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ON CERTAIN APPROXIMATION PROBLEM

CONNECTED

WITH THE SUMS OF SUBSERIES

Roman Witu�la — Konrad Kaczmarek — Edyta Hetmaniok –
– Damian S�lota

ABSTRACT. In this paper a problem of approximating the real numbers by us-
ing the series of real numbers is considered. It is proven that if the given family
of sequences of real numbers satisfies some conditions of set-theoretical nature,
like being closed under initial subsequences and (additionally) possessing proper-

ties of adding and removing elements, then it automatically possesses some ap-
proximating properties, like, for example, reaching supremum of the set of sums
of subseries.

1. Introduction

Problem, discussed in this paper, concerns the approximation of the real num-
bers by using the series of real numbers. It turns out that if the class of infinite
sequences of real numbers satisfies some simple set relations (like being closed
under initial subsequences, properties of adding and removing elements), then
the approximation of a real number by using the appropriate series results imme-
diately from the nature of real numbers. Authors of the well-known and widely
read monographs [1]–[4] usually omit this problem. However, we have found it in-
teresting, therefore we decided to devote the current paper to this issue. We hope
that the obtained results may be worthy of our interest. Let us emphasize that
the case of real sequences is definitely easier than the case of multidimensional
sequences (starting with a dimension of n = 2). The infinitely dimensional case is
almost completely out of discussion, since it is not easy to consider and requires
another kind of assumptions.

Let

s :=

{
{an}∞n=1 : an � 0, n ∈ N and

∞∑
n=1

an < ∞
}
.
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���������� 1� We say that a nonempty set w ⊂ s is closed under initial subse-
quences (abbreviated to cuis-set, for shortness of notation) if from the fact that
for a given sequence {an}∞n=1 ∈ s and for any N ∈ N there exists {bn}∞n=1 ∈ w
such that an = bn for n = 1, 2, . . . , N , it follows that {an}∞n=1 ∈ w.

Let {an}∞n=1 ∈ s and x ∈ R+. Let us also fix the nonempty set w ⊂ s. Now,
suppose that for every ε > 0 there exists a subsequence {ani

}∞i=1 ∈ w such that

x− ε <
∑

ani
< x.

We prove that if additionally w is closed under initial subsequences, then there
exists a subsequence {ani

}∞i=1 ∈ w such that
∑

ani
= x.

Moreover, many different examples of families w ⊂ s which are closed under
initial subsequences will be presented. The rôle of condition “closed under initial
subsequences” will also be discussed.

2. Main results

	
����� 2� Let w ⊂ s be a nonempty set which is closed under initial subse-
quences. Let {an} ∈ s and x ∈ R+. If for every ε > 0 there exists a subsequence
{ani

} ∈ w such that

x− ε <
∑

ani
< x, (1)

then there also exists a subsequence {ani
} ∈ w such that

∑
ani

= x.

P r o o f. Let us set

k1 := min

⎧⎨⎩k ∈ N : k > 1 and
∑
n�k

an< x

⎫⎬⎭ ,

ε1 := x−
∑
n�k1

an.

Certainly, each subsequence {ani
}, such that x− ε1 <

∑
ani

< x, must include
some subsequence of the sequence {a1, . . . , ak1−1}. Since there is finitely many
of all subsequences of the sequence {a1, . . . , ak1−1}, therefore, with regard to the

assumption (1), a subsequence {an′
i
}s1i=1 of the sequence {ai}k1−1

i=1 exists and the
condition

for every ε > 0 there exists a subsequence {ani
} ∈ w such that

x− ε <
∑

ani
< x and the s1 initial elements

of which are an′
1
, . . . , an′

s1

(2)

is satisfied.
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Let us set x1 = x− (an′
1
+ · · ·+ an′

s1
). We put

k2 := min

⎧⎨⎩k ∈ N : k > k1 and
∑
n�k

an < x1

⎫⎬⎭ ,

ε2 := x1 −
∑
n�k2

an.

Each subsequence {ani
} ∈ w, such that x − ε2 <

∑
ani

< x and the s1 ini-
tial elements of which are an′

1
, . . . , an′

s1
, must include some subsequence of the

sequence {ak1
, . . . , ak2−1}. From this and from (2), it results that there exists

a subsequence {an′
i
}s2i=s1+1 of the sequence {ai}k2−1

i=k1
satisfying the condition

for every ε > 0 there exists a subsequence {ani
} ∈ w such that

x− ε <
∑

ani
< x and the s2 initial elements

of which are an′
1
, . . . , an′

s2
.

