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GENERALIZED DISCONTINUITY
OF REAL-VALUED FUNCTIONS

RAFAL ZDUNCZYK

ABSTRACT. We present a proof of the theorem on countability of the set
of points of generalized discontinuity of an (S, Y)-regular real function f: X — R,
where S is a local system in X and ) is a partition of X. We start with a definition
of a local system in a generalized form and with basic properties of local systems.
The concepts are illustrated with examples. The main result is applied both for
regularities in the sense of density connected with the Lebesgue measure on R™
(Lebesgue density) and with Baire category (Z-density), respectively.

Introduction

Let (X,7) be a topological space. Any U C X such that z € T-int U will be
called a T-neighbourhood of x.

DEFINITION. Let (X,7) be dense-in-itself (i.e., there are no 7-isolated points
in X). Any class S = {S(x)}mex, where each S(z) is a collection of subsets
of X, will be referred to as a local system in (X, T) (or simply, a local system,
when confusion is unlikely), if for any x € X the following conditions hold:

L (a) {z} ¢ S(=),
(b) S(z) # 2,
2. if S € S(z), then z € S,
3. if S; € S(z) and Sy C 53, then Sy € S(z),
4. iffx €U, U €T and S € S(z), then SNU € S(x).

Remark 1. If 2o € intU and {S(x)},cx is a local system, then U € S(zo),
by 4.
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The hereby defined local systems are a generalization up to topological spaces
of a concept of Brian Thomson of 1980’s (compare [I0, p. 3, (2.1)] and
[9, p. 280, (1.1)]), originally formulated for the real line equipped with the Eu-
clidean topology. In the paper [8], the same notion is considered but the term
local system or any other is not attached to it there. Certainly, the general-
ization has its limitations, for if X had isolated points, then conditions 1 and
4 would be contradictory. Therefore we make a general assumption on (X,7)
to be dense-in-itself.

EXAMPLE 1.
1. If 2 < m < card X, then the collections
Sm::{{SCX:xGSandcardS}m}:;Z:EX}
are distinct local systems in (X, {@, X}).

2. In each dense-in-itself topological space class Sy := {So(x)}m cx» Where

S € So(x), if S is a T-neighbourhood of z, forms a local system. Moreover,
if T ={2,X}, then So(z) = {X}, for any z € X.
3. From now on, let A% stand for the 7-derived set of A. Then

Seo := {Soo(x)}zex )

where S € Soo(z), if # € S9N S, is a local system as well. In particular,
S in (X, {@, X}) coincides with S, defined in Il

4. Let Y :={Y, : 2 € X} be a collection of Y, C X such that = € (Y,)% Put
Syo(z):={SC X :2€S DU, NY,, where U, is a T-neighbourhood of x}
and
Sy.eo(z) ={S C X :S,U{z} CS, for some S, C Y,, such that = € (S;)*}.
Then the collections
Syo:={Syo(z):z€ X} and Sy :={%(z):z€X}
are local systems in (X, 7). Note that for Y, = X we have Sy o = S
and Sy o = Sp.

Any system such that all the S(x)’s are stable under finite intersections will
be called a filtering local system. The class of all filtering local systems in (X, 7)
will be denoted by FS(X, T).

EXAMPLE 2. Sy € FS(X,T), for every (X, T).

EXAMPLE 3.
1. If card X > 2, the system Sy from Example [[[] is not filtering.
2. If card X = 2, we have Sy = S, hence, in this case, Soc € FS(X, T).
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EXAMPLE 4. Let T4 stand for the Euclidean topology. Then, Soo ¢ FS(R™, Tpat)-

THEOREM 1. Assume that X is infinite or finite with even cardinality. There
is a topology Te, on X such that S € FS(X, Tey).

