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REAL FUNCTIONS AND THE EXTENSION

OF GENERALIZED PROBABILITY MEASURES

Jana Havĺıčková

ABSTRACT. In the classical probability, as well as in the fuzzy probability the-
ory, random events and probability measures are modelled by functions into the
closed unit interval [0,1]. Using elementary methods of category theory, we present
a classification of the extensions of generalized probability measures (probability
measures and integrals with respect to probability measures) from a suitable

class of generalized random events to a larger class having some additional (alge-
braic and/or topological) properties. The classification puts into a perspective the
classical and some recent constructions related to the extension of sequentially
continuous functions.

1. Introduction

Sixty years ago, J. N o v á k initiated a topological approach to the extension
of probability measures from a field of subsets A of a set X over the gener-
ated σ-field σ(A). He pointed out a similarity to the construction of Čech-Stone
compactification and developed a theory of sequential envelopes. It is a general
theory of the extension of suitable classes of sequentially continuous functions on
a sequentially dense subspace over the whole space ([4]–[6], [10]–[14], [19]–[27]).

The category ID of D-posets of fuzzy sets and sequentially continuous D-ho-
momorphisms ([28]) provides a natural background in which various classes
of functions into [0,1] are objects and generalized probability measures, observ-
ables (dual maps to generalized random variables) are morphisms, and the ex-
tension of sequentially continuous maps is intrinsic (categorical), for example,
both the extension of measures and the transition from measures to integrals
can be viewed as an epireflection ([8], [9], [15]).
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Using elementary methods of category theory ([1]), we present a classifica-
tion of the extensions of generalized probability measures (probability measures
and integrals with respect to probability measures, states) from a suitable class
of generalized random events to a larger class having some additional (alge-
braic and/or topological) properties. The classification puts into a perspective
the classical and some recent constructions related to the extension of sequen-
tially continuous functions and, in particular, measures ([7], [18], [22], [31]).

An interested reader can find more information about generalized probability
in [3], [15], [16], [32] and in references therein.

2. Preliminaries: measure and integral

Let A be a field of subsets of a set X, let P(X) be the set of all subsets of X,
let P(A) be the set of all probability measures on A, and let p ∈ P(A). For each
B ⊆ X put

p∗(B) = inf

{ ∞∑
i=1

p(Ai); B ⊆ ∪∞
i=1Ai, Ai ∈ A

}
.

The resulting map p∗ : P(X) −→ I is called induced outer measure. A set
M ⊆ X is said to be p-measurable whenever for each B ⊆ X we have

p∗(B) = p∗(B ∩M ) + p∗(B ∩M c),

where M c = X \M . Denote Mp the set of all p-measurable subsets of X.

We sum up some facts about p-measurable sets (cf. [22], [31]).

������� 2.1� Let A be a field of subsets of a set X and let p be a probability
measure on A. Then

(i) Mp is a σ-field, A ⊆ Mp and if B ⊆ X and p∗(B) = 0, then B ∈ Mp;

(ii) Define p(B) = p∗(B), B ∈ Mp. Then p is a probability measure on Mp

and it is an extension of p over Mp;

(iii) Mp is the largest σ-field of subsets of X which contains A and on which p∗

defines a probability measure;

(iv) If B ⊆ X, then there exists A ∈ σ(A) ⊆ Mp such that B ⊆ A and
p∗(B) = p(A).

Denote
MA =

⋂
p∈P(A)

Mp.

Clearly, M ⊆ X belongs to MA if and only if it is p-measurable for all p ∈ P(A),
σ(A) ⊆ MA, and MA is a σ-field of subsets of the set X.

It is known ([21], [23]) that in general we have σ(A) �= MA.
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��	
�
�
�� 2.2� Let A be a field of subsets of a set X. Elements of MA are
said to be absolutely A-measurable sets.

Example 2.3. Let A be the set of all finite subsets of the closed unit interval
I = [0, 1] and their complements in I. Define a map p : A −→ I as follows: if
A ∈ A is finite, then p(A) = 0, and otherwise, p(A) = 1. Then A is a field
of subsets of I and p is a probability measure on A. Denote I = {0, 1}I the
σ-field of all subsets of I and B the σ-field of all Borel subsets of I.

