TATRA
 MDuNTaiNS

Mathematical Publications

PRODUCTS OF INTERNALLY QUASI-CONTINUOUS FUNCTIONS

Paulina Szczuka - Mariola Marciniak

Abstract

In this paper we characterize the product of internally quasi--continuous functions and we construct a bounded internally quasi-continuous strong Świątkowski function which cannot be written as a finite product of internally strong Świątkowski functions.

1. Preliminaries

The letters \mathbb{R} and \mathbb{N} denote the real line and the set of positive integers, respectively. The symbol $\mathrm{I}(a, b)$ denotes an open interval with the endpoints a and b. For each $A \subset \mathbb{R}$ we use the symbols $\operatorname{int} A, \operatorname{cl} A, \operatorname{bd} A$, and $\operatorname{card} A$ to denote the interior, the closure, the boundary, and the cardinality of A, respectively. We say that a set $A \subset \mathbb{R}$ is simply open $\mathbb{1}$, if it can be written as the union of an open set and a nowhere dense set.

The word function denotes a mapping from \mathbb{R} into \mathbb{R} unless otherwise explicitly stated. The symbol $\mathcal{C}(f)$ stands for the set of all points of continuity of f. We say that f is a Darboux function, if it maps the connected sets onto connected sets. We say that f is cliquish [11] $\left(f \in \mathcal{C}_{q}\right)$, if the set $\mathcal{C}(f)$ is dense in \mathbb{R}. We say that f is internally cliquish $\left(f \in \mathcal{C}_{q i}\right)$, if the set $\operatorname{int} \mathcal{C}(f)$ is dense in \mathbb{R}. We say that f is quasi-continuous in the sense of Kempisty $5(f \in \mathbb{Q})$, if for all $x \in \mathbb{R}$ and open sets $U \ni x$ and $V \ni f(x)$, the set $\operatorname{int}\left(U \cap f^{-1}(V)\right) \neq \emptyset$. We say that f is internally quasi-continuous [8] $\left(f \in \mathcal{Q}_{i}\right)$, if it is quasi-continuous and its set of points of discontinuity is nowhere dense; equivalently, f is internally quasi-continuous if $f \upharpoonright \operatorname{int} \mathcal{C}(f)$ is dense in f. We say that x_{0} is a point of internal

[^0]
PAULINA SZCZUKA - MARIOLA MARCINIAK

quasi-continuity of f if and only if there is a sequence $\left(x_{n}\right) \subset \operatorname{int} \mathcal{C}(f)$ such that $x_{n} \rightarrow x_{0}$ and $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ (see [8]). We say that f is a strong S'wigtkowski function [6] $\left(f \in \mathcal{S}_{s}\right)$, if whenever $a, b \in \mathbb{R}, a<b$, and $y \in \mathrm{I}(f(a), f(b))$, there is $x_{0} \in(a, b) \cap \mathcal{C}(f)$ such that $f\left(x_{0}\right)=y$. We say that f is an internally strong Świątkowski function $[8]\left(f \in \dot{\mathcal{S}}_{s i}\right)$, if whenever $a, b \in \mathbb{R}, a<b$, and $y \in \mathrm{I}(f(a), f(b))$, there is

$$
x_{0} \in(a, b) \cap \operatorname{int} \mathcal{C}(f) \quad \text { such that } \quad f\left(x_{0}\right)=y
$$

Clearly, each strong Świątkowski function has the Darboux property. Moreover, we can easily see that the following inclusions

$$
\dot{\mathcal{S}}_{s i} \subset \dot{\mathcal{S}}_{s} \subset \mathcal{Q} \subset \mathcal{C}_{q} \quad \text { and } \quad \dot{\mathcal{S}}_{s i} \subset \mathcal{Q}_{i} \subset \mathcal{C}_{q i} \subset \mathfrak{C}_{q}
$$

are satisfied.
Finally, the symbol $[f=a]$ stands for the set $\{x \in \mathbb{R}: f(x)=a\}$.

2. Introduction

In 1960 S. Marcus remarked that not every function is the product of Darboux functions [9. The problem of characterizing the class of products of Darboux functions was solved by J. G. Ceder [2], 3]. In 1985 Z. Grande constructed a nonnegative Baire one function which cannot be the product of a finite number of quasi-continuous functions, and asked for characterization of such products [4]. The following theorem (see [7, Theorem III.2.1]) gives an answer to this question.

Theorem 2.1. For each function f the following conditions are equivalent:
i) there are quasi-continuous functions g_{1} and g_{2} with $f=g_{1} g_{2}$,
ii) f is a finite product of quasi-continuous functions,
iii) f is cliquish and the set $[f=0]$ is simply open.

