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ABSTRACT. Extending Goursat’s Lemma we investigate the structure of sub-
direct products of 3-factor direct products. We construct several examples and
then provide a structure theorem showing that every such group is essentially ob-
tained by a combination of the examples. The central observation in this structure
theorem is that the dependencies among the group elements in the subdirect prod-
uct that involve all three factors are of Abelian nature. In the spirit of Goursat’s
Lemma, for two special cases, we derive correspondence theorems between data
obtained from the subgroup lattices of the three factors (as well as isomorphisms
between arising factor groups) and the subdirect products. Using our results we
derive an explicit formula to count the number of subdirect products of the direct
product of three symmetric groups.

1. Introduction

The lemma of Goursat [§] is a classic result of group theory that charac-
terizes the subgroups of a direct product of two groups G; X Gs. A version of the
lemma also provides means to describe the subgroups of G; x G5 by inspect-
ing the subgroup lattices of G; and G5 and considering isomorphisms between
arising factor groups.

In an expository article, Anderson and Camillo [I] demonstrate for
example the applicability of Goursat’s lemma to determine normal subgroups
of G; x G2, to count the number of subgroups of S3 x S3, and to prove the
Zassenhaus Lemma. They also describe how Goursat’s Lemma can be stated
in the context of rings, ideals, subrings and in modules. The lemma itself can
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also be found in various introductory algebra and group theory texts (e.g., [9}
pp. 63-64], [11, p. 75]).

While Goursat’s Lemma applies to subgroups of the direct product of two
groups, in this work we are concerned with subgroups of the direct product
of three groups.

It seems that there is no straightforward generalization to three factors. In-
deed, Bauer, Sen, and Zvengrowski [2] developed a generalization to an
arbitrary finite number of factors by devising a non-symmetric version of Gour-
sat’s lemma for two factors that can then be applied recursively. A more category
theory focused approach is taken by Gekas [7]. However no simple correspon-
dence theorem between the subdirect products of 3-factor direct products and
data depending on the sublattice of the subgroups of the factors and isomor-
phisms between them is at hand. In fact, in [2] the authors exhibit two Abelian
examples that stand in the way of such a correspondence theorem by sharing
the various characteristic subgroups and isomorphisms between them and yet
being distinct. Both these papers are able to recover several identities provided
by Remak [14] who is explicitly concerned with 3-factor subdirect products.

In this paper we analyze the structure of subdirect products of 3-factor direct
products. To this end we construct several examples of such groups and then
provide a structure theorem showing that every such group is essentially obtained
by a combination of the examples. The central observation in this structure
theorem is that the dependencies among the group elements in the subdirect
product that involve all three factors are of Abelian nature. We call a subdirect
product of G; x G4 x G3 2-factor injective if each of the three projections onto
two factors is injective. By taking suitable quotients, it is possible to restrict our
investigations to 2-factor injective subdirect products (see LemmaB.7), for which
we obtain the following theorem.

THEOREM 1.1 (Characterization of 2-factor injective subdirect products of
3-factor products). Let A < G1 x G2 X G3 be a 2-factor injective subdirect prod-
uct. Then there is a normal subgroup H < A with [m;(A): m(H)] = [A: H]
for i € {1,2,3} and H is isomorphic to a group of the following form: there
are three finite groups Hy, Ho, H3 that all have an Abelian subgroup M con-
tained in their center such that H is isomorphic to the factor group of those
triples { ((ha, 1y~ "), (has 1), (ha, By ™ 1))} that satisfy hy, hl € Hy bl ™" € M
and hyht " hohl, " hahly ™t =1, by the normal subgroup

{((m1,m1), (ma,ms), (m3,m3)) | m; € M}.
In this theorem H is the subgroup
{(g1,92,93) € A|Fi € {1,2,3} s.t. g; = 1})

generated by all elements of A for which some entry is trivial.
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Our intuitive interpretation of this theorem is as follows. The coset of H in
which an element of (g1, g2,93) € A is contained is already determined by each
of the three components g; alone. Moreover, the structure of H is entirely de-
termined by pairwise dependencies that are shared between two of the three
factors G1, G2, G3 but are independent of the third, together with an Abelian
entanglement of all three factors, which is controlled by the subgroup M.

In the spirit of a well known correspondence version of Goursat’s Lemma
(see Theorem [2.2]) we then investigate correspondence theorems between data
obtained from the subgroup lattices of the G; (as well as isomorphisms between
arising factor groups) and the subdirect products of G; x G2 x G3. For two special
cases, namely the cases H = A, and M = {1}, we obtain complete correspon-
dence theorems for three factors (cf. Theorem B.I1] and Corollary [3.16]). Here,
the second case is a particular special case hinted at in [2]. In fact, the authors
state in [2] that it is very likely that this case is describable by a symmetric
version of a generalized Goursat’s Lemma, and our Corollary confirms this.

In a third special case, where one of the G; is the semidirect product of the
projection of H onto the i-th component and some other group, we also obtain
a partial correspondence theorem (Theorem B.17).

As demonstrated by Petrillo [I3], Goursat’s Lemma can readily be applied
to count subgroups of the product of two Abelian groups. Some refined formulas
were given by Tadrnauceanu [I6] and Toth [15]. For a direct product of an
arbitrary number of Abelian groups the number of subgroups has been exten-
sively studied. We refer to the monograph of Butler [3]. In fact there are also
explicit formulas for the counts of subgroups of Z,, x Z,, X Z, (see, for exam-
ple [I0]). In line with the papers and as an application of our characterization,
we derive an explicit formula to count the number of subdirect products of the
direct product of three symmetric groups Sy, X Sy, X Sp,.

