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SIMILAR FUNCTIONS AND THEIR PROPERTIES

Ivan Kupka

ABSTRACT. We are working with two topological notions of similarity of func-
tions. We show, that these notions can be used to investigate some important

properties of functions. Some types of generalized continuity are investigated.
New optimization results are presented, too.

1. Introduction

In [6], two topological notions of similarity of functions were defined. It was
shown that these notions were a topological generalization of some natural and
well-known relations between functions. In this article we provide new results
concerning generalized continuity, in particular, the quasicontinuity. Moreover,
new optimization results are presented, too. All these results should also illus-
trate that the above mentioned notions of similarity of functions—the continuous
similarity and the strong similarity—can serve as a useful tool when investigating
the properties of functions from the topological point of view.

2. Two basic notions

In what follows, we will use these notions concerning topological spaces and
functions: a net of points, a limit of a net, a net of functions, uniform convergence,
pointwise convergence (see, e.g., [4] or [5]).

First, we introduce the notion of the continuous similarity. The definition was
introduced in [6], in this article we replace the original cumbersome expression
“the degree of continuity of g at x is equal or greater than the degree of continuity
of f at x” with a simpler expression “g is f -continuous at the point x”.
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���������� 2.1� Let X, Y, Z be topological spaces, let f : X → Y, g : X → Z
be functions.

Let x be from X. We say that g is f -continuous at x if for every net {xγ}γ∈Γ

of elements from X converging to x the following holds:

If the net
{
f(xγ)

}
γ∈Γ

converges in Y, then the net
{
g(xγ)

}
γ∈Γ

converges

in Z. We denote this by cxt (g) ≥ cxt (f).

Let A be a subset of X. We say that g is f -continuous on A if, for every x
from A, cxt (g) ≥ cxt (f) holds true. We denote this by cAt (g) ≥ cAt (f). Of course,

for a particular x, the expressions cxt (g) ≥ cxt (f) and c
{x}
t (g) ≥ c

{x}
t (f) describe

the same situation. When cXt (g) ≥ cXt (f) is true, we write simply ct(g) ≥ ct(f)
and we say that g is f -continuous.

Let A be a subset of X. We say that f and g are continuously similar on A if
cAt (g) ≥ cAt (f), and cAt (f) ≥ cAt (g) hold true at the same time. We denote this
situation by writing cAt (g) = cAt (f). If A = X we also write ct(g) = ct(f) or, for
the sake of simplicity, f ∼ g; we say that f and g are continuously similar.

(Obviously, the f -continuity of a function g per se does not guarantee, that g
will automatically have all nice properties of f. Considering any type of general-
ized continuity of f, it must always be examined and proven whether this type
of continuity will be inherited by g or not.)

Remark 2.2� To sum up, f ∼ g means that for every convergent net
{
xγ

}
γ∈Γ

from X, the net
{
f(xγ)

}
γ∈Γ

converges in Y if and only if the net
{
g(xγ)

}
γ∈Γ

converges in Z.

In general, we can see immediately that if f is continuous on a subset A of X
and cAt (g) ≥ cAt (f) is true, then g is continuous on A, too. Moreover, if g is not
continuous at a point x from X and cxt (g) ≥ cxt (f) holds true, then f is not
continuous at x.

Now, the second notion of similarity of functions will be defined. In [6], the
notion was defined in a way, that the domain X of f and g was supposed to be
a topological space, however, the topological structure on X was not used in the
definition. Therefore, we will suppose that X is simply a set.

���������� 2.3� Let X be a nonempty set and let Y, Z be topological spaces.
Let f : X → Y, g : X → Z be functions.

Let A be a subset of X. We say that g is f -constant on A if for every net
{xγ}γ∈Γ of elements from A the following holds:

If the net
{
f(xγ)

}
γ∈Γ

converges in Y, then the net
{
g(xγ)

}
γ∈Γ

converges

in Z.

We denote this by cAs (g) ≥ cAs (f). If A = X, we also write cs(g) ≥ cs(f).

Let A be a subset of X. We say that f and g are strongly similar on A if
cAs (g) ≥ cAs (f) and cAs (f) ≥ cAs (g) is true at the same time. We denote this
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situation by writing cAs (g) = cAs (f). If A = X, we also write cs(g) = cs(f) or,
for the sake of simplicity, f ≈ g. We say that f and g are strongly similar.

