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APPROXIMATIONS BY DARBOUX FUNCTIONS
IN THE BAIRE ONE CLASS

ROBERT MENKYNA — [LUBOMIR MYDIELKA

ABSTRACT. In the paper [Sur la premiére dérivée, Trans. Amer. Math. Soc.
(N.S.) 2 (1940), 17-23], Z. Zahorski designed a way of constructing the real semi-
continuous functions. Throughout the present paper, it is shown that a modifica-
tion of Zahorski’s approach is usefull for approximation of a Baire one function
by a Darboux Baire one function.

A. B. Gurevic [3] and L. Misik [6] investigated methods how to approx-
imate the function Baire a class, @ > 1, by a Darboux function Baire « class.
Gurevic claims a simple and a short modification of Misik’s method for the case
«a = 1. Since his simplification suffers from several errors, A. M. Bruckner,
J. G. Ceder and R. Keston [2] revised Gurevi¢ and Misik’s theorem for
the case a = 1.

In paper [7], Z. Zahorski explains how to construct a semi-continuous
real function by utilizing a certain system of closed sets { Py, A > 1} where each
set Py is associated with a constant function fy = %. Paper [5] modifies Za-
horski’s idea and associates a certain system of closed sets {Px,\ > 1} with
a certain system of continuous real functions {f, A > 1} resulting in a theorem
on approximation of a semi-continuous function by a Darboux semi-continuous
function. The present paper explains how to apply this methodology in order
to prove a theorem considering approximation of the function of Baire one class
by the function of Darboux Baire one class while obtaining richer information
than in [2].

We deal with the classes of real functions defined on interval [0, 1]. The sym-
bols C, D and B; stand for the class of continuous, Darboux and Baire one
functions, respectively. DB, denotes DN B;, Cf denotes the set of points of con-
tinuity of the function f and f | F' denotes the restriction of the function f on
the set F. We will say that a point z is a bilateral c-point of a set A if and only
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if the sets (z;2+ ) N A and (x — ;) N A have the cardinality of continuum
for all § > 0, that is
card((z;z 4+ 0) N A) = card((z — d;2) N A) =c.
We will say that the set A is bilaterally c-dense in the set B (B C. A) if and
only if each point x € B is a bilateral c-point of the set A.
Let the function f: [0,1] — R be from Baire one class, and let {Py, A > 1}

be the system of closed nowhere dense subsets of [0, 1] such that for all A} < Ao,
the set Py, C. P»,. Obviously, the set

E = U Py
A>1

is of first category set in [0, 1]. Since the function f € Bj, then there exists
a sequence of continuous functions f,, n = 1,2,..., which converges on [0, 1]
to the function f. For each A > 1, let the closed set Py be associated with the
continuous function

= o+t A=n)(frn+1— fn), for AXen,n+1).
Define a function g such that
g(x) = f(z), for = ¢ E,
g(x) = faw(z), for ze€FE, where \(z)=inf {\;z € Py} .
Then, the function g satisfies two following lemmas:

LEMMA 1. The set Cy is residual in [0, 1].

Proof. Let By, i be the set of all € [0, 1], for which there exists a neighbour-
hood O(x) such that

1
[fim(y) = Fo()l < £,
Fix k € N. We will show: if J C [0, 1] is arbitrary interval, then there is an index
ny and an open interval J,,,  C J such that J,, ; C By, .

Let

forall m,p>n, y € O(z).

A, - { € T |fmlz) — ()

J= G A,
n=1

there exist an index n; and an open interval J,,  C J such that A,,; is dense
in J,, . We consider arbitrary y € J,,, and arbitrary positive integers m,p > n.
The functions f,, and f, are continuous, thus, for ¢ = ﬁ, there exists a point
x € Ap,N Jp, &, such that

[fm(2) = fm (W) < e Alfp(2) = foly)] <e.

1
< % for all m,p>n}.

Since
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Hence,
(W) = fo)] < [fm(y) = (@) + [ o (@) = fo(2)[ + [fp(2) = fo(y)]
<e+ % +e= %,

that is J,,, x C Bp, k. Let the set G} be the union of intervals of type J,, .
It is obvious that each of the sets Gy, k = 1,2,... is open and dense in [0, 1].
Moreover, for each z € Gy, there exist an index n(r) and an open interval J,, () «
such that = € Jy,(4),x C Gk, and

1
‘fm(y) - fp(y)‘ < E: for all m,p > n(x)a for all Y€ Jn(m),k‘

We define the set G = (N, Gi. The set G is residual in [0, 1]. Since the set F
is a set of first category, the set G \ E is residual in [0, 1] as well. We prove that
(i) GcCy.
Let ¢ € G and let € be an arbitrary positive real number. If a natural number
k> g is chosen, then there exists an open interval J,,(,,), such that

1
|fm(z) — fp(2)]| < o for all m,p > n(xg), forall =z € Jyy)k
The sequence f,,(z) converges to f(x). Thus,

1
|f(x) = fp(x)] < T for all p > n(xzo), forall € Jpwmg) k-

Fix p > n(xo). The continuity of the function f, implies the existence of the
neighbourhood O(zg) of the point z( such that

(@) = £, (20)] < % for all € O(z0).