In 1996 A. Maliszewski characterized the product of Darboux quasi--continuous functions [7, Theorem III.3.1] and proved that there exists a bounded Darboux quasi-continuous function which cannot be written as the finite product of strong Świątkowski functions [7, Proposition III.4.1]. Ten years later P. Szczuka characterized the product of four and more strong Świątkowski functions [10, Theorem 4.2].

In this paper we characterize the product of internally quasi-continuous functions (Theorem 4.2) and we construct a bounded internally quasi-continuous strong Świa̧tkowski function which cannot be written as the finite product of internally strong Śsiątkowski functions (Proposition 4.3).

PRODUCTS OF INTERNALLY QUASI-CONTINUOUS FUNCTIONS

3. Auxiliary lemmas

Lemma 3.1 is due to A. Maliszewski [7, Lemma III.1.10].
Lemma 3.1. Let $I=(a, b), \Gamma>0$ be an extended real number, and $k>1$. There are functions g_{1}, \ldots, g_{k} such that $g_{1} \ldots g_{k}=0$ on \mathbb{R} and for $i \in\{1, \ldots, k\}$: $\mathbb{R} \backslash \mathcal{C}\left(g_{i}\right)=\operatorname{bd} I$ and $g_{i}[(a, c)]=g_{i}[(c, b)]=(-\Gamma, \Gamma)$ for each $c \in I$.

The proof of Lemma 3.2 can be found in [10, Lemma 3.4].
Lemma 3.2. Assume that $F \subset C$ are closed and \mathcal{J} is a family of components of $\mathbb{R} \backslash C$ such that $C \subset \operatorname{cl} \bigcup \mathcal{J}$. There is a family $\mathcal{J}^{\prime} \subset \mathcal{J}$ such that:
i) for each $J \in \mathcal{J}$, if $F \cap \operatorname{bd} J \neq \emptyset$, then $J \in \mathcal{J}^{\prime}$,
ii) for each $c \in F$, if c is a right-hand (left-hand) limit point of C, then c is a right-hand (respectively left-hand) limit point of the union $\bigcup \mathcal{J}$ ',
iii) $\operatorname{cl} \bigcup \mathcal{J}^{\prime} \subset F \cup \bigcup_{J \in \mathcal{J}^{\prime}} \operatorname{cl} J$.

Lemma 3.3. Let $I=(a, b)$ and let the function $f: \operatorname{cl} I \rightarrow(0,+\infty)$ be continuous. There are continuous functions $\psi_{1}, \psi_{2}: I \rightarrow(0,+\infty)$ such that $f=\psi_{1} \psi_{2}$ on I and $\psi_{i}[(a, c)]=\psi_{i}[(c, b)]=(0,+\infty)$ for each $i \in\{1,2\}$ and $c \in I$.

Proof. Define the function $\bar{\psi}: \mathbb{R} \rightarrow(0,+\infty)$ by

$$
\bar{\psi}(x)=\left\{\begin{array}{cl}
\max \left\{\frac{\sin x^{-1}+1}{|x|},|x|\right\} & \text { if } x \neq 0 \\
1 & \text { if } x=0
\end{array}\right.
$$

Then, clearly, $\mathcal{C}(\bar{\psi})=\mathbb{R} \backslash\{0\}$ and $\bar{\psi}[(-\delta, 0)]=\bar{\psi}[(0, \delta)]=(0,+\infty)$ for each $\delta>0$. Choose elements $x_{1}, x_{2} \in(a, b)$ and assume that $x_{1}<x_{2}$. Define the function $\psi_{1}: I \rightarrow(0,+\infty)$ by the formula

$$
\psi_{1}(x)= \begin{cases}\bar{\psi}(x-a) & \text { if } x \in\left(a, x_{1}\right] \\ \bar{\psi}(x-b) & \text { if } x \in\left[x_{2}, b\right), \\ \text { linear, } & \text { on the interval }\left[x_{1}, x_{2}\right] .\end{cases}
$$

Observe that ψ_{1} is continuous on I and it is easy to see that $\psi_{1}[(a, c)]=$ $\psi_{1}[(c, b)]=(0,+\infty)$ for each $c \in I$. Now, define the function $\psi_{2}: I \rightarrow(0,+\infty)$ as follows

$$
\psi_{2}=\frac{f}{\psi_{1}}
$$

Since f is positive, bounded and continuous on $\mathrm{cl} I$, the function ψ_{2} is continuous on I and $\psi_{2}[(a, c)]=\psi_{2}[(c, b)]=(0,+\infty)$ for each $c \in I$. Finally, $f=\psi_{1} \psi_{2}$ on I, which completes the proof.