Remark 2.4� To sum up, f ≈ g means that for every net {xγ}γ∈Γ from X,{
f(xγ)

}
γ∈Γ

converges in Y if and only if the net {g(xγ)}γ∈Γ converges in Z.

In our first definition we only considered some nets {xγ}γ∈Γ from X, namely the
convergent ones. Now, the same relationship between f and g must be verified–
–for all nets from X.

In particular, we can see that if X is a topological space and the functions f
and g have values in a complete metric space (Y, d) and (Z, ρ), respectively, and
if there exist two positive constants K and L such that, for all points t, s from
an open neighbourhood of x (for all points t and s from a set A),

d
(
f(t), f(s)

) ≤ K· ρ(g(t), g(s)) ≤ L· d(f(t), f(s))

holds true, then f and g are continuously similar at x (f and g are strongly
similar on A).

In [6], it was shown that if f and g are strongly similar then, for each x
from X, the sets f−1

(
f(x)

)
and g−1

(
g(x)

)
are equal.

3. Generalized continuity, function spaces

The below defined notions were examined for example in [1], [2], [10]–[12].

���������� 3.1� Let (X,T ) be a topological space. We say that a set V ⊂ X
is α-open if and only if there exist an open set O ∈ T and a nowhere dense set S
such that V = O \ S. The system of all α-open sets in (X,T ) is denoted by Tα.
Tα defines a new topology on X.

Let (Y, τ) be a topological space. Let x be from X. We say that a function
f : (X,T ) → (Y, τ) is α-continuous at x if, for each W ∈ τ such that f(x) ∈ W,
there exists an V ∈ Tα such that x ∈ V and f(V ) ⊂ W is true.

Let X, Y be topological spaces. A function f : X → Y is said to be quasicon-
tinuous at x from X if and only if for any open set V such that f(x) ∈ V and
any open set U such that x ∈ U, there exists a nonempty open set O ⊂ U such
that f(O) ⊂ V.

Let X = R, let Y be a topological space. A function f : X → Y is said to be
left (right) hand sided quasicontinuous at a point x from R if for every δ > 0
and for every open neighbourhood V of f(x) there exists an open nonempty set
W ⊂ (x− δ, x) (W ⊂ (x, x+ δ)) such that f(W ) ⊂ V. A function f is bilaterally
quasicontinuous at x if it is both left and right hand sided quasicontinuous at this
point.
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It is known [6] that a function g continuously similar to a quasicontinuous
function f is also quasicontinuous. Now, we will show that the relation “be-
ing continuously similar” preserves the α-continuity of functions. The following
theorem shows even more.

	
����� 3.2� Let X, Y, Z be topological spaces and f : X → Y, g : X → Z
the functions. Let f be α-continuous at x. If g is f -continuous at x, then g is
α-continuous at x.

P r o o f. Denote by T the topology on X and by Tα the α-topology induced
by T. Let {xγ}γ∈Γ be an arbitrary net that converges in X to x with respect to
the topology Tα. To prove the α-continuity of g in x, we need to prove that the
net

{
g(xγ)

}
γ∈Γ

converges in Z.

Since the function f is α-continuous at x, the net
{
f(xγ)

}
γ∈Γ

converges in Y.

Moreover, since the topology Tα is finer than T, the net {xγ}γ∈Γ converges
to x also with respect to the topology T. These facts and the fact that g is
f -continuous at x imply that the net

{
g(xγ)

}
γ∈Γ

converges in Z. �

���������� 3.3 ([8])� Let X, Y be topological spaces. Let A be a system
of nonempty subsets of X. A function f : X → Y is said to be A-continuous
at x from X if and only if for any open set V such that f(x) ∈ V and any
open set U such that x ∈ U, there exists a set S from A such that S ⊂ U and
f(S) ⊂ V.

In the proof of the following theorem, we are going to work with special nets
constructed from other nets. First, we will modify an indexed set of a net in the
following way:

Let Γ be a directed set. Γ‘ will stand for an indexed set defined as follows

(∗) Γ‘=
{
(γ, 1); γ ∈ Γ

} ∪ {
(γ, 2); γ ∈ Γ

}

and Γ‘ is equipped with a preorder defined by

∀α, β ∈ Γ if α < β then (α, 1) < (α, 2) < (β, 1) < (β, 2). It is easy to check
that Γ‘ is a directed set.

To prove the following theorem, we need a special kind of a net which we are
going to define now.

Suppose
{
(xγ)

}
γ∈Γ

is a net of points of a set X. Let a be a point from X.