THEOREM 1.2. Let ny > ng > ng > 2, ny > 5. For the number £(n1,n2,n3)
of subdirect products of Sy, X Sp, X Sp, we have £(nq1,ng,n3) =

()2 +6n1!'+6 ifng =ng =nz ¢ {6},

2082246 ifny =ng = ng = 6,

66 if ng = ng =4,

18 if ng € {3,4},n3 =3,

2886 if {n1,n2,nsl} = {6,6,m2}}, ma # 6,

2mq! + 6 if {ni,nans} = {mi,me,mef}, my # ma, 6 £ mp > 5,
6, otherwise.
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The finitely many cases not covered by the Theorem are listed in Table [l

TABLE 1. The numbers 4(n1,ng,n3) for ni,n2,n3 € {1,2,3,4}.

ni=41| 4 3 1211
n=331]2]1

4 1386 | 282 | 66 | 32 np =221
3 90 | 18 | 8

3 282 | 90 | 18 | 8 6|2
2 18] 6 |2

2 66 | 18 | 6 | 2 1 211
1 8 1

1 32 | 8 |21

It is also possible for example to count the normal subgroups of such direct
products. In fact, the normal subgroups can be also characterized for arbitrary
finite products of symmetric groups [12]. Let us finally also point to some liter-
ature concerning finiteness properties of groups [3, 4] which also contains some
structural results on 3-factor direct products (in particular on the case we call
2-factor surjective).

While the examples from [2] mentioned above stand in the way of a gen-
eral correspondence theorem based on data coming from certain subgroup lat-
tices of the factors and isomorphism between arising factor groups, the question
remains whether a reasonable general correspondence theorem can be based
on other suitable data.

2. Goursat’s Lemma

Let G = G1 x G2 X - -+ x Gy be a direct product of groups and let A < G be
a subgroup. We define for i € {1,...,t} the map 7; as the projection to the i-th
coordinate and we define the homomorphism ¥; : A — Gy X -+ X Gj—1 X G417 X
X Gyt (91,92, 090) = (9155 Gim15 Gig s -5 98)- G = Gy = -+ = Gy,
then the subgroup consisting of the elements {(g,9,...,9) | g € G1} is called
the diagonal subgroup.

A subgroup A < G of the direct product is said to be a subdirect product if
mi(A) = G, for all 1 < i <t. Goursat’s Lemma is a classic statement concerned
with the structure of subdirect products of direct products of two factors.

THEOREM 2.1 (Goursat’s Lemma). Let A < G x Gy = G be a subdirect
product and define N1 = {¢g1 € G1 | (91,1) € A} as well as No = {g2 € G2 |
(1,92) € A}. Then G1/N; is isomorphic to Go/Ns via an isomorphism ¢ for
which (g1, 92) € A if and only if ©(g1) = ga-
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This gives a natural homomorphism A — G1/N; X Go/N,y that is defined
as (gl,gg) d (glNl,ggNg) with image {(glNl,ggNg) | gO(gl) = gg}. Thus we
can view A as a fiber product (or pull back) of G; and G2 over G;/N;.

A typical application of the lemma, is a proof of the fact that subdirect prod-
ucts of non-Abelian finite simple groups are isomorphic to direct products of di-
agonal subgroups. Furthermore, the lemma can be applied to count (not neces-
sarily subdirect) subgroups of direct products. For this, the following well known
correspondence version of the lemma is more convenient.

THEOREM 2.2. There is a natural one-to-one correspondence between the sub-
groups of G1 x G2 and the tuples (Py, Pa, N1, No, ) for which for i € {1,2}
we have:

(1) N; 9P, <G, and
®
2) Pi/Ny 2 Py/Ns.

Here, we write G é G5 to denote that G; and G5 are isomorphic via an
isomorphism ¢. The subdirect products correspond to those tuples for which
P, = G, and P, = G5. Diagonal subgroups are those subdirect products that
also satisfy Ny = No = 1. Subproducts (i.e., direct products of a subgroup of G
with a subgroup of G3) are those for which Ny = P; and Ny = Ps.

3. Three factors

We now focus on 3-factor subdirect products. Before we investigate the general
case, we consider four examples of subdirect products.

In our first example, we consider groups that are 2-factor surjective. We say
A < Gy X Gy x Gg is 2-factor surjective if 1); is surjective for all 1 < ¢ < 3.
Note that the analogous definition of 1-factor surjectivity (i.e., all 7; are surjec-
tive) means then the same as being subdirect.

Similarly, we say A is 2-factor injective if 1); is injective for all 1 < ¢ < 3.
Note that this assumption is equivalent to saying that two components of an
element of A determine the third. Analogously 1-factor injective then means
that one component determines the other two.

3.1. Examples of 3-factor direct products
EXAMPLE 3.1. The subgroup of (G;)? comprised of the set {(g,9,9) | g € G1)}
is called the diagonal subgroup.

Tt is not difficult to see that all 1-factor injective subdirect products are iso-
morphic to a diagonal subgroup. As a second example, let G; be an Abelian
group. Then the group
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EXAMPLE 3.2. A= {(a,b,¢) € (G1)? | abe = 1} (3.1)

is a subdirect product of (G1)? that is 2-factor surjective and 2-factor injective.

It turns out that this is essentially the only type of group with these properties,
as argued by the following lemma.