Lemma 3.4. Let $I=(a, b)$ and $y \in(0,1]$. There is a strong Światkowski function $\psi: \operatorname{cl} I \rightarrow(0,1]$ such that $\psi[I]=\psi[I \cap \mathcal{C}(\psi)]=(0,1], \psi(a)=\psi(b)=y$, bd $I \subset \mathcal{C}(\psi)$, and $\operatorname{card}(I \backslash \mathcal{C}(\psi))=1$.

PAULINA SZCZUKA - MARIOLA MARCINIAK

Proof. Define the function $\bar{\psi}: \mathbb{R} \rightarrow(0,1]$ by

$$
\bar{\psi}(x)=\left\{\begin{array}{cc}
\min \left\{1, \sin x^{-1}+|x|+1\right\} & \text { if } x \neq 0 \\
2^{-1} & \text { if } x=0
\end{array}\right.
$$

Then, clearly, $\bar{\psi} \in \dot{\mathcal{S}}_{s}$. Choose elements $x_{1}, x_{2}, x_{3} \in(a, b)$ and assume that $x_{1}<x_{2}<x_{3}$. Define the function $\psi: \operatorname{cl} I \rightarrow(0,1]$ by the formula

$$
\psi(x)= \begin{cases}\bar{\psi}\left(x-x_{2}\right) & \text { if } x \in\left[x_{1}, x_{3}\right] \\ y & \text { if } x \in\{a, b\} \\ \text { linear, } & \text { on intervals }\left[a, x_{1}\right] \text { and }\left[x_{3}, b\right]\end{cases}
$$

One can easily show that the function ψ has all required properties.

4. Main results

Remark 4.1. Product of two internally cliquish functions is internally cliquish.
Proof. If the functions f and g are internally cliquish, then the sets int $\mathcal{C}(f)$ and int $\mathcal{C}(g)$ are dense in \mathbb{R}. Hence, the set int $\mathcal{C}(f) \cap \operatorname{int} \mathcal{C}(g)$ is dense in \mathbb{R}, too. Moreover, int $\mathcal{C}(f) \cap \operatorname{int} \mathcal{C}(g) \subset \operatorname{int} \mathcal{C}(f g)$, which proves that the function $f g$ is internally cliquish.

Theorem 4.2. For each function f the following conditions are equivalent:
i) there are internally quasi-continuous functions g_{1} and g_{2} with $f=g_{1} g_{2}$,
ii) f is a finite product of internally quasi-continuous functions,
iii) f is internally cliquish and the set $[f=0]$ is simply open.

Proof. The implication (i) \Rightarrow ii) is evident.
ii) \Rightarrow iii). Assume that there is $k \in \mathbb{N}$ and there are internally quasi-continuous functions g_{1}, \ldots, g_{k} such that $f=g_{1} \ldots g_{k}$. Since each internally quasi-continuous function is internally cliquish, using Remark 4.1 we obtain that the function f is internally cliquish. Moreover, since each internally quasi-continuous function is quasi-continuous, by Theorem [2.1, $[f=0]$ is simply open.
iii) \Rightarrow i). Now, assume that the set $[f=0]$ is simply open and the function f is internally cliquish. Hence, $\operatorname{int} \mathcal{C}(f)$ is dense in \mathbb{R}. Let $U=\operatorname{int} \mathcal{C}(f) \backslash \operatorname{bd}[f=0]$. Observe that the set $\mathbb{R} \backslash U$ is closed. Moreover,

$$
\mathbb{R} \backslash U=(\mathbb{R} \backslash \operatorname{int} \mathcal{C}(f)) \cup \operatorname{bd}[f=0]
$$

Since $\mathbb{R} \backslash \operatorname{int} \mathcal{C}(f)$ is boundary and closed, and $[f=0]$ is simply open, the set $\mathbb{R} \backslash U$ is nowhere dense. Let \mathcal{J} be the family of all components of U. Since $[f=0$] is simply open, $J \subset[f=0]$ or $J \cap[f=0]=\emptyset$ for each $J \in \mathcal{J}$. So, if there is

PRODUCTS OF INTERNALLY QUASI-CONTINUOUS FUNCTIONS

$J \in \mathcal{J}$ such that $J \cap[f=0]=\emptyset$, then $f>0$ on J or $f<0$ on J. Write the set U as the union of families \mathcal{I}_{1} and \mathcal{I}_{2} consisting of the pairwise disjoint compact intervals, such that for each $x \in U$, there are $I_{1} \in \mathcal{I}_{1}$ and $I_{2} \in \mathcal{I}_{2}$ with $x \in \operatorname{int}\left(I_{1} \cup I_{2}\right)$.