The symbol {xγ , a} will denote the special net {xγ , a} = {yγ‘}γ‘∈Γ‘ where Γ‘ is
defined as in (*) and, for all γ from Γ, we have y(γ,1) = xγ , y(γ,2) = a. We can
immediately see that the net {xγ}γ∈Γ is a subnet of {xγ , a} and that the constant
net {y(γ,2)}γ∈Γ is a subnet of {xγ , a} = {yγ‘}γ‘∈Γ‘ , too. Moreover, we can see
that if {xγ}γ∈Γ converges to a, then {xγ , a} converges to a, too. This will be
used at the very end of the proof of the following theorem.
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����� 3.4� Let X, Y, Z be Hausdorff topological spaces. Let f : X → Y,
g : X → Z be functions. Let x be a point from X. Let A be a system of nonempty
subsets of X and let f be A-continuous at x. If g is f -continuous at x, then g
is A-continuous at x, too.

P r o o f. We proceed by contradiction. Suppose that g is not A-continuous at x.
Because of this, there exists an open neighbourhood W of g(x) and an open
neighbourhood U of x such that for any subset S of U such that S ∈ A there
exists a point s from S such that g(s) ∈ Y \W. In other words, no set A ∈ A
is a subset of the set g−1(W )

⋂
U. Denote by Γ the family of all open neigh-

bourhoods of x contained in U, and by A the family of all open neighbourhoods
of f(x).

Define B = Γ×A. Define a partial order “≤” on B by

∀(γ1, α1), (γ2, α2) ∈ B(γ1, α1) ≤ (γ2, α2) if and only if γ2 ⊆ γ1 and α2 ⊆ α1.

It is easy to see that B so equipped is a directed set.

For each β ∈ B, β = (γ, α), the following holds (since γ is an open neigh-
bourhood of x and α is an open neighbourhood of f(x) and f is A-continuous
at x): There exists a set Sβ ∈ A such that Sβ ⊂ γ

⋂
U and f(Sβ) ⊂ α. Since

Sβ cannot be a subset of g−1(W )
⋂
U, there exists a point xβ from Sβ such that

g(xβ) ∈ Y \W. At the same time, f(xβ) ∈ α.

We have just constructed a net of points {xβ}β∈B . It is easy to see that this
net has the following properties:

(1) limβ∈B xβ = x,

(2) limβ∈B f(xβ) = f(x),

(3) ∀β ∈ B g(xβ) ∈ Y \W.

Now, consider the “alternate” net {xβ , x} and the corresponding nets
{
f(xβ),

f(x)
}
and

{
g(xβ), g(x)

}
. Because of (1), the net {xβ, x} converges to x. Because

of (2), the net
{
f(xβ), f(x)

}
converges to f(x). However, the convergence of this

net and the fact that g is f -continuous at x imply that the net
{
g(xβ), g(x)

}
is

convergent, too. Of course, the net
{
g(xβ), g(x)

}
has the same limit as any of its

subnets. We can see that it has a constant subnet with constant values equal
to g(x), so the net

{
g(xβ), g(x)

}
converges to g(x). By the same reasoning, we

obtain that the net
{
g(xβ)

}
β∈B

converges to g(x).

However, this is a contradiction, because, for each point xβ, we have g(xβ) ∈
Y \ W ; on the other hand, W is an open neighbourhood of the “would be
limit” g(x). �

We are almost ready to give a characterization of some spaces of A-continuous
functions. All we need is to combine the result of the preceding theorem with
the following result proved in [6]:
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����� 3.5� Let X be a topological space and let (Y, d), (Z, �) be complete
metric spaces. Let h : X → Y, f : X → Z be functions. Let {fγ}γ∈Γ be a net
of functions from X to Z. Let {fγ}γ∈Γ converge uniformly to f. Let x be a point
of X, let A be a subset of X. Then:

(i) If for all γ from Γ, fγ is h-continuous at x and if h is continuous at x,
then f is continuous at x.

(ii) If for all γ from Γ, fγ is h-continuous on A, then f is h-continuous on A.

The following assertion is a corollary of the two preceding theorems:

�������� 3.6� Let X be a topological space and let (Y, d), (Z, �) be com-
plete metric spaces. Let h : X → Y, f : X → Z be functions. Let {fγ}γ∈Γ be
a net of functions from X to Z. Let {fγ}γ∈Γ converge uniformly to f. Let x be
a point of X, let A be a subset of X. Let h be A-continuous at x (A-continuous
at all points from A). Then, if for all γ from Γ, fγ is h-continuous at x (fγ
is h-continuous on A), then f is A-continuous at x (f is A-continuous at all
points from A).