LEMMA 3.3. Let G = G x Gy X G3 be a group and A a subdirect product
of G that is 2-factor surjective and 2-factor injective. Then G1, Gy and Gs are
isomorphic Abelian groups and A is isomorphic to the subgroup of G5 given
by {(a,b,c) € (G1)® | abc = 1}, which in turn is isomorphic to (G1)? as an
abstract group.

Proof. Let g; and g} be elements of G;. Then by 2-factor surjectivity there
are elements go and g3 such that (g1,92,1) € A and (¢7,1,93) € A. We thus

have that (g1, g2, 1)(9/1’1’93) = (g{", g2, 1). By 2-factor injectivity it follows that
gfl = g1 and thus G4 is Abelian.

For every g; € GGy there is exactly one element of the form (g1, g2,1) in A.
The map ¢ that sends every g; to the corresponding gs provides us with a map
from G; to Gs. By 2-factor surjectivity and 2-factor injectivity, this map is an
isomorphism from G; to Gs. Similarly, G; and G3 are isomorphic.

Finally, note that the map sending (g1, g2, g3) to (g1, cp_l(gz)_l,gl_lgp_l(gz))
is an isomorphism from A to {(a,b,c) € (G1)3 | abc = 1}. O

We now drop the requirement for the group to be 2-factor surjective. Our
next examples of 2-factor injective subdirect products will be non-Abelian.

ExXAMPLE 3.4. Let Gy = H x K be a semidirect product with an Abelian normal
subgroup H. Then

A = {(ak,bk,ck) € (G1)* | a,b,c € H, k € K, abc = 1} (3.2)
is a 2-factor injective subdirect product of (G1)3. To see this we verify that A is
closed under multiplication. Let d = (ak, bk, ck),d = (a'k',b'k', k') € A. Then

dd' = (ak,bk,ck)(d'K' b’k k)
= (aka'k', bkV'K' | ckd' k')
= (a(ka’'k™ ")k, b(kb' k™ )kK', c(kd' k™" )kK')
and a(ka'k~1)b(kb'k~Ye(kdk™1) = (abe)k(a'V'd )k~ = 1 implying dd’ € A.

So A < (G1)3. The fact that A is a subdirect product and 2-factor injective
follows directly from the definition.
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EXAMPLE 3.5. As a next example suppose G; = Hy X H3, Gy = H; x Hj
and G3 = H; x Hy with arbitrary finite groups H;. Then the group consisting

of the set
{((h2, h3), (h1, h3), (h1,h2)) | ki € H;}

is a 2-factor injective subdirect product of G1 x G5 x G3.

Finally, it is not difficult to construct subdirect products that are not 2-factor
injective by considering extensions of the factors.

EXAMPLE 3.6. Let A < G1 x Gy x G3 be a subcﬂlE‘ect product and x: é’: — G a
surjective homomorphism. Then {(g1, 92, 93) € G1 X G2 X G3|(k(g1), g2, 93) €A}
is a subdirect product of G; x G5 x GG3 that is not 2-factor injective if x is not
injective.

3.2. The structure of subgroups of 3-factor direct products

We now analyze the general case, showing that it must essentially be a com-
bination of the examples presented above. We first argue that we can focus our
attention on 2-factor injective subdirect products.

LEMMA 3.7. Let A < G1 X Gqx G3 be a subdirect product. Further define N; =
;i (ker(¢;)) fori € {1,2,3}. Then A" = A/(Ny x Ny x N3) is a 2-factor injective
subdirect product and A = {(g1, 92, 93) | (91N1,92N2, g3N3) € A'}.

Thus in the following suppose A is a 2-factor injective subdirect product
of G1 X Gz X Gg.

Let H; = ker(m;) N A ={(91,92,93) € A | g = 1}. Then H = (Hy, Ho, Hs) is
a normal subgroup of A.
LEMMA 3.8. Fori,j € {1,2,3} with i # j we have [H;, H;] = 1, that is, all
elements in H; commute with all elements in H;.

Proof. Without loss of generality assume that i=1 and j=2. For (1, g2,93) €
Hy and (hi,1,hs) in Hy we get that (1,gs, g3)13) = (1, g, g2*). By 2-factor
injectivity we conclude that g§3 = g3 and thus the two elements commute. [

Define M; := m;(Hy) N m;(H;), where j and k are chosen so that {i,j,k} =
{1,2,3}.

LEMMA 3.9. Let i, j,k be integers such that {i,j,k} = {1,2,3}. Then there is
a canonical isomorphism ¢ = @' - from 7;(H;) to m,(H;) that maps M; to M.

Proof. Assume without loss of generality that i = 1,5 = 2 and k& = 3. Define
a map @: 7T2(H1) — 7T3(H1) such that (1,92,(/)(92)_1) € A for all go € 7T2(H1).
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Such a map exists and is well defined since A is a 2-factor injective subdi-
rect product. Suppose go € My then (l,gz,cp(gg)_l) € A and there is a g;
such that (9179271) € A. Then (1392790(92)_1)(9179271)_1 = (91_1317Q0(g2)_1)
50 ¢(g2) € Ms. It follows by symmetry that all M; are isomorphic and that |,
is an isomorphism from Ms to Ms. (]

Note that the canonical isomorphisms behave well with respect to compo-
sition. In particular we have ¢’ , = (¢} ;)~" and ¢ ;|ar, © ¢i7i|Mk = oFilm;
This implies for example that the composition of the canonical isomorphism
from M7 to My and the canonical isomorphism from My to Mjz is exactly the
canonical isomorphism from M; to Ms. We can thus canonically identify the
subgroups My, My and M3 with a fixed subgroup M.