Fix an interval $J \in \mathcal{J}$ and let $J=(a, b)$. If $J \subset[f=0]$, then by Lemma 3.1 applied for $\Gamma=+\infty$ and $k=2$, there are continuous functions $g_{1 J}, g_{2 J}: J \rightarrow \mathbb{R}$ such that $0=f \upharpoonright J=g_{1 J} g_{2 J}$ and for $i \in\{1,2\}$

$$
\begin{equation*}
g_{i J}[(a, c)]=g_{i J}[(c, b)]=\mathbb{R} \quad \text { for each } \quad c \in J . \tag{1}
\end{equation*}
$$

If $J \cap[f=0]=\emptyset$, then $|f|>0$ on J. Fix an interval $I \in \mathcal{I}_{1} \cup \mathcal{I}_{2}$ such that $I \subset J$ and let $I=[\alpha, \beta]$. Since $|f \backslash I|>0$ and f is continuous on I, by Lemma 3.3 there are continuous functions $\psi_{1 I}, \psi_{2 I}:(\alpha, \beta) \rightarrow(0,+\infty)$ such that $|f|=\psi_{1 I} \psi_{2 I}$ on (α, β) and for $i \in\{1,2\}$

$$
\begin{equation*}
\psi_{i I}[(\alpha, c)]=\psi_{i I}[(c, \beta)]=(0,+\infty) \quad \text { for each } \quad c \in(\alpha, \beta) \tag{2}
\end{equation*}
$$

Now, define functions $\psi_{1 J}, \psi_{2 J}: J \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
& \psi_{1 J}(x)=\left\{\begin{array}{cl}
\psi_{1 I}(x) & \text { if } x \in \operatorname{int} I \text { and } I \in \mathcal{I}_{1}, \\
-\psi_{1 I}(x) & \text { if } x \in \operatorname{int} I \text { and } I \in \mathcal{I}_{2}, \\
1 & \text { otherwise },
\end{array}\right. \\
& \psi_{2 J}(x)=\left\{\begin{array}{cl}
\psi_{2 I}(x) \cdot \operatorname{sgn} f(x) & \text { if } x \in \operatorname{int} I \text { and } I \in \mathcal{I}_{1}, \\
-\psi_{2 I}(x) \cdot \operatorname{sgn} f(x) & \text { if } x \in \operatorname{int} I \text { and } I \in \mathcal{I}_{2}, \\
f(x) & \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Then, clearly, $f \upharpoonright J=\psi_{1 J} \psi_{2 J}$. By condition (2) and since $|f|>0$ on J, for $i \in\{1,2\}$

$$
\begin{equation*}
\psi_{i J}[(a, c)]=\psi_{i J}[(c, b)]=\mathbb{R} \backslash\{0\} \quad \text { for each } \quad c \in J \tag{3}
\end{equation*}
$$

$\psi_{1 J}$ and $\psi_{2 J}$ are internally quasi-continuous on J. Fix $x \in J$. If there is $I \in \mathcal{I}_{1} \cup \mathcal{I}_{2}$ such that $x \in \operatorname{int} I$, then, since $\psi_{1 I}$ and $\psi_{2 I}$ are continuous on I, the functions $\psi_{1 J}$ and $\psi_{2 J}$ are internally quasi-continuous at x. In another case, there are $I_{1} \in \mathcal{I}_{1}$ and $I_{2} \in \mathcal{I}_{2}$ such that $x \in \operatorname{bd} I_{1} \cap \mathrm{bd} I_{2}$. Since $\psi_{1 J}(x)=1$ and $\psi_{1 J}=\psi_{1 I}$ is positive and continuous on $\operatorname{int} I_{1}$, using (2), we clearly obtain that $\psi_{1 J}$ is internally quasi-continuous at x. Moreover, $\psi_{2 J}(x)=f(x)$ and $\psi_{2 J}$ is continuous on int I_{1}, it has the same sign as the function f on I_{1}. (Recall that f does not change its sign on J.) So, by (22), $\psi_{2 J}$ is internally quasi-continuous at x, too.

