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ALGEBRAIC AND SET-THEORETICAL

PROPERTIES OF SOME SUBSETS

OF FAMILIES OF CONVERGENT AND DIVERGENT

PERMUTATIONS

Roman Witu�la

ABSTRACT. The paper presents a few basic algebraic and set-theoretical prop-
erties of some subsets of families of convergent and divergent permutations of N,
especially the compositions of families of the so-called one-sided convergent and

one-sided divergent permutations.

1. Introduction

This paper is a sequel to [3]. We will discuss some inclusion relations for and
between the families CD ◦ DC and DC ◦ CD as subsets of the family P of all
permutations of N. Moreover, it will be determined for which permutations p
of N the following inclusions pDp−1 ⊆ D and pDDp−1 ⊆ DD hold true.

Permutation p of N is convergent if for every convergent series
∑

an the
p-rearranged series

∑
ap(n) is also convergent. The family of all convergent per-

mutations will be denoted by C. Permutations belonging to the family D := P\C
will be called the divergent permutations which is compatible with the following
definition of divergent permutations.

���������� 1.1� A permutation p of N is called a divergent permutation if there
exists a conditionally convergent real series

∑
an such that the p-rearranged

series
∑

ap(n) is divergent.

In this paper only the series of real terms are discussed.

c© 2013 Mathematical Institute, Slovak Academy of Sciences.
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K eyw ords: convergent permutations, divergent permutations, one-sided convergent permu-
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Let A,B ⊂ P. Then the following family of permutations of N{
p ∈ P : p ∈ A and p−1∈ B

}
will be denoted by AB. After K r o n r o d [1] and [2], we call:

a) elements of CC – two-sided convergent permutations,

b) elements of CD – one-sided convergent permutations,

c) elements of DC – one-sided divergent permutations,

d) elements of DD – two-sided divergent permutations.

Symbol ◦ denotes here the composition of nonempty subsets of P, i.e.,

B ◦A =
{
q ◦ p(·) := q

(
p(·)) : q ∈ B and p ∈ A

}
for any nonempty subsets A,B of P. Operation ◦ is not commutative in general
(which is rather obvious), but we have [3]

DD ◦DC = DD ∪DC = DC ◦DD,

C ◦DD = CD ◦DD = CD ∪DD = DD ◦ CD = DD ◦ C.
However, it is interesting that DC ◦ CD �= CD ◦ DC as well. More precisely,
in a separate paper [5] it was proved that the family (DC ◦ CD) \ (CD ◦ DC)
is nonempty. We note that the family CC is a unit element with respect to the
composition with C, D, CC, CD, DC, DD, the finite compositions of these families
and even the group G generated by C.

We know (see [2], [3], [6], [7]) that permutation p ∈ P is a convergent permu-
tation if and only if there exists c = c(p) ∈ N such that for each interval I of N
the set p(I) is a union of c MSI. We say that a nonempty set A ⊂ N is a union
of n MSI (or of at most n MSI) if there exists a family I of n (or at most n)
intervals of N which form a partition of A and dist(I, J) � 2 for any two differ-
ent members I, J of J. MSI is the abbreviated form of the notion of mutually
separated intervals.

Moreover, to denote the cardinality of set G ⊂ N we will use symbols |G| or
card (G), with respect to the context of discussion.

2. Main results

The main results of this paper are listed below.

(i) The family P\DD is a proper subset of the family (CD◦DC)∩ (DC◦CD).

(ii) The family (CD ◦DC) ∪ (DC ◦ CD) is not equal to P.

(iii) The inclusion pDp−1⊆ D (pDDp−1⊆ DD, resp.) holds true if and only if
p ∈ CC.
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(iv) The following relations

(pCCq) ∩DD �= ∅ and (qCCp) ∩DD �= ∅,

for any p ∈ (CD ∪DD) and q ∈ D are fulfilled.

Let us start with the first announced result.

	
����� 2.1� The family P\DD is a proper subset of the family (CD ◦DC)∩
(DC ◦ CD).