Then for each = € J,,(2,),x N O(20), the inequality

[f (o) = f()] < [f(@0) = fo(zo)| + | fp(w0) — fp(@)] + | fp(x) — f(=)]
1 1 1
< E + E + E <e€

holds. In other words, the function f is continuous at the point zy € G and
G C Cf.

(i) G\EcCC,.

Let zp € G'\ E and let symbols €, k, Jy,(z,),k, O(z0) have the same meaning
as in (i). Moreover, let O(xg) N P (,) = (). Assume that arbitrary

HAES Jn(zo),k N O(.fl?o)
is chosen.
If x ¢ E, then (i) implies

l9(z0) — g()| = [f (o) — f(2)] <e,
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and if z € E, then for concrete positive integer p, > n(xo) and « € [0,1),

9(@) = fp. (@) + a(fp,41(2) = f. (2)).

Therefore,
9(20) = 9(@)| = | F(20) = (fp @) + (fr1(2) = fy. (@)
< 1f(@o) = F(@) 4+ 1£(@) = fpu (@) + @ | fr 1 (2) = Sy ()]

<€+1+ 1<25
-4+ a- )
k k

It was shown that for every x € O(z) N Jy(z0),k, the inequality [g(zo) — ()] <2e
holds which implies the continuity of the function g at arbitrary point zg € G\ E.

Therefore, G\ E C C,. Since the set G\ E is residual in [0, 1], the set C is
residual in [0, 1], too. O

LEMMA 2. The function g is Baire one.

Proof. According to [I], g € B if and only if each nonempty perfect set
P C [0,1] contains a point zg € P such that the function g [ P is continuous
at xg. Let P be a nonempty perfect subset of interval [0,1]. Two cases can be
assumed: PN E is the set of first category in the set P or PN FE is the set of the
second category in the set P.

If PN E is the set of first category in the set P, then it is sufficient to replace
interval [0, 1] with the set P in the proof of Lemma 1. As a result, the set of the
points of continuity of the function g [ P forms a residual subset of the set P.

If PN E is the set of second category in the set P, then, for a certain n € N, the
set P, is not nowhere dense in P. Therefore, there exists an open interval J C [0, 1]
such that the set P, is dense in PNJ. Let \g = inf {\; Py is dense in PNJ} .
IfXg=1,theng | PNJ = f; | PANJ is a continuous function. Therefore, the
function g [ P is continuous at each point xy € P N J. The presence of Ay > 1
implies the existence of the point o € PN.J such that o ¢ PNPyNJ for A < Ao
and zg€ PN PyNJ for Ao < A. Let ¢ be a positive integer, i < A\g < ¢+ 1 and
€ > 0 be an arbitrary real number, ¢ < Ag — 7. Obviously,

9(x0) = fi(zo) + (Mo =) (fix1(zo) — fi(w0))-

The functions f;, f;+1 are continuous, and therefore, there exist a neighbourhood
O(xo) C J of the point o and a constant M such that

|fi(z) — fi(wo)| <e,
‘fi+1(.%‘) — f¢+1($0)| <ég, forall z € O(ibo),

and
|fix1(x) — fi(z)| < M, forall x€[0,1].
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Since zg ¢ Py,—c, it can be required that O(xzg) N Py,—c = 0. If x € O(xp) N P,
then

g(z) = filz) + (A — z)(fz“(x) — f,(x)), for certain X € (Ao — &5 \o] -
For arbitrary = € O(z¢) N P, the inequality

|g(z0) — g()|

= |fi(zo) + (Ao — ) (fir1(w0) = fi(wo)) = filx) = (X = i) (fiys(z) — fi(x))]

< |fi(zo) — fi(z)| + (Ao — A) | fir1(z0) — fi(zo)]

+ (A =1) [(firr(z0) = firr(2)) = (filwo) — filz))]

<e+eM+(AN—i)2e<e(3+ M)

holds; it implies the continuity of the function g [ P at the point xzg. O

THEOREM 3 ([4]). Fach uncountable Borel set contains a nonempty perfect set.

It is easy to show that every perfect set P has the cardinality of continuum,
and moreover, each point of a perfect set P, except for a countable set of bound-
ary points of contiguous intervals of the set P, is bilateral c-point of the set P.

LEMMA 4. Let E be a nonempty Borel set and let E* be a set of all points € E
such that x is a bilateral c-point of the set E. Then, the set E'\ E* is countable.