(i) The elements of σ(A) are countable subsets of I and their complements
in I, hence the σ-field B is much larger than the σ-field σ(A).

(ii) If M ⊂ I and M /∈ σ(A), then both M and M c are uncountable, and

1 = p∗(I) �= p∗(I ∩M ) + p∗(I ∩M c) = 1 + 1.

Thus M is not p-measurable, and hence σ(A) = Mp = MA.

(iii) Denote q the restriction of the Lebesgue measure to B. Then q is an ex-
tension of p from A to B. The sets in B \ σ(A) are “out of reach” of the sets
in A and the values q(A), A ∈ B \ σ(A), are “out of reach” of the values p(A),
A ∈ A.

��	
�
�
�� 2.4� Let A be a field of subsets of a set X and let p be a probability
measure on A. Let B be a field of subsets of a set X such that A ⊆ B and let q
be a probability measure on B such that p(A) = q(A) for all A ∈ A. If

q(B) = inf

{ ∞∑
i=1

p(Ai); B ⊆ ∪∞
i=1Ai, Ai ∈ A

}

for all B ∈ B, then q is said to be a measurable extension of p.

Let q be a measurable extension of p ∈ P(A) on A over MA. Clearly, for all
M ∈ MA we have q(M ) = p∗(M ).

3. D-posets of fuzzy sets

D-posets have been introduced in [17] in order to model events in quantum
probability. They generalize Boolean algebras, MV -algebras and other proba-
bility domains, and provide a category in which observables and states become
morphisms ([2], [8]). Recall that a D-poset is a partially ordered set with the
greatest element 1X , the least element 0X , and a partial binary operation called
difference, such that a 	 b is defined if and only if b ≤ a, and the following
axioms are assumed:

(D1) a	 0X = a for each a ∈ X;

(D2) If c ≤ b ≤ a, then a	 b ≤ a	 c and (a	 c) 	 (a	 b) = b	 c.
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A canonical example is the interval [0, 1] = I (linearly ordered, a 	 b = a − b
whenever b ≤ a). Fundamental to applications ([15], [28]) are D-posets of fuzzy
sets, i.e., systems X ⊆ IX carrying the coordinatewise partial order, coordinate-
wise convergence of sequences, containing the top and bottom elements of IX,
and closed with respect to the partial operation difference defined coordinate-
wise. We always assume that X is reduced, i.e., for x, y ∈ X, x �= y, there exists
u ∈ X such that u(x) �= u(y). Denote ID the category having (reduced) D-posets
of fuzzy sets as objects and having sequentially continuous D-homomorphisms
(preserving constants, order, and the difference) as morphisms. Objects of ID
are subobjects of the powers IX.

Recall that each D-poset can be reorganized into an effect algebra and the
two structures are equivalent (cf. [3], [29]).

Concerning the undefined notions, the reader is referred to [1] and [3].

Let(X,A, p) be a classical probability space. Denote M(A) the system of all
measurable functions into [0, 1] = I. Then A (as indicator functions) and M(A)
are D-posets of fuzzy sets, p and the probability integral p̃(f) =

∫
f dp are

sequentially continuous D-homomorphisms (remember the Lebesgue Dominated
Convergence Theorem). What is more important and surprising, the following
assertions hold (cf. [8]).

������� 3.1�

(i) Let p be a sequentially continuous D-homomorphism of A into I. Then p
is a probability measure.

(ii) Let h be a sequentially continuous D-homomorphisms of M(A) into I.
Then h is a probability integral, i.e., there exists a probability measure p
on A such that h(f) =

∫
f dp, f ∈ M(A).

(iii) Let (Y,B) be a measurable space. Then each sequentially continuous D-ho-
momorphism on B into M(A) can be uniquely extended to a sequentially
continuous D-homomorphism on M(B) into M(A).