Further, we define functions $g_{1}, g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
g_{1}(x)= \begin{cases}g_{1 J}(x) & \text { if } x \in J, J \in \mathcal{J} \text { and } J \subset[f=0] \\ \psi_{1 J}(x) & \text { if } x \in J, J \in \mathcal{J} \text { and } J \cap[f=0]=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
\text { PAULINA SZCZUKA - MARIOLA MARCINIAK } \\
g_{2}(x)= \begin{cases}g_{2 J}(x) & \text { if } x \in J, J \in \mathcal{J} \text { and } J \subset[f=0], \\
\psi_{2 J}(x) & \text { if } x \in J, J \in \mathcal{J} \text { and } J \cap[f=0]=\emptyset, \\
f(x) & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then, clearly, $f=g_{1} g_{2}$. Finally we will show that functions g_{1} and g_{2} are internally quasi-continuous.

Fix $i \in\{1,2\}$ and let $x \in \mathbb{R}$. First, assume that there is $J \in \mathcal{J}$ such that $x \in \operatorname{cl} J$. If $x \in \operatorname{int} J$ then, since $g_{i J}$ is continuous on J and $\psi_{i J}$ is internally quasi-continuous on J, the function g_{i} is internally quasi-continuous at x. So, let $x \in \operatorname{bd} J$. Since $g_{i} \upharpoonright J$ is internally quasi-continuous, by (11) or (3), we clearly obtain that g_{i} is internally quasi-continuous at x.

Assume now that $x \in \mathbb{R} \backslash \bigcup_{J \in \mathcal{J}} \mathrm{cl} J$. In this case, $x \in \mathbb{R} \backslash U$. Since $\mathbb{R} \backslash U$ is nowhere dense and conditions (11) and (3) hold, for each $n \in \mathbb{N}$, there is $J_{n} \in \mathcal{J}$ such that $J_{n} \subset\left(x, x+\frac{1}{n}\right)$ and there is

$$
x_{n} \in \mathcal{J}_{n} \cap \operatorname{int} \mathcal{C}\left(g_{i}\right) \quad \text { with } \quad\left|g_{i}\left(x_{n}\right)-g_{i}(x)\right|<\frac{1}{n}
$$

Hence there is a sequence $\left(x_{n}\right) \subset \operatorname{int} \mathcal{C}\left(g_{i}\right)$ such that $x_{n} \rightarrow x$. Consequently, the function g_{i} is internally quasi-continuous at x. This completes the proof.

Proposition 4.3. There is a bounded internally quasi-continuous strong Śwightkowski function which cannot be written as the finite product of internally strong Świģtkowski functions.

Proof. Let $C \subset[0,1]$ be the Cantor ternary set, and let \mathcal{I}_{1} and \mathcal{I}_{2} be disjoint families of all components of the set $[0,1] \backslash C$ such that $C \cup \bigcup \mathcal{I}_{1} \cup \bigcup \mathcal{I}_{2}=[0,1]$ and $C=\left(\mathrm{cl} \bigcup \mathcal{I}_{1}\right) \cap\left(\mathrm{cl} \bigcup \mathcal{I}_{1}\right)$. Put $\mathcal{I}=\mathcal{I}_{1} \cup \mathcal{I}_{2}$ and define

$$
\begin{equation*}
A=C \backslash \bigcup_{I \in \mathcal{I}} \operatorname{bd} I \tag{4}
\end{equation*}
$$

Since A is a G_{δ}-set, then $C \backslash A$ is an F_{σ}-set, whence there is a sequence $\left(F_{n}\right)$ consisting of closed sets such that

$$
\begin{equation*}
C \backslash A=\bigcup_{n \in \mathbb{N}} F_{n} . \tag{5}
\end{equation*}
$$

Define $F_{0}^{\prime}=\emptyset$. For each $n \in \mathbb{N}$, use Lemma 3.2 two times to construct a sequence of sets $\left(F_{n}^{\prime}\right)$ and a sequence of families of intervals $\left(\mathcal{J}_{n}^{\prime}\right)$ such that

$$
\begin{gather*}
\mathcal{J}_{n}^{\prime}=\mathcal{J}_{1, n}^{\prime} \cup \mathcal{J}_{2, n}^{\prime}, \tag{6}\\
F_{n}^{\prime}=F_{n} \cup \bigcup_{k<n}\left(F_{k}^{\prime} \cup \bigcup_{I \in \mathcal{J}_{k}^{\prime}} \mathrm{bd} I\right) \tag{7}
\end{gather*}
$$

and for $j \in\{1,2\}$,

$$
\begin{equation*}
\mathcal{J}_{j, n}^{\prime} \subset \mathcal{I}_{j}, \tag{8}
\end{equation*}
$$