P r o o f. Let us denote by B the family (CD ◦DC) ∩ (DC ◦ CD) and let p ∈ CC
and q ∈ CD. Then, we get pq, qp ∈ CD (cf. [3, Theorem 2.6]) and therefore,
p = (pq)q−1 = q−1(qp) ∈ B, i.e., CC ⊂ B. Now, let p ∈ DC. Since DC◦DC = DC,
we obtain p = (pp)p−1 = p−1(pp) ∈ B and hence, DC ⊂ B. This implies that
CD ⊂ B, too. In other words, the set P \DD is a subset of the family B.

Now, we give an example of commuting permutations p ∈ DC and q ∈ CD
such that pq ∈ DD, which implies that B∩DD �= ∅, i.e., that P\DD is a proper
subset of B.

Suppose the intervals In, n ∈ N, form a partition of N and card In = 2n for
every n ∈ N. Let us put

γ(i + min In) =

{
2i + min In for i = 0, 1, . . . , n− 1,

2(i− n) + 1 + min In for i = n, n + 1, . . . , 2n− 1,

for each n ∈ N. Next, we define the permutations p and q by setting

p(i) = γ(i) and q(i) = i whenever i ∈
⋃
n∈N

I2n

and
p(i) = i and q(i) = γ−1(i) whenever i ∈

⋃
n∈N

I2n−1.

A careful reader could easily show that p and q have the desired properties. �

	
����� 2.2� Let p ∈ P. Then we have

p /∈ DC ◦ CD ⇔ (C ◦ p) ⊂ DD ⇔ (p ◦DC) ⊂ DD

and
p /∈ CD ◦DC ⇔ (p ◦ C) ⊂ DD ⇔ (DC ◦ p) ⊂ DD.

P r o o f. If p ∈ DC ◦ CD, then (CD ◦ p) ∩ CD �= ∅, i.e., (C ◦ p) ∩ C �= ∅. Hence,
if (C ◦ p) ⊂ DD, then p /∈ DC ◦CD. Now, if p ∈ DD and qp ∈ (P \DD) for some
q ∈ C, then q ∈ CD and qp ∈ CD (cf. [3, Theorems 2.6 and 2.4]). Therefore,
p = q−1(qp) ∈ DC ◦ CD, i.e., p ∈ DC ◦ CD. On the other hand, by Theorem 2.1,
the relation p /∈ DC ◦CD forces p ∈ DD. Summarizing the above arguments, we
conclude that if p /∈ DC ◦CD then the inclusion (C◦ p) ⊂ DD holds. So, we have
proved that (C ◦ p) ⊂ DD if and only if p /∈ DC ◦ CD.
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The remaining relations

p /∈ CD ◦DC if and only if (p ◦ C) ⊂ DD,

p /∈ DC ◦ CD if and only if (p ◦DC) ⊂ DD

and
p /∈ CD ◦DC if and only if (DC ◦ p) ⊂ DD

may be shown in an analogous way. �
�������� 2.3� Let p ∈ P. Then

p /∈ DC ◦ CD ⇔ (C ◦ p−1) ⊂ DD ⇔ (p−1 ◦DC) ⊂ DD

and
p /∈ CD ◦DC ⇔ (p−1 ◦ C) ⊂ DD ⇔ (DC ◦ p−1) ⊂ DD.

P r o o f. It follows easily from two equalities

(DC ◦ CD)−1 = DC ◦ CD and (CD ◦DC)−1 = CD ◦DC,

and then by using Theorem 2.2. Another proof can be obtained from the follow-
ing four relations (cf. [3, Theorem 2.6]):

(p−1 ◦DC) ⊂ DD ⇔ (C ◦ p) ⊂ DD,

(C ◦ p−1) ⊂ DD ⇔ (p ◦DC) ⊂ DD,

(p−1 ◦ C) ⊂ DD ⇔ (DC ◦ p) ⊂ DD

and
(DC ◦ p−1) ⊂ DD ⇔ (p ◦ C) ⊂ DD. �

Now, we present the example of a permutation p ∈ P which is not an element
of family (CD ◦DC) ∪ (DC ◦ CD). To prove this, we will apply Theorem 2.2.

Example 1. Suppose the intervals J
(n)
k , k, n ∈ N, k � n, with card J

(n)
k = n

and such that J
(n)
1 < J

(n)
2 < · · · < J

(n)
n < J

(n+1)
1 form a partition of N.