Proof. Let S be a system of all closed intervals I C [0, 1] such that
card(INE) <ec.
It is easy to see that

E*=E\|JI and E\E'=|J(INE).
IeS Ies

card (U (IﬂE)) <,

IeS
because in the opposite case, according to Theorem 3, there exists a nonempty
perfect subset P of the set U(I N E), I € S. Then, there exists a bilateral c-point
xg of the set P and an interval Iy € S such that xq € Io N P. The set Ip N P is
nonempty perfect, Iy N P C Iy N E, therefore card (Ip N P) = card (I N E) = ¢,
which contradicts the definition of S, especially Iy € S. U

Apparently,

Remark 5. The sets E and E* from Lemma 4 satisfy the following assertions:

x is a bilateral c-point of E if and only if 2 is a bilateral c-point of E¥
E7 is bilateral c-dense in itself, that is E* C. E™

61



ROBERT MENKYNA — LUBOMIR MYDIELKA
LEMMA 6. Let F' be a nowhere dense closed set and E* a Borel set such that
F C. E* Then, there is an F, set P C E* of first category such that F'U P is
closed nowhere dense, and FFU P C. E*.
Proof. Let F' be a nowhere dense closed set, E* a Borel set, and F C. E* If

I, = (an,by), n = 1,2,... is the sequence of contiguous intervals of the set F,
then for each i = 1,2,... the following:

card (E* N (an,an + |12.7Z|>> =c,
card (E* N (bn - ‘é—?‘, bn>> =c
holds.

According to Theorem 3, there exist nonempty perfect sets

I,
Al C E™'N <an,an+ 21.),

I, _
Bf(:EVF](@l—J—ben>, i=1,2,...

2t

We denote P = A7 UB;". It can be assumed that P;* are nowhere dense perfect
sets. It is easy to see that

FCCP:D GPﬁcE*,
n=14i=1

and, moreover, F'U P is closed nowhere dense set, U P C. E* O

LEMMA 7. Let a set F' be of type F, of first category and let a Borel set E be
bilaterally c-dense in the set F. Then, there exists an F,-set E* C E of first
category bilaterally c-dense in itself such that F C. E*.

Proof. By Remark 5, we can assume that the set F is bilaterally c-dense in it-

self. Let -
F=|JF.,
n=1
where F,,n = 1,2,... are nowhere dense closed sets, F; C Fy, C F3 C ...

According to Lemma 6, there exists an F,-set P; C E of first category such
that Fy C. P;. Moreover, the set I} U P is closed nowhere dense. Applying the
same reason to the set F5 U P, we show that there exists an F,-set P, C E of
first category such that Fy, U Py C. P,. Moreover, the set Fp U P U P is closed
nowhere dense. We continue this procedure and show that there exists a sequence
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of first category sets P, C E, n = 1,2,... of type F, such that F, C. P, and
P, C. P,11. Apparently, the set

E* = E_jl P,

satisfies assertions from Lemma 7. O

THEOREM 8. Let a function f € By, and let a Borel set E be bilaterally c-dense

in the set of points of discontinuity of the function f. Then, there exists a function
g € DBy such that {z; f(z) # g(2)} C E.

Proof. Let asequence of continuous functions f,, n = 1,2, ... converges on in-
terval [0, 1] to the function f and let |J,-, Fy,, where Fy C F» C F3 C ... are
closed nowhere dense sets, be a set of points of discontinuity of the function f. Ad-
ditionally, according to Lemma 7, it can be assumed that the set F is of type F,
of first category bilaterally c-dense in itself, (J,-; F,, C. E. Otherwise, the set
F can be replaced with its subset having these properties. Then,

E=|J En, Fi1CE,CE;C...,
n=1

where E,, n = 1,2,... are closed sets. We choose a sequence of positive real
numbers €,, n = 1,2,..., &, — 0. A sequence of positive numbers §,, — 0
can be assigned to the sequence &, such that for every x1,zo € [0, 1],

‘1131 —.%‘2| <op = |fn(x1)_fn(x2)‘ < é&n. (*)

According to Lemma 2 in [5], if a Borel set E is bilaterally c-dense in itself and X
is a closed subset of E, then there exists a perfect set P such that X C. P C F.
Following the paper [5], we define a system of perfect sets

Pl CCP2 CCP3 Cc"'CCEa

where (E,, U P,_1) C. P,, for all n = 2,3,... Clearly, E = |J,-, P, and since
U~ F Cc E, we can require that

Yz € F, there isa,b € P, such thata <z <b Ab—a < d,. (k)
Consequently, for all i,n,m (where i = 1,2,...; n = 1,2,...; 0 < m < 2"),
a perfect set P = such that

P; CCPi+% CCPi+% Ce Ce Pi+% CCPH_% Ce - Ce Pi+1~

can be found.
Finally, for each real A > 1,7 < A < i+ 1, the closed set P, is defined as