Moreover, we can canonically associate the elements in H; with the elements
in m9(H,) and with the elements in m3(H;) by associating (1, g2, ¢(g2) ') € Hy
with the element go € G5 and p(g2) in G3. Similarly we can associate ele-
ments (¢(g3)~',1,93) € Hy with g3 € G3 and ¢(g3) € Gi and also asso-
ciate (gl,<p(gl)_1, 1) € Hj3 with g1 € Gy and p(g1) € Ga.

THEOREM [1.7] (RESTATED). Let A < G x Go x G3 be a 2-factor injective
subdirect product. Then there is a normal subgroup H < A with [r;(A): mi(H)] =
[A: H] fori € {1,2,3} and H is isomorphic to a group of the following form:
there are three finite groups Hy, Ho, H3 that all have an Abelian subgroup M
contained in their center such that H is isomorphic to the factor group of
triples { ((ha, "), (ha, 1), (ha, Ry~ 1))} that satisfy hy, bl € Hy, bl ™" € M
and hy bt " hohl, " hahly ™ =1, by the normal subgroup

{((m1,m1), (ma,ms), (m3,m3)) | m; € M}.

Proof. As before define H; = ker(m;) = {(91,92,93) € A | g; = 1} and H =
(Hy, H2, H3). By Lemma [3.9] and the comment about the compatibility of the
isomorphisms between the groups we can canonically associate the elements
of M; with those of M;. Moreover we can assume that there is an Abelian
group M that is isomorphic to the intersection of every pair of {H;, Hy, H3}.
All elements of H commute with all elements in such an intersection.

If (g1, g2, g3) is an element of H, then each g; can be written as ci-bi_1 with ¢; €
C; = mi(H;y+1) and b; € B; = m;(H;12), where indices will always be taken
modulo 3. We can set (g1,92,93) = (c1b] ', caby ', c3b3h). Since ¢ € 71 (Ha) we
conclude that (c;',1,¢% 5(c1)) € H. We also have (by, ¢3 5(b1)~*,1) € H. This
implies that the product (g1,g2,93)(ci ", 1,93 5(c1)) (b1, 93 (b1 7"),1) is equal
to (1, CQbQ_l@iQ(bl_l), 03b3_1npi3(01)) € H.
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We thus see by looking at the third component that 03b3_1<pi3(01) € m3(Hp)
which implies that by~ ¢? 5(c1) € m3(H1) and thus by ™' ¢? 5(c1) € M3. By sym-
metry we conclude that

bi+1_190§—1,i+1(ci—1) € M1 for i € {1,2, 3} (33)

Looking at the second component, we also see that 02b2_1np§’72(b1_1) € mo(Hy)
and in turn we conclude that

_ -1 _
3,3 (cab2 o (01 7)) T = eabsT et 5(e).
Recalling that H; and H; commute for i # j, we thus conclude that

1 _ _
c3p5(ba) @l g(ci)bs ™ h 5ol 5 (b17Y)) = 1. (3.4)

Thus, since all involved isomorphisms are compatible we can reinterpret this

equation in M and we see that c3(by) ™" - c1(bg) ™! - ca(by) ™t = 1.
o1 A1 ~—1
Suppose that (g1, g2, 93) = (abl ,Caby , C3b3 ) is a second representa-

tion of the element (g1,92,93) of H. Then we have for the first component
that cAlel_l = ¢1b; ! and thus 01_151 = bl_lel € M or, in other words, ¢im, =
c1 and bAl_lml = b1_1 for some element m; € M. Similarly there are elements mo
and mg3 for the other components. We conclude that the map sending (g1, g2, g3)
to ((cl,bl_l), (ca,ba™h), (03,b3_1)) is a homomorphism from H to the group
described in the theorem.

It remains to show injectivity of this homomorphism. Thus, suppose that the
triple (g1, 92, g3) is mapped to the trivial element. This implies for the first com-
ponent of the image ((Cl, bl_l), (02, b2_1), (03, bg_l)) that (01, bl_l) = (ml, ml)
for some my implying that g; = m;m;~! = 1. Repeating the same argument for
the other components we see that the homomorphism is an isomorphism. O

3.3. Correspondence theorems

We now investigate the possibility of having a correspondence theorem in the
style of Theorem for 3 factors. As before, we can readily reduce to the case
of 2-factor injective subdirect products.

LEMMA 3.10. There is a natural one-to-one correspondence between subdirect
products of G1 X Go X G5 and the tuples (N1, No, N3, A"), where N; <G, for every
i€ {1,2,3} and A’ is a 2-factor injective subdirect product of G1 /Ny x Ga/Ny x
G3/Ns.

Proof. Let A < Gy x G2 xGs be a subdirect product. Choose N; = m; (ker(v);))

for i € {1,2,3} and let A" = A/(N7 x N2 x N3). Then N; < G, because A is a
subdirect product, and A’ is 2-factor injective by Lemma 3.7
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el 5 2 . Gs
~ 1-"7""7° 2 e
GZ Ey - T Es
\ P1lar /
— M- - My ~—

Ei = Wi(H) Cl 4P3|M\\\ /:02‘M B2
\ 3% /’ 0 2 //
/ \ f\ij\\ B M;) N //%
Ci Bi BN N

B3 Cs
M, NS
Es

1 |
Gs

Ficure 3.1. Subgroup diagram for the group G; (left), and connections
between the subgroups of the projections to the different components

(right).