Proof. Let 7, be a topology on X introduced by the basis I/ consisting of dis-
joint two-element sets. Hence,
Soc(z) ={S: U, C S}, x € X,
where U, € U is a basic 7.,-neighbourhood of z. Note that in (X, 7.,) we have
So = Sx. Thus, by Example 2 S € FS(X, Tew). O
For local systems &’ and 8" in (X, T), let us define
S'uS” as {S(@)US’(z):ze X}

and

§'nS" as {S(x)NS"(z):x€ X}
For a collection S of local systems in (X, 7), let | |S, []S denote the collections

{{S € S(x), forsomeSeS}:ze X}

and
{{S e S(zx), forallSeS}:ze X},

respectively.

PROPERTY 1. Assume that 8" and 8" are local systems in (X, T), and that S
is a collection of local systems in (X, T). Collections ' US”, S'NS”, | |S and
['1S are well defined local systems.

PROPERTY 2. Given a local system S in (X,T), we have:
SNS§=8§=8SUS.

COROLLARY 1. Let S(X,T) denote the collection of all local systems of a fized
dense-in-itself (X, T). The structure S := (S(X,T),M,,So,Sx) forms a lattice
with 1 = Soo and 0o = Sy (cf. [5]).

PROPERTY 3. [|S € FS(X, T) provided S C FS(X,T).

Remark 2. It may happen that all the systems from § are filtering, while | |S
is not. An appropriate example will be given in the sequel (Remark [Bl).

If S} 8" are local systems and S’(z) C S”(x) holds for each € X, then we
write 8’ C §”.

PROPERTY 4. The relation “C” is a partial order in S(X,T). Moreover, for
any S C S(X,T) and S € S, we have Sy C ST S, [1ST ST |S.

The following is a straightforward consequence of this.
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COROLLARY 2. [|S(X,T) =80 and | |S(X,T) = Sx.
PROPERTY 5. IfS'C S, then S’ NS" =8, S'us”"=8"

PROPERTY 6. It is possible that 8" € FS(X,T), &' = 8", but S' ¢ FS(X, T).
An appropriate example will be given in the sequel (Remark[3).

In the light of Property [6l it is clear that, for Property [3] the assumption that
all the systems in S are filtering, is relevant and cannot be weakened.

Let T be any set of indices. Let us assume that some sets Y! C X, for
t € T are related to each z € X. Put Y, := {Y} : t € T} for z € X and
Y:={Y}:teT,xze X} If for each z € X the following conditions hold,

1. sets Y1, Y2 {z} are pairwise disjoint for all t1,ty € T, t; # to,

2. X ={2} UV,

3. re mteT(Y;)da
then we call Y a partition of (X,T). We will say that S = {S(z) : v € X} is
Y-decomposable it SNY}! # @ forany t € T, z € X and S € S(z).

THEOREM 2. If S is V-decomposable, then the collections S5 :={S% (z):z€X},
where

S5 (x) == {S CX:S>8n(Yiu{x}), for some S € S(x)} ,
are well defined local systems, for all t € T.

Proof. Letusfixxz € X and t € T. We omit proofs of 1-3 and focus on point 4
being the only nontrivial one. Let us consider S N U, where S € S*(x) and
x € U € T. The proof will be accomplished if we find Sy € S(z), for which

Sy N (Yiu{z}) cSNU.
There is an S € S(z) such that SN (Yiu{z}) C S.Put Sy == SNU. It follows
that Sy € S(z) and that
Syn(Yiu{z})=5n(Ylu{z})nUcSNU.
The proof is now complete. O

PROPERTY 7. If S’ is Y-decomposable and S” C &', then 8" is Y-decomposable
as well. Sy is Y-decomposable, for all the partitions ).