Py= () Pig.
Ait 2
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For such a defined system of closed sets Py, A > 1, the following holds:
if M <Xa= Py, Ce P,

Let the functions fx, A > 1 and g be defined as in the preface of the paper.
By Lemma 2, the function g € By and the set {z; f(z) # g(z)} C E. We will
show that the function g has Darboux property. It is sufficient to show [IL p. 9]
that for each z¢ € [0, 1] there exist sequences z,, T zo, yn 4 xo, n = 1,2, ... such
that

lim g (z,) = lim g(yn) = g (o) -

n—0o0

We utilize the following fact: if Py C. Py,, and an interval (a, b) is a contiguous
interval of Py, associated with the function fy,, then A < A implies a ¢ Py,
b ¢ Py, and by definition of g, we get g(a) = fi,(a), g(b) = fi,(b).

If zp € F, then there exists A\g > 1 such that the point xy € P, for each
A > Ao and zg ¢ Py for each A < \g. Since

PAOCCP)\()—}—%’ n:1,2,...,

we choose sequences x,, T g, Yn 4 g such that
1
xnvynep,\0+% /\xn;yngép)\; for )\<)\O+E7

and therefore,

9@n) = Fro s (@0) A 9(yn) = Fry s (vn).
Since the sequence of functions fy | 1 uniformly converges on interval [0, 1] to the
function f,, it follows that

Jim g (zn) = lim fy 11 (@) = o (20) = g (20) 5

by the same arguments,
lim g(yn) = g (o).
n—oo

If 2o ¢ E, two cases can be considered: either zog € Cy or xg ¢ Cj.
In the first case,

lim f(z) = f(x0) = g (z0),

T—xg
and since f () = g (z) on a residual set, the existence of the sequences x,, 1 zg,
Yn + o, n =1,2,... s clear.

In the second case, there exists ng such that zqg € F,, for every n > ng.
According to (%), there exist zy,, y, € P, such that x,, < z¢ < yn, Yyn —Tpn < On,
and because P, are perfect nowhere dense sets, it might be assumed that the
points x,, ¥, are boundary points of some contiguous intervals of P,,: f,(z,) =
g (zy) and fn(yn) = g (yn). Sequences x, T o, Yn | 9. Moreover, (x) and ()
implies that |z, — xo| < d,, and hence

‘g (xn) — fn (xO)‘ = |fn (xn) — fn (x0)| < En.
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Since fn(xo) = f(x0) = g(zo) and &, — 0 for n — oo, the following
Jim_g(2,) = g (20) .-

holds. Similarly,
Jim g(yn) = g(20),

which means that the function g € DB;. ]

In [2], A. M. Bruckner, J. G. Ceder and R. Keston proved a theo-
rem on approximation of a function f € B; by a function in the class DBj:

THEOREM 9. Let f be a Baire one function on an interval I and let E be of first
category subset of I. There exists a function g € DB1 such that f = g except on
a first category set of measure zero which is disjoint from E and such that the
function f — g is in DBj.

Authors of Theorem 9 guarantee the equality f = ¢g on a predetermine set
of first category. The next theorem is a modification of Theorem 9. The difference
is that the equality f = g can be guaranteed on a predetermined residual set
as well. The proof is based on Theorem 8.

THEOREM 10. Let f be a Baire one function on an interval I and let a Borel
set & C Cy be bilaterally c-dense in the set of points of discontinuity of the
function f. Then there exists a function g € DBy such that {x e I; f(z) #
g(x)} C E, and the function f — g is in DBj.

Proof. Again, by Lemma 7, there exists an F,-set E* C FE of first category
bilaterally c-dense in itself, bilaterally c-dense in the set of points of discontinuity
of the function f. Theorem 8 implies the existence of a function g € DB, such
that the set {x € I; f(z) # g(x)} C E* The function f — g € Bj. Then it
suffices to prove that the function f — g has Darboux property. Let us consider
an arbitrary point z¢ € I.

Since the set {z € I; f(z) = g(z)} is residual in I and that f(zo) = g(zo),
there exist sequences z,, T xo, Yn 4 o, n = 1,2,..., f(zn) = g(xn), f(yn) =
9(yn). Thus,

lim (f —g) (zn) = lim (f = g) (yn) = (f — g) (w0) = 0.

n—oo
If f(xo) # g(zo), then xg € Cy. The function g € DBy, hence there exists
sequences T, T To, Yn 4+ To, n = 1,2, ... such that

lim g (z,) = lim g (yn) = g (o) -

n—0o0

The function f is continuous at the point zg. Then,

lim f (z,) = lim_f (yn) = [ (20)-

n—oo
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From the foregoing, it follows that

Jim (f —g) (zn) = lim_(f = g) (yn) = (f = 9) (x0).-

According to [I, Th. 1.1], f — g € DB;. O
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