PRODUCTS OF INTERNALLY QUASI-CONTINUOUS FUNCTIONS

$$
\begin{equation*}
\text { for each } I \in \mathcal{I}_{j} \text {, if } F_{n}^{\prime} \cap \operatorname{bd} I \neq \emptyset \text {, then } I \in \mathcal{J}_{j, n}^{\prime} \text {, } \tag{9}
\end{equation*}
$$

for each $c \in F_{n}^{\prime}$, if c is a right-hand (left-hand) limit point of C, then c is a right-hand (left-hand) limit point of the union $\bigcup \mathcal{J}_{j, n}^{\prime}$,

$$
\operatorname{cl} \bigcup \mathcal{J}_{j, n}^{\prime} \subset F_{n}^{\prime} \cup \bigcup_{J \in \mathcal{J}_{j, n}^{\prime}} \operatorname{cl} J
$$

Observe that by (11), for each $k<n$, the set $F_{k}^{\prime} \cup \bigcup_{I \in \mathcal{J}_{k}^{\prime}} \mathrm{bd} I$ is closed. So, by (7), the set F_{n}^{\prime} is also closed and $F_{n}^{\prime} \subset C \backslash A$. Fix an interval $I \in \mathcal{I}$. Using Lemma3.4, we construct a strong Świa̧tkowski function $f_{I}[I]=f_{I}\left[I \cap \mathcal{C}\left(f_{I}\right)\right]=(0,1]$, $f_{I}(\inf I)=f_{I}(\sup I)=2^{-1}, \operatorname{bd} I \subset \mathcal{C}\left(f_{I}\right)$, and $\operatorname{card}\left(I \backslash \mathcal{C}\left(f_{I}\right)\right)=1$. Put

$$
n_{I}=\min \left\{n \in \mathbb{N}: I \in \mathcal{J}_{n}^{\prime}\right\},
$$

and observe that by (9), $\bigcup_{n \in \mathbb{N}} \bigcup \mathcal{J}_{n}^{\prime}=[0,1] \backslash C$, whence n_{I} is well defined.
Now, define the function $f: \mathbb{R} \rightarrow\left[-2^{-1}, 2^{-1}\right]$ by the formula:

$$
f(x)= \begin{cases}(-1)^{j} 2^{-n_{I}} f_{I}(x) & \text { if } x \in \operatorname{cl} I \text { and } I \in \mathcal{I}_{j}, j \in\{1,2\}, \\ 0 & \text { otherwise. }\end{cases}
$$

Clearly, f is bounded and $A \subset[f=0]$. First, we will show that $A \subset \mathcal{E}(f)$.
Take an $x_{0} \in A$ and let $\varepsilon>0$. Choose $n_{0} \in \mathbb{N}$ such that $2^{-n_{0}}<\varepsilon$ and put $\delta=\operatorname{dist}\left(\operatorname{cl} \bigcup \mathcal{J}_{n_{0}}^{\prime}, x_{0}\right)$. Since by (11), (77), (4), and (5),

$$
\begin{aligned}
A \cap \operatorname{cl} \bigcup \mathcal{J}_{j, n_{0}}^{\prime} & \subset\left(A \cap F_{n_{0}}^{\prime}\right) \cup\left(A \cap \bigcup_{J \in \mathcal{J}_{j, n_{0}}^{\prime}} \mathrm{cl} J\right) \\
& \subset\left(A \cap \bigcup_{n \leq n_{0}} F_{n}\right) \cup\left(\left(C \backslash \bigcup_{I \in \mathcal{I}} \operatorname{bd} I\right) \cap \bigcup_{J \in \mathcal{I}} \mathrm{cl} J\right)=\emptyset
\end{aligned}
$$

we have $x_{0} \notin \operatorname{cl} \bigcup \mathcal{J}_{j, n_{0}}^{\prime}$ and $\delta>0$.
Observe that by (10), $F_{n_{0}}^{\prime} \subset \operatorname{cl} \bigcup \mathcal{J}_{n_{0}}^{\prime}$. If $\left|x-x_{0}\right|<\delta$, then $x \notin \mathrm{cl} \bigcup \mathcal{J}_{n_{0}}^{\prime}$, whence

$$
\left|f(x)-f\left(x_{0}\right)\right|=|f(x)| \leq 2^{-n_{0}}<\varepsilon
$$

So, $x_{0} \in \mathcal{C}(f)$.
Now, we will prove that

$$
\begin{equation*}
\underset{n \in \mathbb{N}}{\forall} \underset{\delta>0}{\forall}\left(x \in F_{n}^{\prime} \backslash\{\sup I: I \in \mathcal{I}\} \Rightarrow f[(x-\delta, x) \cap \mathcal{C}(f)] \supset\left[-2^{-n}, 2^{-n}\right]\right) . \tag{12}
\end{equation*}
$$