Remark 3.7� Let X be a topological space and let (Y, d) be a Fréchet space.
Using the last two theorems, we can see that if f from X to Y is a function, then
for any f1, f2 from X to Y such that f1 and f2 are f -continuous at a point x, any
linear combination of these two function is f -continuous at x, too. (This is just
because of the “continuous behavior” of linear combination in Fréchet spaces.
More concretely, if two nets

{
f1(xγ)

}
γ∈Γ

and
{
f2(xγ)

}
γ∈Γ

converge in Y, then

every net of the form
{
c1f1(xγ) + c2f2(xγ)

}
γ∈Γ

converges in Y, too.)

This means that if f is A-continuous at a point x, any linear combination
of two f -continuous functions f1 and f2 is A-continuous at x, too. Moreover,
as we have proved, the property “being f -continuous at a point x” is preserved
under the uniform convergence. This means that all functions from X to Y, that
are f -continuous at x, form a linear subspace of the space of all functions from
X to Y. Moreover, this subspace is closed with respect to the operation of the
uniform convergence. We will formulate this result in the following theorem.

In what follows, if f is a function from a topological spaceX into a topological
space Y, by Cf we will denote the set of all f -continuous functions from X to Y.

	
����� 3.8� Let X be a topological space and let (Y, d) be a Fréchet space.

(i) Let f : X → Y be a function. Then the set Cf is a nonempty linear subspace
of the linear space of all functions from X to (Y, d). Moreover, Cf is closed
with respect to the uniform convergence.
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(ii) Let A be a system of nonempty subsets of X. Then the set of all functions
from X to Y that are A-continuous at x from X (at all points s from
a subset S ⊂ X) is a union of a system of nonempty linear spaces of func-
tions such that each of these spaces contains all continuous functions from
X to Y and is closed with respect to the uniform convergence.

P r o o f. (i) Cf is nonempty, because f ∈ Cf . For the rest, let us see the pre-
ceding remark.

(ii) Put CA,S = {f : X → Y ; f is A-continuous at all points s from S}.
Then, CA,S =

⋃
f∈CA,S

Cf . �

Because of the generality of A-continuity, we have just characterized a wider
range of systems of functions. Concretely, if X, Y are topological spaces, A is
a system of nonempty subsets of X, and if a function f : X → Y is A-continuous
at a point x (at all points of a set S ⊂ X), then f is

(1) continuous at x if A = {U ; U is open in X and x ∈ U},
(2) α-continuous at x if A = {O; O is α-open in X and x ∈ O},
(3) quasicontinuous at x (or on S) if A = {U ; U is open in X}.

Moreover, suppose that X = R. Then f is

(4) left (right) hand sided quasicontinuous at x if

A =
{
V ;V = (a, b) and a < b < x

}

(A = {V ; V = (a, b) and x < a < b}),
(5) bilaterally quasicontinuous at x if

A =
{
V ;V = (a, b) ∪ (c, d) and a < b < x < c < d

}
.

Now, we can see that our last theorem implies the validity of the following
assertions:

�������� 3.9� Let X be a topological space and let (Y, d) be a Fréchet space.
Let S ⊂ X, S = ∅. Then the set of all functions from X to Y that are qua-
sicontinuous, (α-continuous, left (right) hand sided quasicontinuous, bilaterally
quasicontinuous) at all points of S is a union of a system of nonempty linear
spaces of functions such that each of these spaces is containing all continuous
functions from X to Y and it is closed with respect to the uniform convergence.
More concretely, each of these spaces can be of the form Cf , where f : X → Y,
is a function that is quasicontinuous (α-continuous, left (right) hand sided qua-
sicontinuous, bilaterally quasicontinuous) at all points of S.

Open question: Does there exist a noncontinuous, quasicontinuous function f
fromR toR such that the linear space Cf only consists of the elements of the form:
c1f+c2h, where h (an arbitrary continuous function from R to R) and c1, c2 ∈ R

are variable?
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4. Optimization applications

We say that a topological space X is locally arcwise connected at a point x
if every neighbourhood U of x contains a neighbourhood V of x such that any
two points a, b from V can be joined by an arc in V, i.e., there exists a function
h : <0, 1> → V such that h : <0, 1> → h(<0, 1>) is a homeomorphism and
h(0) = a, h(1) = b holds.