Define
p
(
i− 1 + min J

(n)
k

)
= k − 1 + min J

(n)
i

for any i, k = 1, . . . , n and n ∈ N. We are going to prove the following inclusion
(C◦p)∪(p◦C) ⊂ DD which, in view of Theorem 2.2, is equivalent to the relation
p /∈ ((CD ◦DC) ∪ (DC ◦ CD)

)
.

First, we show that p ◦ C ⊂ DD. Let q ∈ C. Choose an m ∈ N with the
property that for any interval I the set q(I) is a union of at most m MSI. Pick
l ∈ N and the interval I satisfying the following conditions:

q(I) ⊂
⋃

n>2lm

n⋃
k=1

J
(n)
k , (2.1)

and
card I = 2lm. (2.2)
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Then, according to the assumption, the set q(I) contains an interval U which
cardinality is � m−1card I = 2l. By condition (2.1), there exists a subinterval J
of the interval U such that

J ⊂ J
(n)
k for some k ∈ {1, . . . , n} and for some n > 2lm, (2.3)

and
cardJ � l. (2.4)

However, by (2.3) and by the definition of p, the inequality

p(a) − p(b) � n

holds whenever a, b ∈ J and a > b (more precisely, we have p(a)−p(b) = (a−b)n).
Hence, by (2.3) and (2.2), we obtain

p(a) − p(b) > card I

for any two a, b ∈ J , a > b. This implies that the set pq(I) is a union of at least
card (J) MSI because the set pq(I) has the cardinality precisely equal to card I
and the following inclusion p(J) ⊂ pq(I) holds. In other words, since for any two
different a, b ∈ J , if a > b, then(

p(b), p(a)
) \ pq(I) �= ∅

and card pq(I) = cardI, the set pq(I) must be a union of at least card(J) MSI.
Since we have not made any assumptions on l, we learn by (2.4) that pq ∈ D.
But, p ∈ DD, which is clear from the definition of p. Thus, we get that pq ∈ DD
(cf. [3, Theorems 2.4 and 2.6]).

Now, we will show that C ◦ p ⊂ DD. Suppose qp ∈ C for some q ∈ C. Let
m ∈ N be chosen in such a way that for each interval I any of the following
sets q(I) and qp(I) is a union of at most m MSI. Additionally, let a number

n ∈ N, n > 2m(m + 1) be given. Then any of the sets q
(
J
(n)
k

)
for k = 1, . . . , n,

contains an interval Ωk having the cardinality � n/m. Obviously, the intervals
Ωk, k = 1, . . . , n, are pairwise disjoint. It follows from the definition of p that

card

(
J
(n)
k ∩ p

(
J
(n)
i

))
= 1

for any two indices i, k ∈ {1, 2, . . . , n}. We also have the following inequality

card

(
Ωk ∩ qp

(
J
(n)
i

))
� 1 (2.5)

for any i, k ∈ {1, 2, . . . , n}. On the other hand, since

p(J) = J and

n⋃
k=1

Ωk ⊂ q(J) for J =

n⋃
k=1

J
(n)
k ,
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there is an index i ∈ {1, . . . , n} such that

card

(
qp

(
J
(n)
i

)
∩

n⋃
k=1

Ωk

)
� n−1card

(
n⋃

k=1

Ωk

)
� m−1n > 2m + 2.

Indeed, otherwise we would have (this remark concerns only the first inequality
from the above ones)

card

(
qp(J

(n)
i ) ∩

n⋃
k=1

Ωk

)
< n−1card

(
n⋃

k=1

Ωk

)
,

for each i = 1, 2, . . . , n, that is

n∑
i=1

card

(
qp(J

(n)
i ) ∩

n⋃
k=1

Ωk

)

= card

(
n⋃

i=1

qp(J
(n)
i ) ∩

n⋃
k=1

Ωk

)
= card

(
qp(J) ∩

n⋃
k=1

Ωk

)

= card

(
q(J) ∩

n⋃
k=1

Ωk

)
= card

(
n⋃

k=1

Ωk

)

<

n∑
i=1

n−1card

(
n⋃

k=1

Ωk

)
= card

(
n⋃

k=1

Ωk

)

which is impossible.