Let $n \in \mathbb{N}, \delta>0$ and $x \in F_{n}^{\prime} \backslash\{\sup I: I \in \mathcal{I}\}$. Then for $j \in\{1,2\}$, by (10), there is $I_{j} \in \mathcal{J}_{j, n}^{\prime}$ with $I_{j} \subset(x-\delta, x)$. Notice that $\max \left\{n_{I_{1}}, n_{I_{2}}\right\} \leq n$. So,

$$
f[(x-\delta, x) \cap \mathcal{C}(f)] \supset f\left[I_{1} \cap \mathcal{C}(f)\right] \cup f\left[I_{2} \cap \mathcal{C}(f)\right] \supset\left[-2^{-n}, 2^{-n}\right] \backslash\{0\}
$$

Since $x \notin\{\sup I: I \in \mathcal{I}\}$, we have $(x-\delta, x) \cap A \neq \emptyset$ and finally

$$
f[(x-\delta, x) \cap \mathcal{C}(f)] \supset\left[-2^{-n}, 2^{-n}\right]
$$

PAULINA SZCZUKA - MARIOLA MARCINIAK

Similarly, we can prove that

$$
\underset{n \in \mathbb{N}}{\forall} \underset{\delta>0}{\forall}\left(x \in F_{n}^{\prime} \backslash\{\inf I: I \in \mathcal{I}\} \Rightarrow f[(x, x+\delta) \cap \mathcal{C}(f)] \supset\left[-2^{-n}, 2^{-n}\right]\right) .
$$

Now, we will show that $f \in \mathcal{S}_{s}$. Let $c, d \in \mathbb{R}, c<d$, and $y \in \mathrm{I}(f(c), f(d))$. Without loss of generality, we can assume that $c, d \in[0,1]$ and $f(c)<f(d)$. If $c, d \in \operatorname{cl} I$ for some $I \in \mathcal{I}$, then since $f_{I} \in \mathcal{S}_{s}$, there is $x_{0} \in(c, d) \cap \mathcal{C}(f)$ with $f\left(x_{0}\right)=y$. So, assume that the opposite case holds.

Assume that $y \geq 0$. (The case $y<0$ is analogous.) Then $f(d)>0$, whence $d \notin A$. We consider two cases.

Case 1. $d \notin \bigcup_{n \in \mathbb{N}} F_{n}^{\prime}$ or $d \in\{\sup I: I \in \mathcal{I}\}$.
Then there is $I \in \mathcal{I}$ such that $d \in \operatorname{cl} I$ and $c \notin \operatorname{cl} I$. If $y \in \mathrm{I}(f(\inf I), f(d))$, then, since $f_{I} \in \mathcal{S}_{s}$, there is $x_{0} \in(\inf I, d) \cap \mathcal{C}(f) \subset(c, d) \cap \mathcal{C}(f)$ with $f\left(x_{0}\right)=y$.

Now, let $y \in[0, f(\inf I)]$. By (77), since $I \in \mathcal{J}_{n_{I}}^{\prime}$, we have $\inf I \in F_{n_{I}+1}^{\prime}$. By (12),

$$
y \in[0, f(\inf I)] \subset\left[-2^{-n_{I}-1}, 2^{-n_{I}-1}\right] \subset f[(c, \inf I) \cap \mathcal{C}(f)] .
$$

So, there is $x_{0} \in(c, \inf I) \cap \mathcal{C}(f) \subset(c, d) \cap \mathcal{C}(f)$ with $f\left(x_{0}\right)=y$.
Case 2. $d \in \bigcup_{n \in \mathbb{N}} F_{n}^{\prime} \backslash\{\sup I: I \in \mathcal{I}\}$.
Then, $d \in F_{n}^{\prime} \backslash F_{n-1}^{\prime}$ for some $n \in \mathbb{N}$. By (12),

$$
y \in[0, f(d)) \subset\left[-2^{-n}, 2^{-n}\right] \subset f[(c, d) \cap \mathcal{C}(f)]
$$

Consequently, there is $x_{0} \in(c, d) \cap \mathcal{C}(f)$ with $f\left(x_{0}\right)=y$. So, $f \in \dot{\mathcal{S}}_{s}$.
Observe now that $\mathbb{R} \backslash \mathcal{C}(f)=(C \backslash A) \cup \bigcup_{I \in \mathcal{I}}\left(I \backslash \mathcal{C}\left(f_{I}\right)\right)$. However, $\operatorname{card}(I \backslash$ $\left.\mathcal{C}\left(f_{I}\right)\right)=1$ for each $I \in \mathcal{I}$. So, the set $\mathbb{R} \backslash \mathcal{C}(f)$ is nowhere dense. Hence and since each strong Świa̧tkowski function is quasi-continuous, the function f is internally quasi-continuous.