(3)

Let us set x2 := x1 −
(
an′

s1+1
+ · · · + an′

s2

)
. We put k3 := min

{
k ∈ N : k > k2

and
∑

n�k an < x2

}
, ε3 := x2 −

∑
n�k3

an. Each subsequence {ani
} ∈ w, such

that x− ε3 <
∑

ani
< x and the s2 initial elements of which are an′

1
, . . . , an′

s2
,

must include some subsequence of the sequence {ak2
, . . . , ak3−1}. This, together

with (3), implies that there exists a subsequence {an′
i
}s3i=s2+1 of the sequence

{ani
}k3−1
i=k2

such that for each ε > 0 there exists a subsequence {ani
} ∈ w with the

property x−ε <
∑

ani
< x and the s3 initial elements of which are an′

1
, . . . , an′

s3
,

etc.

The above inductive process leads to the definition of infinite subsequence
{an′

i
}. In accordance with property of closed under initial subsequences, the

sequence {an′
i
} ∈ w. Moreover, we will show that

∑
an′

i
= x. For this purpose

we suppose that
∑

an′
i
< x.

Let ε0 := x−∑
an′

i
. Let us denote

k0 := min

⎧⎨⎩k ∈ N :
∑
n�k

an <
ε0
2

⎫⎬⎭ .

Definition of subsequence {an′
i
} implies that for each ε > 0 there exists a subse-

quence {ani
} ∈ w such that

x− ε <
∑

ani
< x

and an′
1
, . . . , an′

k0
form the initial k0 elements of subsequence {ani

}. In the sequel,

there exists a subsequence {ani
} ∈ w such that

x− ε0
2

<
∑

ani
< x (4)
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and the k0 initial elements of which are an′
1
, . . . , an′

k0
. From the last property

and from the previous assumptions, we get∑
ani

= an′
1
+ · · ·+ an′

k0
+
∑
i>k0

ani
�

∑
an′

i
+
∑
n�k0

an <
∑

an′
i
+

ε0
2

= x− ε0
2
,

in contradiction with (4). �

�������� 3� Let an > 0, n � 1, liman = 0, w ⊂ s and let w be a cuis-set.
If sup

{∑
ani

: {ani
} ∈ w

}
< ∞, then there exists a subsequence {an′

i
} ∈ w

such that
∑

an′
i
= sup

{∑
ani

: {ani
} ∈ w

}
.

Example 4. We now present the examples of five families w ⊂ s closed under
initial subsequences:

w1 =
{{an} ∈ s : {an} ⊂ Q

}
,

w2 =
{{an} ∈ s : an � an+1, n ∈ N

}
,

w3 =
{{an} ∈ s : decimal expansion of number an is formed

only by zeros and ones
}
,

for some fixed {an} ∈ s, the family w4 is created from all infinite

subsequences of {an},
w5 =

{{an} ∈ s : a2n−1 � a2n and a2n � a2n+1, n � 1
}
.

Remark 5 (about the meaning of cuis-set condition in Theorem 2)� Let

bn =:

{
9 · 10−(n+1)/2, n ∈ 2N− 1,

10−n/2, n ∈ 2N.

If we describe a set w ⊂ s in the following way: {an} ∈ w ⇔ {an} ∈ s and∑
d(an) < ∞ where d : R → R̃ and, by definition, d(x) denotes the minimal

number of nines which must appear in decimal expansion of number x, then one
can easily notice that w is not a cuis-set. Simultaneously, for every ε > 0 there
exists a subsequence {bni

} ∈ w such that 1− ε <
∑

bni
< 1 and there does not

exist a subsequence {bni
} ∈ w such that

∑
bni

= 1.

The next example constitutes a supplement of Corollary 3.

Example 6. We give the examples of sequences {an}, such that
∑

an=∞, satis-
fying the condition: for every subsequence {ani

} if {ani
} ∈ w, then

∑
ani

< +∞,
where w is one of the following three sets:

a)
{{bn} ⊂ R+ : bn � bn+1, n ∈ N

}
,

b)
{{bn} ⊂ R+ : b2n−1 � b2n and b2n � b2n+1, n � 1

}
,

c)
{{bn} ⊂ R+ : b2n+1 � b2n, n ∈ N

}
.
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Definitions of the respective sequence {an}:
a) We take a1 = 1. If elements a1, . . . , as and as = n−2 are already given,

then we put

as+i =
1

(n+ 2)2
+

i

(n+ 2)

(
1

(n+ 1)2
− 1

(n+ 2)2

)
for 1 � i � n+ 2.