Observe that if {a} is a singleton and T =
{∅, {a}} is the corresponding

trivial field of all subsets of {a}, then I and M(T) coincide.

4. Classification of extensions

Let X ,Y ⊆ IX be D-posets of fuzzy sets, i.e., objects of ID. If X ⊆ Y, then Y
is said to be an extension of X . For example, let A ⊆ {0, 1}X be a field of sets,
then σ(A), MA, and M(

σ(A)
)

are canonical extensions of A.

In this section, we study extensions of D-posets of fuzzy sets. Motivated by
the canonical extensions, we introduce a classification of extensions in terms
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of subcategories of ID to which the extension belongs and in terms of some
additional properties of the extension.

For u, v ∈ IX, define operations ∧ and ∨ coordinatewise: (u ∧ v)(x) = u(x) ∧
v(x) and (u ∨ v)(x) = u(x) ∨ v(x), x ∈ X. D-posets of fuzzy sets closed with
respect to ∧ and ∨ play an important role in generalized probability. Indeed,
if a D-poset of fuzzy sets X ⊆ IX is closed with respect to ∧ and ∨, then
(cf. [15]) X is a bold algebra, i.e., an MV -algebra representable by fuzzy sets.
Recall that MV -algebras generalize Boolean algebras and play an important
role in manyvalued logic and generalized probability (cf. [30]). A bold algebra
X ⊆ IX which is sequentially closed in IX is said to be a �Lukasiewicz tribe.
Observe that fields of sets are bold algebras and σ-fields and measurable I-valued
functions are �Lukasiewicz tribes. Further, if X ⊆ IX is a �Lukasiewicz tribe, then
there exists a σ-field A ⊆ {0, 1}X such that A ⊆ X ⊆ M(A) and X = M(A)
whenever X contains all constant I-valued functions (cf. [31]).

Let X ⊆ IX be a D-poset of fuzzy sets. Denote S(X ) the set of all sequentially
continuous D-homomorphisms of X into I; the elements of S(X ) are called
states. Let A ⊆ {0, 1}X be a field of subsets of X. Denote P(A) the set of all
probability measures on A. It is known (cf. [8]) that S(A) = P(A).

In our classification we will consider several (full) subcategories of ID: the
objects of FSD are fields of sets, the objects of CFSD are σ-fields of sets, the
objects of ACFSD are σ-fields of sets of the form MA (absolutely measurable
sets), the objects of BID are bold algebras, the objects of CBID are �Lukasiewicz
tribes, the objects of CGBID are D-posets od fuzzy sets of the form M(A)
where A is a σ-field of subsets.

��	
�
�
�� 4.1� Let X ,Y ⊆ IX be D-posets of fuzzy sets, X ⊆ Y. Let H(X )
be a subset of S(X ). If for each s ∈ H(X ) there exists t ∈ S(Y) such that
s(u) = t(u) for all u ∈ X , then X is said to be H(X )-embedded in Y.

Example 4.2. Let A ⊆ {0, 1}X be a field of sets and let σ(A) be the generated
σ-field. Then σ(A) as an extension has several interesting properties (cf. [6], [7],
[8], [27]).

(i) A = σ(A) if and only if A is sequentially closed in IX (recall that
A = limn→∞ An in IX if A = lim supAn = lim inf An, where lim supAn =⋂∞

k=1

⋃∞
n=k An and lim inf An =

⋃∞
k=1

⋂∞
n=k An or, equivalently, the sequence

{χAn
}∞n=1 of indicator functions converges coordinatewise to the indicator func-

tion χA), i.e., if and only if A is a �Lukasiewicz tribe.

(ii) A is P(A)-embedded in σ(A).