To complete the proof, suppose that there is $k \in \mathbb{N}$ and there are functions $g_{1}, \ldots, g_{k} \in \dot{\mathcal{S}}_{s i}$ such that $f=g_{1} \ldots g_{k}$ on \mathbb{R}. Then, sgn $\circ f=\operatorname{sgn} \circ\left(g_{1} \ldots g_{k}\right)$. Let $(a, b) \subset[0,1]$ be an interval in which the function f changes its sign. Then, at least one of the functions g_{1}, \ldots, g_{k}, say g_{1}, has the same property. Since $g_{1} \in \dot{\mathcal{S}}_{s i}$, there is $x_{0} \in(a, b) \cap \operatorname{int} \mathcal{C}\left(g_{1}\right)$ such that $g_{1}\left(x_{0}\right)=0$. Note that $[f=0] \cap[0,1]=A$, whence $g\left(x_{1}\right) \neq 0$ for some $x_{1} \in(a, b) \cap \operatorname{int} \mathcal{C}\left(g_{1}\right) \cap(C \backslash A)$. Since g_{1} is continuous at x_{1}, there is an open interval $\left(a_{1}, b_{1}\right)$ such that $g_{1}\left[\left(a_{1}, b_{1}\right)\right] \cap\left[g_{1}=0\right]=\emptyset$ and f changes its sign in $\left(a_{1}, b_{1}\right)$. Hence at least one of the functions g_{2}, \ldots, g_{k}, say g_{2}, changes its sign in $\left(a_{1}, b_{1}\right)$, too. Observe that $g_{2} \in \mathcal{S}_{s i}$. Proceeding as above, after k steps, we obtain that there is an open interval J in which the function f changes its sign and $g_{i}[J] \cap\left[g_{i}=0\right]=\emptyset$ for each $i \in\{1, \ldots, k\}$, a contradiction.

Consequently, the function f cannot be written as the finite product of internally strong Świa̧tkowski functions.

PRODUCTS OF INTERNALLY QUASI-CONTINUOUS FUNCTIONS

Finally, we would like to present the problem.
Problem 4.4. Characterize the products of internally strong Świa̧tkowski functions.

REFERENCES

[1] BISWAS, N.: On some mappings in topological spaces, Bull. Calcutta Math. Soc. 61 (1969), 127-135.
[2] CEDER, J. G.: On factoring a function into a product of Darboux functions, Rend. Circ. Mat. Palermo (2) 31 (1982), 16-22.
[3] CEDER, J. G.: A necessary and sufficient condition for a Baire α function to be a product of two Darboux Baire α functions, Rend. Circ. Mat. Palermo (2) 36 (1987), 78-84.
[4] GRANDE, Z.: Sur le fonctions cliquish, Časopis Pěst. Mat. 110 (1985), 225-236.
[5] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
[6] MALISZEWSKI, A.: On the limits of strong Świagtkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87-93.
[7] MALISZEWSKI, A.: Darboux Property and Quasi-Continuity. A Uniform Approach. WSP, Słupsk, 1996.
[8] MARCINIAK, M.-SZCZUKA, P.: On internally strong Świģtkowski functions (preprint).
[9] MARCUS, S.: Sur la représentation d'une fonction arbitraire par des fonctions jouissant de la propriété de Darboux, Trans. Amer. Math. Soc. 95 (1960), 484-494.
[10] SZCZUKA, P.: Products of strong Świgtkowski functions, J. Appl. Anal. 12 (2006), 129-145.
[11] THIELMAN, H. P.: Types of functions, Amer. Math. Monthly 60 (1953), 156-161.

Institute of Mathematics
Kazimierz Wielki University
pl. Weyssenhoffa 11
PL-85-072 Bydgoszcz
POLAND
E-mail: paulinaszczuka@wp.pl marmac@ukw.edu.pl

[^0]: (C) 2013 Mathematical Institute, Slovak Academy of Sciences.

 2010 Mathematics Subject Classification: Primary 26A21, 54C30; Secondary 26A15, 54C08.
 Keywords: quasi-continuous function, internally quasi-continuous function, strong Świa̧tkowski function, internally strong Świa̧tkowski function, product of functions.
 Supported by Kazimierz Wielki University.