It is obvious that the last defined element as+n+2 is equal to 1
(n+1)2 .

b) All we need here is to take

a2n+i := 2−n − i2−2n−1 for 0 � i � 2n, i �= 2n − 1, n ∈ N0

and

a2n−1 := a2n+1, n ∈ N0.

c) an :=

{
(n− 1)−1, n = k2 + 1, k ∈ N,

n−1, for other n ∈ N.

Let us notice that in each of these examples, as resulting from Corollary 3,
the appropriate sup

{∑
ani

: {ani
} ∈ w

}
is reached, and, which is more (with

regard to the form of construction of the sequence {an}), the appropriate sub-
sequence {ani

} realizing this supremum can be easily described explicitly.

Example 7. Let w =
{{k−1

i }∞i=1 ∈ s : {ki}∞i=1 be an increasing sequence of pos-

itive integers
}
. Then, w is a cuis-set and simultaneously,

sup

{ ∞∑
i=1

k−1
i : {ki} ∈ w

}
= ∞.

The last two examples, more precisely—Corollary 3, and more practically–
–a desire of eliminating the additional assumption sup

{∑
ani

: {ani
} ∈ w

}
< ∞

from this conclusion (it means, replacing it by the assumptions of set-theoretical
nature which will be conditions 1) and 2) from the theorem given below), led us
to create our second main result.

	
����� 8� Let w ⊂ s. Assume that the set w is a cuis-set and it possesses
the following two properties:

1) (Property of adding elements.) If for any {an} ∈ w and k ∈ N there exists
ω(k) ∈ N, ω(k) � k, such that if {bn} ∈ w andmax{bn} � min{a1, . . . , aω(k)},
then the sequence {cn} defined below

cn =

{
an, 1 � n � ω(k),

bn−ω(k), n > ω(k),

belongs to w.
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2) (Property of removing elements.) For every k ∈ N there exists k′∈ N, k′� k,
such that if {an} ∈ w, then there exists s : k′ � s � k with the property
{an}n�s ∈ w.

Let us fix {an}, such that an > 0, n � 1, lim an = 0. If there exists a sub-
sequence {an′

i
} ∈ w, then there exists a subsequence {ani

} ∈ w such that∑
ani

= sup
{∑

an′
i
: {an′

i
} ∈ w

}
.

P r o o f. In view of Corollary 3, it suffices to prove that

sup
{∑

an′
i
: {an′

i
} ∈ w

}
< +∞.

For this purpose, we assume, on the contrary, that

sup
{∑

an′
i
: {an′

i
} ∈ w

}
= ∞. (5)

We will show that then there exists a subsequence {ani
} ∈ w such that

∑
ani

=
+∞. The subsequence {ani

} can be constructed on the basis of the following
property resulting from properties 1), 2) and the assumption that w is a cuis-set:

if {ani
} ∈ w, then for each k ∈ N and M > 0 there exists a sub-

sequence {an′
i
} ∈ w such that an′

i
= ani

, 1 � i � k and
∑

an′
i
> M.

(6)

P r o o f o f P r o p e r t y (6). Let us fix {ani
} ∈ w, k ∈ N and M > 0. Let an �

�, n � 1. We select t ∈ N such that

max{an}n�t � min
{
an1

, . . . , anω(k)

}
, (7)

where ω(k) is as in the property 1) for the sequence {ani
}. Let us put

δ := max
{
nω(k) + 1, t

}
.

Condition (5) implies that there exists a subsequence {an′
i
} ∈ w such that∑

an′
i
> M + �δ′, where δ′ is the number from property 2) corresponding with

number δ. According to the property 2), there exists an index s : δ′� s � δ such
that the sequence {an′

i
}i�s ∈ w. We get∑

i�s

an′
i
=
∑
i�1

an′
i
−
∑
i<s

an′
i
> M + �δ′ −

∑
i<s

an′
i
> M + �δ′− �s > M.