Conversely, let N; < G; and let A’ be a 2-factor injective subdirect product
of G1/N1 x G2 /N2 x G3/N3. Then A = {(g1,92,93) | (91N1,92N2, gsN3) € A’}
is subdirect product of G; x G3 x G3. O

Suppose A is a 2-factor injective subdirect product. Then we can define for i €
{1,2,3} the groups H; = {(g1,92,93) € A | g; = 1} and with them the groups
B; = m;(H;y2) and C; = m;(H;11). As we will see, the canonical isomorphism
ot = cpijﬁl that exists by Lemma [3.9] can be extended to an isomorphism
from G;/C; to Gi+1/Bi+1. We would like to have a correspondence theorem
in the style of Theorem for 3 factors. For this, in principle, we would like

to relate the 2-factor injective subdirect products of G1, G2, G3 to the tuples
(Bh B27 B37 Cl) 027 037 P11, P2, @3)

that satisfy certain consistency properties. However, in general, neither is it clear
which consistency properties to choose so that every tuple corresponds to a sub-
direct product, nor do distinct subdirect products always correspond to distinct
tuples. Indeed, in [2] the authors describe two distinct Abelian subdirect prod-
ucts of the same group G X G2 x G3 for which the corresponding tuples agree.

In the light of that we content ourselves with studying two special cases,
namely those where A = H and those where M; = B; N C; = 1.
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THEOREM 3.11. There is a natural one-to-one correspondence between sub-
direct products of A < G1 x G x Gs which are 2-factor injective satisfying
A =H, and tuples (Bi, Be, B3, C1, Co, Cs, @1, w2, @3) for which for all
i € {1,2,3} (indices taken modulo 3) we have

Proof. Let A < G1xG32xG3 be asubdirect product. Define H; :={(g1, 92, 93) €
A | gi =1} for i € {1,2,3} and H = (Hy, Hy, H3). Suppose that H = A.
For i € {1,2,3}, define B; = 7TZ‘(H7;+2) and C; = 7T1'(H7;+1). Clearly Bz,Cz <G,
By Lemma B.8 we get that [B;,C;] = 1 and B;C; = m;(H). The assumption
A = H implies B;C; = G;. By Lemma[3.9the groups B; and C;, 1 are isomorphic
via an isomorphism ¢; = npﬁjﬁl, which maps M; = B;NC; to M;+1 = B;11NCiy1.
Finally, Property B.I1l follows directly from the comment below Lemma [3.9
This gives us the tuple (By, B, Bs, C1, Cs, Cs3, 1, @2, p3) with the desired
properties.

On the other hand, suppose we are given (B, By, B3, C1,Cs, Cs, 1,02, ¢3)
with the desired properties. Let M; = B; N C;. Define A to be the set of triples
(91, 92,93) € G1><G2><G3 that satlsfy gZ = czb for b; € B;,c; € Cy, ¢ia1 M1 =
(pz(szZ) and Cg(p2(b2) (Cl)bg * P2 (02@1 (bl )) =1.

Fori € {1,2,3} suppose g; = ¢;b; ' = ¢/b,~'. Then there is some m; € M; with
b; = bim; and ¢; = ¢;m;. Hence, b; M; = b, M, and ¢;M; = c,M;. Furthermore,
we have

-1 -1 -1
chipa(by) " 03 (s - n (chpr(8 )
_ —1 bom= L S| 1\ (bam -1 -1 bim L -1
= cgmy 2 (bamy ') g (comy ) (bsmg ) -2 camy or((bimy )
= capa(ba) " 05 (c)bs T - o (02@1(191_1)),
so the membership in A is independent from the representation of g; € G;. Also,

it is easy to check that A is closed under multiplication because [B;,C;]=1.
The group A is a subdirect product, since for g; = clbl_1 we have that

(crbrh, o1 (b7 )b, 05 (c1)a (b)) € A,
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and it can be checked that the group is 2-factor injective. Define
H; ={(91,92,93) € A|gi=1} for i€{1,2,3} and H = (Hy, Hs, H3).

Then B; = m;(H;y2) and C; = 7;(H;y1), which means that H = A by Prop-
erty B.IT and Theorem [Tl Finally, it can be checked that ¢; = ¢} ?;.

It remains to show that for each 2-factor injective subdirect product A <
G1 X Go x G3 with A = H, the group A is of the form described above. But this

follows from Theorem [[1] Equation (B3] and (3.4). O

The previous theorem shows that for the subdirect products with A = H we
can devise a correspondence theorem. As a second case, on the other end of he
spectrum, we can also devise a correspondence theorem if the Abelian part that
interlinks the three components is trivial. In fact this case corresponds to the case
discussed by Bauer, Sen, and Zvengrowski [2, 5.1 Remark], who already
suspect that a theorem like the previous one can be obtained. We remark that
Example from the previous section is of this form. In fact, we can already
conclude from Theorem [3.11] that for every group A, where the Abelian part
interlinking the components is trivial, the group H essentially has the form
of Example

DEFINITION 3.12. Let A be a subdirect product of G x G2 x G3. We say A is
degenerate if m; (ker(mﬂ)) N, (ker(m+2)) = (ker(wi)) (i.e., M; = 1) for some,
and thus every, ¢ € {1,2,3}.

LEMMA 3.13. Fori <€ {1,2,3} let B;,C; < G, such that

Furthermore assume G;/C; £ Gi+1/B;i11 and suppose
cpz(BlC,) = Ci+1Bi+1 and (,03((,02[((,01(913101)[))2 nglCl fO’I’ all g1 € Gl.
Define
A ={(g91,92,93) € G1 x G2 x G3 | 9i(9:C;) = gix1Bit1}. (3.5)
Then m;(A) = G; and A is a degenerate 2-factor injective subdirect product.