In (R, Tnat), let us consider the partition Voo := {Y,,Y) : 2 € R}, where
Y) := (—o0;z) and V)" := (x;00). The Vso-decomposable systems will be shortly
called bilateral. In (R, Tyt ), for Vo, and a bilateral S, we introduce the following
denotations:

S™:={S"(z):x €R}, where S (z 0o, x) NS : 8 € S(x)};

(#) = {(=o0.1] 0
St:={S8"(z): 2 €R}, where ST(z):={[z,+00)NS:S € S(z)}.
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EXAMPLE 5. Let us define a partition of (R, 7,,4¢) by the following. Put

Ay = (-2 u e e, e,

Y2 =2+ U Aoy, Y2 =+ ((—oo; —1]U[1;00) U U A2n+1>

new new

and )» == {{V2,Y2"} : © € R}. Let us consider two local systems:

Sow = {{S:SD{:I;}U (x—f— U A2n>, forsomeNEw},:z;ER}

n>N
and
Sio:= {{S:Uﬂ[:z;;oo) CS,:I:EUE%M} :xER}.

It is easy to check that S is Vo-decomposable but not V,.,-decomposable, whilst
S, on the contrary, is )..-decomposable but not )>-decomposable.

THEOREM 3. For every YV-decomposable local system S,

Sc|[]sy
teT
Moreover, if S € FS(X,T) and T is finite, then
S=1[1]s5. (2)

teT

Proof. The first part is trivial. For the proof of the latter, let us assume
that cardT = 2, T' = {7, /7} and that S € FS(X,T). Let us fix z € X and S from
S’(z) N S"(x). Then

S>8n (V) u{z}),
§5 8" (YU {z}),
for some S’, S” € S(x). We are searching for Sy C S such that Sy € S(z). To this
end, put Sp := 5" NS". Certainly,
Sy = ((S’ Nns")yn (Y, u {x})) u ((S’ ns"yn () u {x})) C S.

The proofs for higher but still finite cardinalities of T" are similar. O

Y-decomposable systems, for which condition (2)) is fulfilled, will be referred
to as V-retraceable.

The Y-decomposable filtering system may fail to be Y-retraceable when T is
infinite.
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EXAMPLE 6. Let us consider the system Sy in (R 7,,4¢). We will define a par-
tition ) 9
Y={Y]:jewuxeR},

for which [T, (So)3, ZSo- Let

<pj:227r(1—27j), jEw
and

zj == (cos p;,sin p;) € R?, JjEw.

For every € R? the collection of open rays {:z: + {tz;,t > 0}}j€w induces

a partition of (R? 7,,4) into denumerably many angular regions
Y/ ::x+{(tcosg0,tsingp):t>0,g0€[(pj;gajﬂ)}, Jj € w.

Let us fix an z € R? and consider S := Ujew (Y N B(z,2779)), where (and
hereafter) B(z,277) is the open Euclidean ball centred at x with radius 277.
Clearly, S € (So)},(x) for j € w, but z is not in int S, hence S ¢ Sp(x).

ExXAMPLE 7. For a partition ) = {Y! : t € T,z € X}, where cardT > 4, let
t1,12,ts, t47€ T be fixed. Put T := T\{tg, t4}, T:= T\{tl, to, 13, t4} and let the
partition Y := {qu teT,x € X} be defined by the following

Y?, teT,
Yy = YhuYl, t=t, reX.
Y;?’UY;‘*, t =19,

We will find a Y-decomposable system not fulfilling (), by which we shall prove
that for Theorem [l the filtering assumption is vital. Let us consider

g = ((85;151’0 M Sj”%oo) L (Sth,O 1 Sjtl,oo)) Il |—| Sjt,oo’
teT
and the set S, defined as:
S, = X\ (Y2 UY).
It is clear that S is_ji—decomposable (and Y-decomposable as well) and that
Sz € Nier S5(x) \ S(x), which is a consequence of the relations {z} UY! €
Syt1,000 12} U Y € Syus o, and the equality S§ = Sy o, valid for t € T.