(iii) A is sequentially dense in σ(A) and σ(A) is the smallest of all se-
quentially closed fields of subsets of X containing A. Indeed, for a system B
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of subsets of X define cl(B) ⊆ P(X) as the set of all sequential limits of se-
quences of sets in B and, inductively, for each ordinal number α ≤ ω1 define

cl0(B) = B, clα(B) = cl
(
clα−1(B)

)
for an isolated ordinal number,

clα(B) = cl

⎛
⎝ ⋃

β<α

clβ(B)

⎞
⎠

for a limit ordinal number; it is known (cf. [27]) that each clα is a closure operator
(need not be idempotent), clω1 is a topological closure operator (topology), each
clα(A) is a field of subsets of X, and clω1(A) = σ(A). If clα(B) = C for some
ordinal number α, then B is said to be sequentially dense in C.

(iv) σ(A) is the largest of all fields of subsets of X in which A is P(A)-
-embedded and sequentially dense. Observe that A is P(A)-embedded (see (ii))
and sequentially dense (see (iii)) in σ(A). Since σ(A) is sequentially closed
(see (i)), there is no larger field of subsets of X in which A is sequentially
dense.

(v) Each probability measure p ∈ P(A) can be uniquely extended to a prob-
ability measure p ∈ P(

σ(A)
)
. Indeed (see (ii)), let p ∈ P(

σ(A)
)

be an extension

of p. If q ∈ P(
σ(A)

)
is an extension of p, then

{
A ∈ σ(A); p(A) = q(A)

}
contains

A and it is sequentially closed in IX (two sequentially continuous functions co-
incide on a sequentially closed domain—possibly empty, see [26]). Finally, σ(A)
is the smallest sequentially closed system of subsets of X containing A (see (ii)).

(vi) Let h be a sequentially continuous D-homomorphism of A into a σ-field
B ⊆ {0, 1}Y. Then h can be uniquely extended to a sequentially continuous
D-homomorphism hσ of σ(A) into B. Consequently, CFSD is an epireflective
subcategory of FSD (cf. [6]).

Example 4.3. Let A ⊆ {0, 1}X be a field of sets and let MA be the σ-field
of absolutely A-measurable subsets of X. Then

(i) MA is the largest σ-field of subsets of X in which A is P(A)-embedded
(see (iii) in Theorem 2.1);

(ii) Each probability measure p ∈ P(A) has a unique measurable exten-
sion p ∈ P(MA) (see the end of Section 2).

��	
�
�
�� 4.4� Let X ⊆ IX be a D-poset of fuzzy sets and let n be a natural
number, n > 1. Assume that for each u ∈ X , u �= 0, there exists an element
u(n) ∈ X such that 0 < u(n) < u and, for each k = 1, 2, . . . , n − 1, we can
subtract from u successively k-times u(n) and the result is greater or equal
to u(n), and if we subtract from u successively n-times u(n), then the result
is 0. Then X is said to be divisible by n. If X is divisible by n for each natural
number n, n > 1, then X is said to be divisible.
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Example 4.5. Let A ⊆ {0, 1}X be a field of sets and let σ(A) be the gener-
ated σ-field. Consider the D-poset M(

σ(A)
)

of all measurable functions ranging
in [0, 1] as an extension of A. Then

(i) M(
σ(A)

)
is a divisible extension of A;

(ii) M(
σ(A)

)
is the smallest of all divisible extensions of A which are bold

algebras sequentially closed in IX. Indeed, let X ⊆ IX be a divisible extension
of A and assume that X is a bold algebra sequentially closed in IX. Then X is
a �Lukasiewicz tribe and contains all constant functions ranging in I. It is known
(cf. [15], [31]), that if X ⊆ IX is a �Lukasiewicz tribe, then there exists a unique
σ-field B ⊆ {0, 1}X such that B ⊆ X ⊆ M(B) and if X contains all constant
functions ranging in I, then X = M(B). From A ⊆ X = M(B) it follows that

A ⊆ σ(A) ⊆ B ⊆ X and M(
σ(A)

) ⊆ X = M(B);

(iii) A is P(A)-embedded in M(
σ(A)

)
. The assertion follows from the fact

that if p ∈ P(A), then the probability integral with respect to p is a sequentially
continuous D-homomorphism on M(

σ(A)
)

into I;

(iv) Each probability measure p ∈ P(A) can be uniquely extended to
a sequentially continuous D-homomorphism of M(