Proof. We first show, that A is closed under multiplication. For this let us
assume that (g1,92,93), (91,92, 95) € A. Then ©;(9:9;Ci) = ¢i(9:Ci)pi(9;Ci) =
gi+lg£+1Bi+1 for all 7 € {1,2,3}, SO (glgll,gggé,g?,gé) € A. Let E; = <Bl,01>
and pick e; € Ej. The element e; can uniquely be written as e; = bicy
with by € Bj,c; € Cy. For each i € {1,2,3} define ¢: B; — C;y; with
@:(bz) = Cit+1 for the unique Cit1 € Ci+1 with @z(bzcz) = Ci+1Bi+1- Then
(brcr, bagi (br), (np§)_1(cl)<p§(b2)) € A. So F; < m1(A). The argument for the
other components is analogous. Now let nl,...,n} be a transversal of Ey in Gj.
Let n?By = ¢1(n}Cy) and n3Cs = o3 (ntBy) for i € {1,...,t}. Then
¢2(n?Cy) C n3E3 and hence there is some b? € By with (po(n2b7C3) = n’Bs.
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So (n},n?b?,n3) € A and G; < m1(A).

It remains to prove that A is 2-factor injective. Let (g1,92,93) € A with
go = g3 = 1. Then g; € Bj, because @3(03) = B; = 1By, and ¢g; € Cf,
because ¢1(g1C1) = g2B2 = Bs. So g1 = 1. Again, the argument for the other

components is analogous. ([l

LEMMA 3.14. Let A be a 2-factor injective subdirect product of G1 x G2 x G3.
Furthermore, let H; = {(¢1,92,93) € A | g; = 1} fori € {1,2,3} and H =
(Hy, Ho, H3). Define

Bi = 7TZ‘(H1'+2) and Ci = 7TZ‘(H1'+1).

Suppose
B;,NnC;=1 forall iec{1,2,3}.

Pi
Then there are canonical isomorphisms p1, p2, @3 such that G;/C; = G;11/Biy1
and @z(BzCz) = Ci—i—lBi—i-l such that @3(@2(@1(913101))) = nglCl fO’I’ all
g1 € G1. Furthermore A is given by Fquation (3.2).

Proof. For i € {1,2,3} define a homomorphism ¢;: G;/C; — Git1/Bit+1
by setting ¢;(¢;:C;) = ¢i+1Bit+1 if (g1,92,93) € A for some g; € G;.
We first have to show that ¢; is well-defined. Without loss of generality con-
sider ¢ = 1 and let (g1,92,93), (91,95, 95) € A with ¢g1C; = ¢{C;. Then there
is a (c,1,hy) € A with gjc = g;. We obtain (g}, g5, 95)(c, 1, h2)(91, 92,93) "+ =
(1,9595 ", g4) for some g € G3 and hence, goBy = g4Ba. So ¢; is well-defined.
Since A is a subdirect product, ; is a surjective homomorphism. Suppose
<p1(glCl) = By. Then (glcl,bz,gg) € A for some ¢, € C1,by € By and g3 € Gs.
Also there is hy € G3 with (1,b,h3) € A and hence, (gic1,1,93h57) € A
implying that g; € Cy. So o
Gi/C; = Gip1/Bita.

For every by € Bj there is a ¢ € (5 with (bl,Cz,l) € A and npl(blCl) =
caBy € CyBsy. By symmetry it follows that Lpz(BZC,) = Ci11Bi11 for all 1 €
{1,2,3}. Now, let A’ be the group defined in Equation ([3.3]). Clearly, A < A’
by the definition of ¢; for i € {1,2,3}. So let (¢1,45,95) € A’. Since A is
subdirect there is a (g}, g2,93) € A with goBy = ¢g5Bs. So we can assume that
g2 = g5. But then, by 2-factor injectivity of A’, we get that g3 = g5.

Finally for (g1, g2,93) € A we have that

©0i(9:BiC;) = ¢i(9:Ci)pi(BiC;) = gix1Cit1Bit1 = gi+1Biy1Ciy1.
So
902(901(913101)) = cpgl(g1BlCl) for all ¢, € Gy.
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THEOREM 3.15. There is a natural one-to-one correspondence between degen-
erate 2-factor injective subdirect products of the product G1 x Go X G3 and the tu-
ples of the form (B, Ba, B3, C1,Cs, Cs, 01, 2, 3) for which for all i € {1,2,3}
(indices taken modulo 3) we have

(1) B;,C; <Gy,

[Bza Cz] = ]-;

Proof. The statement follows from Theorem [Tl Lemma and314 O

By combining Theorem B.I5] with Lemma [3.1Q] we obtain the following corre-
spondence result for degenerate subdirect products.

COROLLARY 3.16. There is a natural one-to-one correspondence between de-
generate subdirect products of G1 x Go x Gs and the tuples that are of the
form (N1, No, N3, By, Ba, B3, C1,C4, Cs, 1, @2, p3) for which for alli € {1,2,3}
(indices taken modulo 3) we have

(1) N; Gy,

2) B;,C; 4 G;/N;,
3) BNC; =1,

4) [B;, Ci] =1,

Ppi
(Gi/Ni)/Ci = (Giy1/Niy1)/Bit1,
©0i(B;C;) = Ci11Bi41,
o2 (p1(g1B1Ch)) = ©3 (g1 B1C1) for all g1 € G1/Ny.