EXAMPLE 8. Let us consider the system S° in (R™ Tpqt), 7 € w, such that
S € 8°(x) if x € R™ is an inner point of the intersection of S with each line P,
passing through z. Let { P£}*€T denote the collection of all lines going through .
Obviously, Y := { P!\ {x}}ieeﬁn is a partition of (R" T,q:) and card T = 2.
Moreover, system S° is Y-retraceable. This proves that the finiteness of T is
not necessary for a local system to be retraceable.
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EXAMPLE 9. In (R”, Tphat), for n € w, let us define the partition Y™ := {Ym’”: m e
{1,...,2"},x€ R”}, an n-dimensional version of partition V. Let Z (a1, ..., a,)
denote the Cartesian product of n rays,

n
Z(a,...,an) = X (=1)%(0;00), for ar€{0,1},1<k<n.
k=1
Note that the function m defined by m(ai, ..., a,) := > ,_; ax2¥~! states a one-
-to-one correspondence between {0,1}" and {1,...,2"}. Let us put

Y} =2+ (0,00)",

Yzm(al"“’a”) =xz+ |cdZ(a1,...,a,)\ | {O}U U Yo',
m<m(ay,...,an)
for m(aq,...,a,) > 1. Hence, the sets Y,* are defined for all m € {1,...,2"}.
It is easy to see that for each z € R, R* = {z} U|J>_, Y/ and that the
collection Y™ is a well defined partition of (R™ Trat)-

PROPERTY 8. IfS € FS(X,T) is Y-decomposable, then all the Sﬁ, ’s, fort € T,
are filtering as well.

Proof. Let S € FS(X,7T) be )Y-decomposable. Let us fix z € X, t € T and
S1, 82 € S5, (). Then, by definition there exist S € S(z), j = 1,2, for which

S;o8in (Y udz}), j=1,2

Hence, according to the assumption on S, we have S, := St N S € S(x) and
the inclusion

S1 NSy > StN (Y;U{.’E}),
is fulfilled. Thus S, is filtering. O

Partition ) = {Yt}xeX is said to be regular, if

Ry(z,y) : ﬂU YtUYt

t €T tA

for all pairs of x,y € X, such that x # y.
ExampLE 10. The partition Y from Example [ is regular.
Let C := {C(w,y) : x,y € X }, where

X5 Cay\{z.y} £0, foraty. (3)
Any such C will be called a regularity guardian of ) if

C(xay> \ {.’Ii,y} - Ry(.’l?,y),
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for all z,y € X, x # y. It follows that any regular system has a guardian.
Obviously, if Y is regular and C; is a guardian of its regularity and if Cy :=
{Cg(x, y):x,y € X} is a collection satisfying (3)) and such that

CQ(xvy) CCl(fE,y), for all ZE,yEX,
then Cy is either a regularity guardian for ).

PROPERTY 9. Let C := {C(x,y) cx,y € X} fulfill @B). The following condi-
tions are equivalent:

o C is a guardian of regularity of Y,

o C(x,y) C Clx,y), for all z,y € X, x # vy, for some C = {é(x,y)},

a guardian of reqularity of Y,

o Cla,y)NYINY}) =0, forallz,ye X,z #y andt €T,

o C*:={C(z,y) \ {z,y},z,y € X} is a regularity quardian for Y,

o C.:={C(z,y) U{z,y},z,y € X} is a regularity quardian for Y.

The above property allows us to pay no more attention to whether x and y
are elements of C(x,y) or not.

ExAMPLE 11. In the Euclidean space R™ by a cube of size k > 0, we understand
an image of {x eR":0<z; <1,j=1,.. .,n} under k-scaled similarity. For
arbitrary z,y € R"™ let Cx(x,y) be the intersection of the cubes centred at x
and y, respectively, with sizes 2 maxi<;<n |y; — x;| and edges parallel to axes
of coordinates.

pﬂ(xay)

Cp is a regularity guardian of Y. In particular, Cq(z,y) = [z;y], for n = 1.