σ(A)
)

into I. The asser-
tion follows from the fact that each sequentially continuous D-homomorphism
on M(

σ(A)
)

into I coincides with a unique probability integral (see (ii) in The-
orem 3.1);

(v) Let B be a σ-field of subsets of a set Y, let M(B) be the D-poset
of all measurable functions ranging in I, and let h be a sequentially continuous
D-homomorphism of σ(A) into M(B). Then h can be uniquely extended
to a sequentially continuous D-homomorphism h of M(

σ(A)
)

into M(B) (cf. [8,
Theorem 4.2]);

(vi) CBID is an epireflective subcategory of CGBID (cf. [15, Corollary 4.4]).

Motivated by the canonical extensions, we divide the properties of extensions
(boldface) of D-posets of fuzzy sets into two groups—internal and external.
Let X ,Y be D-posets of fuzzy sets such that X ⊆ Y ⊆ IX , i.e., let Y be an
extension of X .

Internal. The following properties of Y are in terms of the structure of IX :

(i) Y is closed with respect to ∧ and ∨;

(ii) Y is divisible;

(iii) X is sequentially dense in Y;

(iv) Y is sequentially closed in IX .

External. The following properties of Y are in terms of extension of morphisms
belonging to a suitable class:

(i) X is H(X )-embedded in Y;

(ii) the extensions of morphisms in question are uniquely determined;
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(iii) Y is a largest or smallest of all extensions of X to which the morphisms
in question can be extended;

(iv) ID1 and ID2 are subcategories of ID, ID2 is epireflective in ID1, X is
an object of ID1, Y is an object of ID2, and Y is the epireflection of X .

��	
�
�
�� 4.6� Let X ,Y ⊆ IX be D-posets of fuzzy sets, i.e., objects of ID.
If X ⊆ Y, then Y is said to be an ID-extension of X .

ID-extensions and the internal and external properties provide a natural lan-
guage for the construction and classification of generalized probability domains.
In particular, each canonical extension can be characterized as an ID-extension
having suitable properties. Such approach to probability theory leads to a better
understanding of classical probability theory, fuzzy probability theory, and their
mutual relationship (cf. [15]).

We close with two problems and a suggestion related to future research in the
area of extensions of D-posets of fuzzy sets.

Problem 1. Is ACFSD an epireflective subcategory of FSD?

Problem 2. Is CGBID an epireflective subcategory of BID?

��	
�
�
�� 4.7� Let ID0 be a subcategory of ID and let A ⊆ IA be an
object of ID0. Let X ,Y be objects of ID0 such that X ⊆ Y ⊆ IX. If each
morphism f of X into A can be uniquely extended to a morphism fY of Y into A,
then Y is said to be an A-extension of X . If X has no proper A-extension, then
X is said to be A-absolute. If Y is an A-extension of X and Y is A-absolute,
then Y is said to be an A-envelope of X .

It might be interesting to develop a theory of A-envelopes for suitable sub-
categories ID0 of ID.

REFERENCES
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[5] FRIČ, R.: History of sequential convergence spaces, in: Handbook of the History of Gen-
eral Topology, Vol. 1 (C. E. Aull et al., eds.), Kluwer Acad. Publ., Amsterdam, 1997,
pp. 343–355.

92



REAL FUNCTIONS AND THE EXTENSION OF GENERALIZED PROBABILITY MEASURES
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[20] KRATOCHVÍL, P.: Multisequences and measure, in: General Topology and its Relations
to Modern Analysis and Algeba IV, Proc. 4th Prague Topological Sympos., Prague, 1976,
Society of Czechoslovak Math. and Phys., Prague, pp. 237–244.

[21] LAVRENTIEV, M.: Contributions a la théorie des ensembles homéomorphes, Fund.
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[25] NOVÁK, J.: On the sequential envelope, in: General Topology and its Relations to Modern

Analysis and Algeba, Proc. 1st Prague Topological Sympos., Prague, 1961, Publishing
House of the Czechoslovak Academy of Sciences, Prague, 1962, pp. 292–294.
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