Hence, by (2.5) and by the estimation card Ωk � 2 for every index k = 1, . . . , n,

it is not difficult to conclude that the set qp
(
J
(n)
i

)
is a union of at least (m+ 1)

MSI. This contradicts our assumption and therefore, C ◦ p ⊂ D. Since p ∈ DD,
then the relation C ◦ p ⊂ DD is obvious. �
Remark 2.4� We note that from the construction of permutation p in Example 1
it follows that the family P \ (CD ◦DC∪CD ◦CD) has the power of continuum.
More precisely, by the slightly modified construction of permutation p, we will
see that it enables us to obtain the family of such permutations having the power
of continuum.

For this purpose, let us assign the permutation p = p(r) to each increasing
sequence r = {rn}∞n=1 of positive integers, definition of which will be changed
in comparison to the original definition of permutation p from Example 1, in the

following way. We take that cardJ
(n)
k = rn, for any k, n ∈ N, k ≤ n, and, ad-

ditionally, we set

p
(
i− 1 + min J

(n)
k

)
= k−1+minJ

(n)
i for any i, k = 1, 2, . . . , rn and n ∈ N.
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Since the family of all such sequences {rn}∞n=1 has the power of continuum, the
proof is completed.

Now, we present the fourth theorem from among the announced ones. It may
be commented in the following way: the set CC is very big, indeed, also struc-
turally (we note that card (CC) = c), because we have (see [3, Theorem 2.4]).
From this theorem it results that permutations from the family CC can com-
pletely change the combinatoric nature of composed permutations.

	
����� 2.5� For any p ∈ (CD ∪ DD) and q ∈ D there exist permutations
�, σ ∈ CC such that p�q ∈ DD and qσp ∈ DD. In other words, the following
relations hold

(pCCq) ∩DD �= ∅ and (qCCp) ∩DD �= ∅

hold.

P r o o f. First, we will construct the permutation �. Suppose that the sequences
In and Jn, n ∈ N, of intervals of positive integers have been selected in such
a way that the following conditions are satisfied:

1 +
(
In ∪ q(In)

)
< Jn ∪ p−1(Jn) <

(
In+1 ∪ q(In+1)

)− 1 (2.6)

any of the following sets q(In) and p−1(Jn) is a union

of at least 2n MSI for any n ∈ N. (2.7)

Put

q(In) =

k(n)⋃
i=1

G(i)
n and p−1(Jn) =

l(n)⋃
i=1

H(i)
n

where G
(i)
n , i = 1, . . . , k(n), as well as H

(i)
n , i = 1, . . . , l(n), are sequences of mu-

tually separated intervals. We will denote by a
(i)
n , i = 1, . . . , k(n), and by b

(i)
n ,

i = 1, . . . , l(n), the increasing sequences of all elements of the sets
{
p(maxG

(i)
n ) :

i = 1, . . . , k(n)
}

and
{
q−1(maxH

(i)
n ) : i = 1, . . . , l(n)

}
, respectively. Now, for

all even indices i ∈ {1, 2, . . . , k(n)
}

and j ∈ {1, 2, . . . , l(n)
}

, n ∈ N, we define
the permutation � as a product of the transposition of the elements

p−1
(
a(i)n

)
and 1 + p−1

(
a(i)n

)
and

q
(
b(j)n

)
and 1 + q

(
b(j)n

)
,

respectively. By condition (2.6), this definition is correct. It is not difficult to ver-

ify that � ∈ CC and that � = �−1. Moreover, the definitions of the sequences a
(i)
n ,

i = 1, . . . , k(n), and of the permutation � imply that

a(i)n ∈ p�q(In) if and only if the index i is odd

for each i = 1, . . . , k(n) and for any n ∈ N.
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Thus the set p�q(In) is a union of at least 2−1k(n) � (by (2.7)) � n MSI,

because the sequence a
(i)
n , i = 1, . . . , k(n), is increasing. Analogously, as above,

it may be shown that the set q−1�−1p−1(Jn) is a union of at least 2−1l(n) �
(by (2.7)) � n MSI. Thus, p�q ∈ DD, as desired.