EXAMPLE 12. Assume that @ # A C R. Let us consider the partition Y4 defined
by letting

YA = (—o0; ), YA = (1;400), if x € A,

xT
and

YA .= (—o0; ), YA = (2;400), ifré¢ A

T
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Partition yé is regular, but the collection of intervals {[:z:, yl:x,y € R} is not
its regularity guardian. Certainly, Cé = {Cé(x,y) tx,y € R}, the collection
of sets

CA(z,y) == {(—m;min{x,y}] U [max{z,y}; +o0), if card({z,y} NA) =1,

[z; 9], else,

forms a regularity guardian of yé.
EXAMPLE 13.
1. In (R? Tpqt) let us define the partition Y := {V, Y} : z = (z1,x2) € R?}
as
Y= (]R X (x2;+oo)) U ((11;1;—|—oo) X {xg})
and
V) = (R x (—o0;22)) U ((—o0;21) X {a2}).
If x and y have different second coordinate (xy # y2), then an open
stripe R x (min{z,y}; max{x,y}) is included in Ry (z,y). Moreover, for
z,y € R? such that x5 = ya, we have Ry (z,y) = (min{xl,yl}; oo) x {za},
which means that ) is regular. For all regularity guardians of ), we have
int C(x,y) = @, if x93 = ya.
2. In (R? T,.a¢) let us consider the partition Y := {Y/, Y/ : x € R?}, where
for v = (v1,22) € R2 Y := (Rx [v2;+00)) \ {z} and Y := R x (—00; x2).
This partition fails to be regular.

The above examples might suggest that there is no partition of R? into two
parts with a guardian such that int C'(z,y) # @. The following example refutes it.

EXAMPLE 14. For z = (z1,22) € R? let us put

?gé =T+ {(51752) e R?: & > f%}
and

V=a+ ({66 e R 6 <1\ {(0,0)}).

Partition ) is regular. If é’(:z:,y) = YqﬁA}ufy’, then C := {C’(;z:,y) t X,y € RQ} is
a regularity guardian of Y and all the C'(z,%)’s have nonvoid interiors.

Assume that (X, p) is a metric space, C = {C(x, y):x,y € X} is a collection
of subsets of X, which are nonvoid for = # y, and finally S = {S(z) : v € X},
a local system in (X, 7)), where T is topology introduced by p. If there exists
§:(2,8z) = 0% >0, with S, € S(z), such that

VoY (p (y.) < min{6% 6% } = S, NS, NClz,y) # @) L)
z,yeX S, eS8 (x)
Sy€eS(y)
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then we say that the system S fulfills strong intersection condition with
C-SIC(C). If for every nonempty collection {S. }.cx, such that S, € S(z),z € X,
there exists ¢ : z — d(z) > 0, for which

v (p (2,y) < min{5(2),5(y)} = S, NS, NClx,y) # @), (5)

z,yeX

then we say that S fulfills (ordinary) intersection condition with C-1C(C).
Obviously, SIC(C) implies IC(C). Examples of intersection conditions in (R, T;q4¢)
one may find in [2], [3] and in [9].

PROPERTY 10.

1. If 8" = S8 and S’ fulfills (strong) intersection condition with C, then S”
also fulfills (strong) intersection condition with C.

2. Sy fulfills strong intersection condition with C satisfying @), providing
{z,y} N (Clz,y)" # .
3. Let C := {C(:z;,y) DX,y € X} satisfy B). The following conditions are
equivalent:
o system S fulfills (strong) intersection condition with C,
e Co(x,y) C Clx,y), for all z,y € X, for some Cy = {Co(:z:,y)} satis-
fying @) such that S fulfills (strong) intersection condition with Cy.