The following optimization result was proved in [6].

	
����� 4.1� Let X be a topological space, let x be from X. Let X be locally
arcwise connected at x. Let f : X → R, g : X → R be continuous functions. Let
f ≈ g. Then

(j) x is a point of a local extremum of f if and only if x is a point of a local
extremum of g,

(jj) x is a point of a strict local extremum of f if and only if x is a point
of a strict local extremum of g.

The following theorem will enable us to prove two optimization theorems.

	
����� 4.2� Let X be a nonempty set and Y, Z be T2 topological spaces. Let
f : X → Y, g : X → Z be functions. Let f ≈ g. Then, for any subset A of X,
the following is true:

f(A) is closed (compact) in Y if and only if g(A) is closed (compact) in Z.

P r o o f. First, we will prove the “closedness” part of our assertion. It suffices
to show that if f(A) is closed in Y, then g(A) is closed in Z.

Let {zγ}γ∈Γ be a net of points from g(A) which is convergent in Z. Denote its
limit by z. We have to prove that there exists a point a in A such that g(a) = z
is true.

Since each point zγ is from g(A), for every γ from Γ, there exists xγ from
A such that g(xγ) = zγ . We see that

{
g(xγ)

}
γ∈Γ

= {zγ}γ∈Γ converges in Z.

Together with f ≈ g, this implies that the net
{
f(xγ)

}
γ∈Γ

converges in Y.

We will denote its limit by y. The set f(A) is closed, so y ∈ f(A). Consider
a point a ∈ A such that f(a) = y.

Now, let us consider the net {pγ‘}γ‘∈Γ‘ := {xγ , a}. We can see that

lim
γ‘∈Γ‘

f(pγ‘) = y = f(a).

Since f ≈ g, this means there exists m ∈ Z such that m = limγ‘∈Γ‘ g(pγ‘).
However, the nets {xγ}γ∈Γ and {a}γ∈Γ (by this we mean the net {aγ}γ∈Γ where
for all γ from Γ, aγ = a) are both subnets of the net {pγ‘}γ‘∈Γ‘ . This implies
limγ‘∈Γ‘ g(pγ‘) = limγ∈Γ g(xγ) = z and limγ‘∈Γ‘ g(pγ‘) = limγ∈Γ g(a) = g(a). So,
z = g(a), and this also means z ∈ g(A). The closedness of g(A) is proven.
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Now, for “compactness” part of our assertion, again, it suffices to prove that if
f(A) is compact, then g(A) is compact, too. Suppose f(A) to be compact. Then,
it is closed, so g(A) is closed, too. Considering an arbitrary net

{
g(xγ)

}
γ∈Γ

in g(A), we now have to prove that it has a convergent subnet. However, the
net

{
f(xγ)

}
γ∈Γ

in f(A) has a convergent subnet, say
{
f(xδ)

}
δ∈Δ

, and because

of strong similarity of f and g, the net
{
g(xδ)

}
δ∈Δ

is convergent (in g(A)),
too. �

Now, the following theorems will be easy corollaries of the preceding theorem.
Let us observe that we do not need any topological structure on the domain setX
in the following theorem.

	
����� 4.3� Let X be a set. Let f : X → R, g : X → R be functions. Let A
be a subset of X such that the set f(A) is closed. Let f achieve its maximum
and minimum on A. Let f ≈ g. Then g achieves its maximum and minimum
on A, too.

P r o o f. Under the conditions of our theorem, the set f(A) must be compact.
So the set g(A) is compact, too. �

Now, we present an optimisation result concerning functions that are strongly
similar to Darboux functions.

	
����� 4.4� Let X be a topological space. Let f : X → R, g : X → R be
functions. Let f be a Darboux function (an image of each connected set under f
is connected). Let f achieve its maximum and minimum on a connected subset
A of X. Let f ≈ g. Then g also achieves its maximum and minimum on A.

P r o o f. Under the conditions of our theorem, the set f(A) must be connected
and bounded. Moreover, it contains its supremum and infimum. So, f(A) is
a compact interval. This means, the set g(A) is compact, too. Therefore g
achieves a global maximum and a global minimum on A. �

To conclude this section, let us remark that all the results presented here show
some possibilies how to investigate a non-differentiable function for extrema.
Namely, some non-differentiable functions are strongly similar to differentiable
ones and these can be investigated in a classical way.
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