Now, we proceed to define the permutation σ. We first pick two increasing
sequences In and Jn, n ∈ N, of intervals of N such that

In < Jn < In+1, n ∈ N, (2.8)

and for every n ∈ N there exist two increasing sequences of intervals

G(i)
n ⊂ In and H(i)

n ⊂ Jn for i = 1, . . . , 5, (2.9)

such that

(a) any of the sets q
(
H

(1)
n

)
and p−1

(
G

(1)
n

)
is a union of at least n MSI,

(b) G
(4)
n > q−1

(
G

(2)
n

)
> G

(1)
n and H

(4)
n > p

(
H

(2)
n

)
> H

(1)
n ,

(c) the sets q−1
(
G

(2)
n

)
and p

(
H

(2)
n

)
contain the intervals G

(3)
n and H

(3)
n ,

respectively, such that∣∣G(3)
n

∣∣ =
∣∣G(1)

n

∣∣ and
∣∣H(3)

n

∣∣ =
∣∣H(1)

n

∣∣,
(d)

∣∣G(4)
n

∣∣ = minG
(3)
n − min q−1

(
G

(2)
n

)
and

∣∣H(4)
n

∣∣ = minH
(3)
n − min p

(
H

(2)
n

)
,

(e)
∣∣G(5)

n

∣∣ = max q−1
(
G

(2)
n

)− maxG
(3)
n and

∣∣H(5)
n

∣∣ = maxp
(
H

(2)
n

)−maxH
(3)
n ,

(f) q
(
H

(i)
n

)
> q
(
H

(1)
n

)
whenever H

(i)
n �= ∅ and p−1

(
G

(i)
n

)
> p−1

(
G

(1)
n

)
when-

ever G
(i)
n �= ∅ for i = 4, 5 in both cases.

Observe that, by (d) and (e), the intervals G
(i)
n , H

(i)
n , i = 4, 5, may be empty.

Now, using the above arguments, we define σ as an increasing mapping of the
subsequent intervals

A(3)
n , A(4)

n , A(5)
n , A(1)

n ,

[
maxA(3)

n + 1, maxγ
(
A(2)

n

)]
,
[

min γ
(
A(2)

n

)
, minA(3)

n − 1
]

onto the intervals

A(1)
n ,

[
min γ

(
A(2)

n

)
, minA(3)

n − 1
]
,
[

maxA(3)
n + 1, max γ

(
A(2)

n

)]
,

A(3)
n , A(4)

n , A(5)
n

in the specified order (i.e., A
(3)
n → A

(1)
n , etc., the condition (c) is needed here)

for every n ∈ N, where A = G or H and γ = q−1 or p, respectively.
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Moreover, we put σ(n) = n for all other n ∈ N. Then, the following equalities
holds

qσp
(
H(2)

n

)
= q

(
H(1)

n ∪H(4)
n ∪H(5)

n

)
,

p−1σ−1q−1
(
G(2)

n

)
= p−1

(
G(1)

n ∪G(4)
n ∪G(5)

n

)
holds. Therefore, according to assumptions (a) and (f), any of the two following

sets qσp
(
H

(2)
n

)
and p−1σ−1q−1

(
G

(2)
n

)
is a union of at least n MSI. Hence, qσp ∈

DD, as claimed. �

Remark 2.6� From the proof presented above we see that if p ∈ (CD ∪ DD)
and q ∈ D, then there exists a permutation � ∈ CC such that

p�q ∈ DD and �2 = id(N).

The last condition means that � is a product of disjoint transpositions.

	
����� 2.7� Let p ∈ P. Then pDp−1 ⊂ D if and only if p ∈ CC and
pDDp−1 ⊂ DD if and only if p ∈ CC. When p ∈ CC, then pDp−1 = D and
pDDp−1 = DD.

P r o o f. In view of the previous theorem, if p ∈ P\CC, then there is a permuta-
tion σ∈CC such that p−1σp∈DD. Hence, σ∈(pDDp−1), i.e., C∩(pDDp−1) �= ∅.
On the other hand, if p ∈ CC then, using of [3, Theorem 2.6], we obtain
pDp−1 = D and pDDp−1 = DD. �
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