Proof. Toprove 1, let ' be related to S”. It suffices to put 6”:
To prove 2, put

_ A
= 0| ({a} x 5" (2))"

0(x,Sy) := min{sup{r >0: B(z,r) C Sy}, 1} for z € X and S, € Sy(z).
Then, for some open U, we have
{z,y} CU C B(x,6(x,5:)) N B(y,6(y, Sy)) C Sz NSy,

if d(z,y) < min{é(x, Sz),0(y, Sy)}, and by assumption, U N C(z,y) # 2.
Point 3 is obvious. O

Main result

Now, we shall formulate a generalization of the results published in [4] and [14].
Let us assume that (X, 7T), (Z, 7) are topological spaces, (X, 7 )—dense-in-itself.
Let S be alocal system in (X, 7)), f: X — Z and z € X. The set of all ¢ € Z such
that for U,, an arbitrary neighbourhood of ¢, {z}Uf~1(U,.) € S(z), is denoted by
(S)-Limy_, f(y). In some cases (S)-Lim,_,, f(y) may be a singleton, and then
its only element is called S-limit of f at x, in notation ¢ = (S)-lim,_,, f(y).

10
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PROPERTY 11. Assume that (X,T) is dense-in-itself, (Z,7) Hausdorff and
f: X — Z. The following conditions

L g=limy ., f(y),

2. g=(8)limy—z f(y),

3. g € (So)-Limy, f(y),

4. g = (Soo)-limy—, f(y)
are related as follows:

1-3 are equivalent and imply 4. If (X, T) is first countable and (Z,T) compact,
then all 1-4 are equivalent.

Assuming S to be Y-decomposable with ) = {Y}! tfg;{, we introduce the

following notation:
Sy=1[]s, Sy:=]|]s}
teT teT

Let us note an obvious fact: So = S © S) © Sy T Ss. Hence we have
(So)-Lim f(2) C (S)-Lim f(2) C (Sy)-Lim f(z)
] . .
C (Sy)-Lim f(z) C (So)-Lim f(z).

Certainly, if S is Y-retraceable, we have (SY)))-Lim,_,, f(z) = (S)-Lim, . f(2).

The function f: X — Z is said to be YV-very weakly S-continuous in x € X,
if

f(z) = (8})-lim f(y), for at least one t € T.
Yy—x
If
— (ST\.Ii
f(@) = (Sy)-lim f(y),

we will say that f is YV-weakly S-continuous at x, and finally, we will say that f
is S-continuous at x, if

f(z) = Slim f(y).

Yy—x
Dsf will denote the set of all ’s for which f(z) = S-lim,_,, f(y) fails. Any
function which everywhere has all S-limits (for ¢ € T') and is simultaneously
Y-very weakly S-continuous for all z’s, is called (S, ))-regular. By D?; f we shall
denote the set of YV-strong S-discontinuity of f, i.e., the set of all z € X, for
which these among limits

(83)-lim f(z), teT,

zZ—T

which exist, are pairwise different.

11
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PROPERTY 12. Assume that S is filtering, (Z, T)is Hausdorff and that f: X — Z.
Then

L. (S)-limy ., f(y) = g implies that (S3,)-lim._., f(y) = g, for all t € T,
2. DYf C Dsf.

Proof. To prove 1, note that the only nontrivial part is the uniqueness of g
as (S%,)-limit of f at x. Suppose contrary that for some ¢ € T and some g #
g = (S)-limy_, f(y), f~*(Uz) € S5 (x), for each T-open U; containing g. By as-
sumption, f~'(Uy) € S%,(x) for each open Uy 3 g. We can assume that Uy and
U; are disjoint. Thus f~1(U,) N f~*(U;) = @, which contradicts Property
in the light of the filtering assumption.

Assertion 2 is a straightforward consequence of 1. O

THEOREM 4 (cf. [4], [14]). Assume that (X, p) is a separable metric space and
that for f: X — R, for a partition Y and for a local system S the following
conditions are held:

1. Y = {Y!}HEL is regular,

. T, the set of indices is finite,

. § is Y-retraceable,

. S fulfills the intersection condition with a regularity guardian of Y,

. fis (S,Y)-regular.

Tt = W N

Then the set DY f is at most denumerable.