We conclude with the particular case in which 7;(A) has a complement in G;
for some i € {1,2,3}. Example 3.4 described in the previous section is of this
form. For this case we only obtain an injection to tuples, rather than a one-to-
-one correspondence. We will exploit having this injection in the next section for
small special cases in our analysis of subdirect products of symmetric groups.

5
6

(
(
(
(
(
(7

~— — ~— ~— ~— ~—

THEOREM 3.17. Suppose Gy = FE1 x K is a semidirect product. There is an
injective mapping from the set of 2-factor injective subdirect products A of G1 X

G2 x G3 with m(H) = Ey and By = Cy to the tuples (k,t), where G ~ Gs
and v is an automorphism of G1 that fizes K as a set. Moreover, if (k,t) is in the
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image of this mapping, then (k,.") is also in the image for every automorphism
/' of Gy that fizres K as a set.

Proof. Let A be a 2-factor injective subdirect product of G; x G x GG3 satis-
fylng 7T1(H) = E1 and Bl = Cl.

For every element go € G there is exactly one element (k1,g2,935) € A
with k1 € K. We obtain a well defined isomorphism « from G5 to Gs.

Suppose now that A’ is a second 2-factor injective subdirect product G x
G2 x G3 satisfying m (H) = E; and By = C; for which we obtain the same
isomorphism k. Then we can construct an automorphism ¢ of G; as follows.

For every g, € G there is exactly one (k,g2,£(g2)) € A. There is also an
element of the form (K, go2,r(g2)) € A’. We define t: K — K so that it
maps k to k/, this gives us an automorphism tx of K. For every e € F; there is
an element (e, g2, 1) € A. There is also an element (¢’, g2, 1) € A’ and define the
map tg: F1 — E; by mapping e to ¢’. Then the map tg is an automorphism
of E.

We claim that the map that sends e - k to tg(e) - tx (k) is an automorphism
of G. To see this suppose a = (e, h,1)(k, g,£(g)) and @ = (e, h,1)(k, 7, 5(7))
are two elements in A. Then t(a) = (tg(e1),h, 1) (i (k). g,k(g)) and (@) =
(ce(er),h,1) (i (k), g, k(7)) are elements of A'.

For the products we obtain that

aa = (erer®, W, 1) (KE, 7, 5(9)5(7)
and

a)i(@) = (vplen)n(@)<®,hi 1) (1) (R), 97, 5(9)w(3))

To conclude that ¢ is an isomorphism we now only need to argue that ¢ (e7)"* %)
is equal to tp(e7"). However, this is the case since (e7%,h9,1) € A as well
as (LE(el)LK(k), h9, 1) e A

Now suppose that A is a subdirect product with m(H) = By = C; and
let k: Go — G3 be defined as above. Let ¢ be an automorphism of G; that
fixes K, then A" = {(«(91),92,93) | (91,92,93) € A} is a subdirect product
of G1 x Gy x G3. If we apply the above construction for the automorphism
of G1, we reobtain ¢. This shows that the construction of ¢ from A’ and the
construction of A’ from ¢ are inverses to one another. O

Note that in the theorem, the isomorphism k associated with a subdirect
product is canonical (it only depends on the choice of K) but the choice of ¢ is
not.
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4. Subdirect products of two or three symmetric groups

In this section we apply the correspondence theorems to count the subdi-
rect products of the direct product of three symmetric groups. We first reduce
this problem to counting the number of 2-factor injective subdirect products.
For finite groups G, ..., Gy let £(G1,...,G}) be the number of subdirect prod-
ucts of G1 x -+ X Gj. Furthermore, for k = 3, we denote by 2.inj(G1,...,G3)
the number of 2-factor injective subdirect products.

LEMMA 4.1. Let Gy, G2, G3 be finite non-trivial groups. Then
U(G1,G2,G3)= Z l2.inj(G1/N1, G2 /N2, G3/N3)

N; QG;

= K(Gl, Gz) +£(G2, G3) +£(G1, G3) -2

+ Z l2.inj(G1/N1,G2 /N2, G3/N3).

N,; <G,

Proof. The first equality follows from the correspondence described in Lemma
BI0 The second equality follows by noting that the direct product is counted
three times, so 2 has to be subtracted. O

We are interested in the number ¢(nq,ng,ng) := €(Sh,, Sn,, Sns), where Sy,
is the symmetric group of a set with n; elements. Recall, that every factor
group of a symmetric group is isomorphic to a symmetric group over another
set. Thus, by the previous lemma, it suffices to compute the numbers £(ny,n2)
and fg_inj (nl, na, ng) = gz-inj (Sn1 s Sn2, Sng)

We start by analyzing the situation for two factors.

LEMMA 4.2. Let ny,ny > 2. For the number {(n1,n2) of subdirect products
of Sn, % Sp, we have

2 if n1 #ng and {ni,na} # {3,4},
8 if {n1,n2} = {3,4},
U, m) = niy! + 2 ifni =ng ¢ {2,4,6},
2 if ng =ng =2,
ny! +8 if ng = ng =4,
2n1!+2  ifny =ngy = 6.

Proof. We assume for our considerations that ny >ns. Let (S, , Sn,, N1, N2, ¢)
be a tuple corresponding to a subdirect product via the correspondence of The-
orem [2.2
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e If Ny =1, then N3 = 1 and ny = ny. The number of isomorphisms from S,,,

to Sy, is
1 if ny =2,
i(n1) = ¢ 2n! ifny =6,
n! otherwise.