Simultaneously, we have max{an′
i
}i�s � max{an}n�t from which, in view of (7)

and the property 1), we obtain that the sequence {ci} defined as follows

ci =

{
ani

, 1 � i � ω(k),

an′
[i−ω(k)−1+s]

, i > ω(k),

belongs to w which completes the proof of property (6). �
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Now, let us return to the proof of Theorem 8.

From (5) it results that there exists a subsequence {a
n
(1)
i
} ∈ w such that∑

a
n
(1)
i

> 2. Let k1 = min
{
k ∈ N :

∑k
i=1 an(1)

i

> 1
}
. In general, let us suppose

that we have already defined the number ks ∈ N. From (6) we receive that there
exists a subsequence

{
a
n
(s+1)
i

} ∈ w such that

a
n
(s+1)
i

= a
n
(s)
i

, 1 � i � ks,

∑
a
n
(s+1)
i

>

ks∑
i=1

a
n
(s)
i

+ 2.

We take

ks+1 := min

{
k ∈ N :

k∑
i=1

a
n
(s+1)
i

> 1 +

ks∑
i=1

a
n
(s)
i

}
.

Obviously, ks+1 > ks.

The above described algorithm leads us to create the subsequence {ani
} such

that

ani
= a

n
(s)
i
, s ∈ N, 1 � i � ks.

Since each subsequence {a
n
(s)
i

}i�1 is included in w thus, from the property of

closed under initial subsequences, we get that {ani
} ∈ w. Furthermore,

∑
ani

�
ks∑
i=1

a
n
(s)
i

� s− 1 +

ks∑
i=1

a
n
(1)
i

, s ∈ N,

from which we obtain
∑

ani
= +∞; this is contradictory to the assumption

saying that for each subsequence {an′
i
} ∈ w we have

∑
an′

i
< +∞. In this way,

we have shown that the assumption (5) is false, that is

sup
{∑

an′
i
: {an′

i
} ∈ w

}
< +∞.

�

Remark 9� All the examples of families wk ⊂ s, k = 1, . . . , 5, presented after
Corollary 3, satisfy the property of being closed under initial subsequences and,
simultaneously, the assumptions 1) and 2) from Theorem 8.

At the end of the paper, we give an example of the family w which is closed
under initial subsequences and which possesses none of conditions 1) and 2) from
Theorem 8. Moreover, for this family w, Theorems 2 and 8 hold true, however,
for Theorem 2, in the purely logic sense only.
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Example 10. Let us set
w =

{{k−x}∞k=1 : x > 1
}
.

The family w is a cuis-set since if {an} ∈ s and a1 = 1 and a2 = 2−x = 2−y

for some x, y > 1, then x = y and, in consequence, if a1, a2, . . . , aN are initial
elements of some sequence {bn} ∈ w for every N ∈ N, then {an} = {k−x}∞k=1

for some x > 1. It is very easy to show that conditions 1) and 2) of Theorem 8
do not hold for family w.

Simultaneously, let us notice that if for some sequence {an} ∈ s and x ∈ R+

the condition (1) would be held, then the sequence {an} would contain infinitely
many of sequences {k−pn}∞k=1, such that p1 > p2 > . . . and

lim
n→∞

∞∑
k=1

k−pn = x,

which would contradict the convergence of series
∑

an. Therefore, Theorem 2
holds in the purely logic sense only (we note that the replacement of condition (1)
with a similar one but having weak inequalities makes no big change).

Theorem 8 is a different case. Let us fix any sequence {an}
an > 0, lim an = 0,

including at least one subsequence

{an′
i
} = {k−x0}∞k=1, where x0 > 1

(obviously, there exist continuum examples of that kind). Since lim an = 0, thus
there exist at most finitely many subsequences of the sequence {an} having the
form {k−x}∞k=1 with x � x0, because the sequence {an} can contain only finitely
many numbers 2−x with x � x0, since

∑
an < ∞. Let us fix the possibly smallest

value x∗ � x0. Then,
∞∑
k=1

k−x∗
= sup

{ ∞∑
k=1

k−x : x > 1 and {k−x}∞k=1 is a subsequence of {an}
}
,

which proves that the thesis of Theorem 8 is true.

Moreover, let us notice that similar properties as possessed by the above
family w are possessed by each of the following sets

ωk :=
{{n−x}∞n=k : x > 1

}
, where k = 1, 2, . . .
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