Proof. Let T = {1,...,n}. Let us notice that in the case of an (S, ))-regular
function, the set D%} f is reduced to the set on which the appropriate limits are
pairwise different.

Let us focus on

A= {:z: € X :(Sy1lim f(z) = f(z) and

ky1: k+1y 7: _
(Sy)zhir;f(z) < (Sy )Zhg;f(z), for ke {l,...,n 1}}
and suppose that A is not denumerable. The cases of other possible inequalities
(or equivalently, nontrivial permutations of 7' U {f(x)}) could be treated by
the same method. For = € A let a(z) := {a1(z),...,ax(z),...,ap_1(x)} be an
(n — 1)-tuple of rational numbers such that
(S§)-lim f(2) < ap(z) < (SyT)-lim f(z),  for ke{l,...,n—1}
zZ—T

zZ—T

12
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By supposition, A, := {5 e A:a(§) = a} would be uncountable for at least one
a={ay,...,an_1} € Q"L Let

S¢ = {1 U (YN f (—o0ia1))
U U (ng ﬂfﬁl(ak—ﬁak))
k=2

U (an N f an—1;400)).
It is easy to verify that S¢ € S(§), if § € Aq, in the light of assumption 3.

By assumption [ there is a regularity guardian C = {C(:I;, y):x,y € X} of Y
and a function ¢ :  — (0, 00) for which

S NS, NC(x,y) # 9, (6)

if p(z,y) < min{d(x),d(y)}. Without loss of generality, § may be assumed
to have only rational values. Thus, in the image of A,, through the function ¢,
there exists dg € Q, such that A,(dy) := {z €A, :0(2) = 50} fails to be denu-
merable. Hence, one can choose z, y € A,(dg) C A,, so that p(x,y) < dp, as A,
being an uncountable subset of a second countable space, contains a condensa-
tion point of itself. But S3 NSy N C(z,y) = &, by 1. This contradicts (@), and
thus @ and the proof is complete. O

If S is bilateral in R, the limits referring to S~ and S™ are called unilateral
S-limits, the left and the right one, respectively. Thus, the following notation is
legitimate.

(8)-lim f(y) = (S7)-lim f(y), S-lm f(y)=(S7)-1lim f(y).

y—x+ Yy—r— y—z
The notion of Y..-very weak S-continuity in the case of dimention n = 1 is
reduced to the notion of unilateral S-continuity (left or right, respectively).
The forthcoming considerations refer to partition V5 defined in Example

COROLLARY 3. If, for f: R — R and S € S(R, T,at), the assumptions of the
above theorem hold, then Dgsf = D?S;E]f is at most denumerable.

Remark 3. For f: R®™ — R, n > 1, the assumptions of the above theorem
do not guarantee the denumerability of Dgsf.

EXAMPLE 15. Let us consider S3, the local system in R? in which S € S(z)
only if x € S is an inner density point of all the intersections of S with lines
passing through z. Moreover, let A C R? be an uncountable set having exactly
two points incommon with every line in the plane [7]. It is not difficult to see
that for S and the function y 4, the conditions of Theorem [ are fulfilled, while
Dss x4 = A is uncountable.
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Applications

Let A stand for Lebesgue measure in R™ A be A-measurable subset of R™
(A € L). We say that © € R"™ is a Lebesgue density point of A, in notation
x e ®r(A) (cf. [, [6], [121), if

i A(A—2) N [=hs A]")
h—0 2nhn
Let w'™ denote the collection of all increasing sequences of positive integers,
Is — the upper limit of sequence of sets, and A/ — the ideal of Lebesgue null sets
in R™
Remark 4 ([1]). For A € L, the following conditions are equivalent.
1.z e @g(fn,
2. V{ng} € ™ Hky} € Wt lIspew ([~1;1]" \ ng, (A — 2)) € N.

The proof uses Riesz theorem on stochastic convergence. This observation
is due to Wilczyniski, and in the one-dimensional case has led to the concept
of Z-density point, here considered in R™ (cf. [1], [12], [I4]). We say that z € R™
is an Z-density point of A € B (i.e., subset of R™ with Baire property), in notation
x € Pz(A), provided that

=1.