This corresponds to the number of possible choices for ¢. (These are the
diagonal subgroups.)

o If Ny = S5,,,, then Ny = S,,,. There is only one subgroup of this type.
(This is the direct product).

o If Ny = A,, (n1 > 3), then Ny = A,,,, since the only index 2 subgroup
that a symmetric group can have is the alternating group. There is only
one subgroup of this type.

If ny # 4, then Ny € {1, A,,,, S, }, and we already considered all these cases.
Suppose now that ny = 4 and ny < 4. Then Ny € {1,V, A,,,, S, }, where V is
the Klein-four-group. Three of the cases are considered above.

e If Ny =V, then Ny =V and ny =4 or Ny = 1 and no = 3. In either case
there are 6 options for . 0

In the following we use “{” and “}” to denote multisets.

LEMMA 4.3. Let ni,n2,n3 > 2. For the number {5 inj(n1,n2,n3) of 2-factor
injective subdirect products of Sy, X Sp, X Sp, we have

(n1!)2 ’Lf ny = nNg = N3 ¢ {2,3,4, 6},
2 ifn1:n2:n3:2,
n1!)2—|—2n1! Z'fnlzng:ng:?),

(
(n1!)2+6n1! zfm = N2 = N3 :4,
(

lo_inj(n1,n2,n3) = { (2n1!)? if n1 = ng = ng =6,
1440 if {n1,n2,n3} = {2,6,6},
n! if {n1,n2,n3} = {2,n,n}, for n¢{2,6},
144 if {n1,n2,n3} = {3,4,4%,
0, otherwise.

Proof. Suppose without loss of generality that n; > ny > ng. Let A <
Sny X Sp, X Sp, be a 2-factor injective subdirect product. Define Hy, Ho, H3, H
as in Section B2 Let E; = m;(H). Then H <A and E; <5, for i € {1,2,3}.
By Theorem [} it holds that S, /Fy = S,,/FE2 = S,,/FEs. Also, by Theorem
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[BIT] for H we get a canonical tuple (By, B, B3, C1,Ca, Cs, 91, 2, p3) with sub-
groups By, C; < E;, such that B; N C; is Abelian and B;C; = E;. We obtain the
following options.

oIfElzl,thennl:n2:ngandE2:Eg,:l.WehaveBi:Ci:l

for i € {1,2,3}. In this case H =1 and A is degenerate. By Theorem .15
there are i(n1)? groups of this type, where i(n1) is the number of isomor-
phisms from S, to S,,. This corresponds to the choices for ¢; and 5.
For @3 we get 03" = 1 0 ¢

If El = V, then ny = 4 and Sn1 /E1 = Sg. In this case {Tll, na, n3} - {3, 4}
Let us first consider the case that n3 = 3. Then B3 = C3 = E5 = 1 and we
can thus apply Theorem B.15 By LemmaB.9we conclude that C; = By =1
and E; = B; = Cy = V. Using the correspondence given in Theorem
the number of such groups equals the number of pairs (¢1, ¢2), where ¢,
is an isomorphism from Sy to Sy and 5 is an isomorphism from Ss to Ss.
There are 144 such pairs.

Next let us consider the case n; = no = ng = 4. This implies that B; =
C; = E; =V foralli € {1,2,3}. Since Sy is the semidirect product V' x Ss,
we can apply Theorem BIT7 For every isomorphism x from S, = Sy
to Sp, = S4 we can find a subdirect product realizing x by setting A =
{(k,g,k(9)) | g € Sa,k € S3nNgV}U{(a,a"t,1) | a € V}). Thus, by
Theorem B.17] the number of such subdirect products is equal to the num-
ber of pairs (k,¢), where £ is an isomorphism from Sy to Sy and ¢ is an
automorphism of Sy that fixes V' as a set. There are 6n1! = 144 such pairs.
If By = A, (and n; > 3), then Ey = A,, and E3 = A,,,. By applying
Theorem 31Tl to H it follows that either ny = no = n3 = 3 or n; = ny >
ng = 2. In the former case B; = C; = A3 = Z3 for i € {1,2,3} and in total
there are 2ny! = 12 groups of this type by Theorem B.IT (by the same
arguments as in the previous case). In the latter case By = Cy = A,,, and
Cy = By = B3 = (C3 = 1. So A is degenerate and by Theorem there
are in total i(ny)-i(2) = i(n1) groups of this type, where again i(n;) is the
number of isomorphisms from S, to S, .

If £y =85,,, then Ey = S5,, and E5 = S,,,. In this case H = A. Using the
correspondence described in Theorem B.11] we get that ny = ny = nz =2
and B; = C; = Sy for i € {1,2,3}. Since there is only one isomorphism
from S5 to S there is exactly one option in this case, namely the group
given in Example for G; = 5s. =

Proof of Theorem Using Lemma [.1] and B3] we get
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Co-inj(n1,m1,m1) + 3loinj(2,n1,m1)  if 0y = ny = na,

gz-inj (2, 4, 4) + fg_inj (2, 3, 3) if ng =nz =4,
g2—inj (23 3; 3) if No € {3, 4}, ng = 3,
g2—inj (2am17m1) if{{nl,nQ,ng,} = {{m1;m17m2}}
for myi # ma, m1 > 5,
0, otherwise.
Then apply Lemmas and O

Recall that the finitely many cases not covered by the Theorem are listed
in Table [l These numbers were calculated using Lemmas HET] and [£3
However, these numbers were also double-checked with the computer algebra
system GAP [6].
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