequences are statistically independent.

Every continuous function on [0, 1] is uniformly continuous. This implies that
if the system of sequences vN , with elements from [0, 1], converges almost uni-
formly to a sequence v for N → ∞ and g is a continuous function on [0, 1], then
g(vN ) converges uniformly to g(v) also. Therefore Proposition 3 implies:

���	�
���� 8� If v
(j)
N , N = 1, 2, 3, . . . is such a system of polyadicly con-

tinuous sequences, j = 1, . . . , k that for each N = 1, 2, 3, . . . the sequences

v
(j)
N , j = 1, . . . , k are statistically independent and for each j = 1, . . . , k the system

of sequences v
(j)
N , N = 1, 2, 3, . . . converges almost uniformly to a sequence v(j),

then the sequences v(j), j = 1, . . . , k are statistically independent.

Suppose that P is some set of primes and S(P ) is the semigroup generated
by P . We say that a sequence v is polyadicly continuous with respect to P if and
only if for each ε > 0 there exists m ∈ S(P ) so that

n1 ≡ n2 (mod m) =⇒ |v(n1)− v(n2)| < ε

for n1, n2 ∈ N. It is easy to see that in this case the sequence v is a uniform limit
of periodic sequences with periods belonging to S(P ). Thus we obtain

������� 6� Let P1, . . . , Pk be disjoint sets of primes. If v1, . . . , vk are such
sequences that vj is polyadicly continuous with respect to Pj , j = 1, . . . , k, then
the sequences v1, . . . , vk are statistically independent.
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Example 2. If P1, . . . , Pk are disjoint sets of primes and sj > 1, then we can
define for n ∈ N

αj(n) =
∏
p|n,
p∈Pj

(
1− 1

psj

)
, j = 1, . . . , k.

The condition sj > 1 provides that αj is polyadicly continuous with respect
to Pj for j = 1, . . . , k. Thus these sequences are statistically independent.

Example 3. If m1, . . . ,mk are mutually relatively prime positive integers and
we define the sequence vj(n) as a Van der Corput sequence with the base mj,
i.e. for n = arm

r
j + · · ·+ a1mj + a0, 0 ≤ ai ≤ mj − 1 we set

vj(n) =
ar

mr+1
j

+ · · ·+ a1
m2

j

+
a0
mj

,

then the sequences v1, . . . , vk are statistically independent.

Construction of uniformly distributed partitions

Suppose now (without loss of generality) that the finite sequences VN , N =
1, 2, 3 . . . are increasing and

lim
N→∞

vN (1) = 0. (2)

Let 1 = jN1 , . . . , j
N
kN

be an increasing subsequence of {1, . . . , BN}. Then the
sequence VN can be decomposed into disjoint subsequences

VN = V (1, N) ∪ · · · ∪ V
(
jNkN

, N
)
,

where V (k,N) is a sequence of consecutive elements of VN with the smallest
element vN (jk), k = 1, . . . , kN . For 1 ≤ k < kN let us denote

�(k,N) = vN
(
jNk+1

)− vN
(
jNk

)
,

and for k = kN denote

�(kN , N) = 1− vN
(
jNkN

)
.

Then (2) implies

lim
N→∞

kN∑
k=1

�(k,N) = 1. (3)

������� 7� Assume that

lim
N→∞

�(k,N) = 0 (4)

and

lim
N→∞

|V (k,N)|
�(k,N)BN

= 1 (5)
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converge uniformly for k. Then the system of finite sequences VN , N = 1, 2, 3, . . .
is uniformly distributed.

P r o o f. Let x ∈ (0, 1) be a fixed number. Then conditions (2) and (4) provide
that there exists a positive integer sN so that

sN∑
j=1

�(j,N) ≤ x <

sN+1∑
j=1

�(j,N)

with the exception of a finite number of N . This yields

lim
N→∞

sN∑
j=1

�(j,N) = x. (6)

Clearly,
sN∑
j=1

|V (j,N)| ≤ ∣∣{n ≤ BN ; vN (j) ≤ x
}∣∣ <

sN+1∑
j=1

|V (j,N)|. (7)

From the condition (5) we get that for ε > 0 there exists N0 such that for
N ≥ N0 and 1 ≤ k ≤ BN we have

(1− ε)�(k,N)BN ≤ |V (k,N)| ≤ (1− ε)�(k,N)BN

and by substitution in (7) we obtain

(1− ε)

sN∑
j=1

�(j,N) ≤ |{n ≤ BN ; vN (j) ≤ x}|
BN

≤ (1 + ε)

sN+1∑
j=1

�(j,N).

From this and (6) we can conclude

lim
N→∞

|{n ≤ BN ; vN (j) ≤ x}|
BN

= x.
�

Denote

MN = max
{|V (k,N)|; k=1, . . . , kN

}
, mN=min

{|V (k,N)|; k = 1, . . . , kN
}

and

LN = max
{
� (k,N); k = 1, . . . , kN

}
, �N =min

{
� (k,N); k = 1, . . . , kN

}
.

������� 8� If
lim

N→∞
LN = 0 (8)

and

lim
N→∞

MN�N
mNLN

= 1 (9)

then the system of finite sequences VN , N = 1, 2, 3, . . . is uniformly distributed.
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P r o o f. We apply Theorem 7. Condition (8) implies that condition (4) is ful-
filled.

Clearly, the inequalities

mN

LNBN
≤ |V (k,N)|

�(k,N)BN
≤ MN

�NBN
, k = 1, . . . , kNj

(10)

hold. Thus as a proof that condition (5) holds, it suffices to prove that

lim
N→∞

MN

�NBN
= 1

because condition (9) provides that the term on the left hand side of inequalities
(10) has the same limit points as the right hand side term. Suppose that the
right hand side term has a limit point smaller than 1. Then for suitable α < 1
and infinite sequence {Nj} we have

|V (k,Nj)| ≤ α�(k,Nj)BNj
, k = 1, . . . , kNj

and so we get the contradiction

BNj
=

kNj∑
k=1

|V (k,Nj)|

≤ α

kNj∑
k=1

�(k,Nj)BNj
≤ αBNj

.

If the right hand side term has a limit point greater than 1, then the left hand
side term has the same limit point and so for suitable β > 1 and an infinite
sequence {Nj} the inequalities

|V (k,Nj)| ≥ β�(k,Nj)BNj
, k = 1, . . . , kNj

hold. This yields

BNj
=

kNj∑
k=1

|V (k,Nj)| ≥ β

kNj∑
k=1

�(k,Nj)BNj

and so

1 ≥ β

kNj∑
k=1

�(k,Nj).

Therefore,

lim
j→∞

kNj∑
k=1

�(k,Nj) ≤ 1

β
< 1 — a contradiction with (3).

�
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