Is (11" \ ng,(A—12)) €T,

{np}ew™ {k,}ew'™ pew
where (and hereafter) Z is an ideal of meager subsets of R™.
PrROPERTY 13 (cf. [12], [I]). Operators @, and &z mapping measurable sub-
sets of R™ and sets with Baire property in R™ into their sets of Lebesque den-
sity points and of L-density points, respectively, are lower density operators on
(L,N) and on (B,T), respectively.
PROPERTY 14. Let Sp(z) := {S € R" :z € S and x € ®(S*) for some S,
L-kernel of S} and Sz(z) :={S €R":z € S and x € z(S*) for some S*,
B-kernel of S}. The collections S := {Sg(z) : © € R"} and St := {Sz(z) :
x € R™} are filtering local systems in (R™, That)-
Remark 5. System S, Sz is not filtering in (R™, 7T,,4¢), which is a consequence
of the existence of a co-meager Lebegue null set in R"™

THEOREM 5 (cf. [3], [I4]). Both local systems Sy and Sz fulfill strong inter-
section condition with Co (Example[I1) in the “maz” metric on R™.

Proof. For the case of measure, we will prove a little more than we should do
in the light of SIC(Cq), as for £ > 0 we will define a function

5 | ({2} % Se(2) = (0500), 6 : (2,5.) = 635,

z€R?

14
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so that for all z,y € R™ and S, € Sg(z), Sy € Sc(y), the intersection S, NSy N
Co(z,y) is at least of measure (1 — E))\(CE,(.T, y)) if

ly — x| < mln{éme 5y5} (7)

Let us note that considering only the case y; > x;, for all j < n, will not affect
the generality of our method. Let us fix ¢ > 0, z € R", S, € Sg(z) and S} € £
such that z € S} C S, and z € ®,(S%). By definition for £ > 0, there exists
a positive n(&, z, S%), such that

A((z=mz+m)"N8S:) > (2n)" (1-2), (8)

it 0 <n<n(Ez>S%). Put

657 =1 (575 51) (9)
and assume that 6 := ||y — z| < min{5g*, 6% 6} We have

< AMCa(z,y) <27t (10)

Let B := X?Zl [yj — &y + (ﬂ. Obviously, C(z,y) C B. By (8) we have

g

~ 5rr) 20",

A(S; N B) = (1
Therefore,

A8y N Calz,y)) _ AS; N B) — (AB) — AMCa(=,9))

MCr(z,y)) ACa(z,y))
(1 — 557) (20)™ — (20)"
2 T e )
e
2 (Cr(z,y))
>1 %

the last inequality being a consequence of (I0). By the similar argument we
would prove that A(S; N Cr(z,y)) > (1 - £)A(Calz,y)).

Category part is an immediate consequence of [13] Theorem 3] and the Note
on page 321 [I3] applied to R™ Indeed, the characterization of an Z-dispersion
point in R made by Lazarow ([II]) has an obvious n-dimensional analogue,
cf. [14]. O

COROLLARY 4. Systems Sz and Sz in (R™, That) are YH-decomposable and
filtering. Thus, by Theorem[3, they are Y™ -retraceable.

15
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COROLLARY 5. Systems Sz and S¢ in (R™, Tpat) satisfy the conditions of The-
orem[q] (with Y™ and C), hence the set of points of strong S -discontinuity of an
S -reqular function on R"™, as well as the set of points of strong St-discontinuity
of an Sz-reqular function on R™ are at most denumerable.

COROLLARY 6. Systems Sy and Sy considered in R fulfill the assumptions
of Theorem @ (with Y and Cg), as well. Hence, by Corollary [, the sets Ds, f
and Ds, f for the functions Sz-reqular and Sz-regular, respectively, are at most
denumerable.

1
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