

Paulina Szczuka — Mariola Marciniak

ABSTRACT. In this paper we characterize the product of internally quasicontinuous functions and we construct a bounded internally quasi-continuous strong Świątkowski function which cannot be written as a finite product of internally strong Świątkowski functions.

1. Preliminaries

The letters \mathbb{R} and \mathbb{N} denote the real line and the set of positive integers, respectively. The symbol I(a, b) denotes an open interval with the endpoints a and b. For each $A \subset \mathbb{R}$ we use the symbols int A, $\operatorname{cl} A$, $\operatorname{bd} A$, and $\operatorname{card} A$ to denote the interior, the closure, the boundary, and the cardinality of A, respectively. We say that a set $A \subset \mathbb{R}$ is simply open [1], if it can be written as the union of an open set and a nowhere dense set.

The word function denotes a mapping from \mathbb{R} into \mathbb{R} unless otherwise explicitly stated. The symbol $\mathcal{C}(f)$ stands for the set of all points of continuity of f. We say that f is a *Darboux function*, if it maps the connected sets onto connected sets. We say that f is *cliquish* [11] ($f \in \mathbb{C}_q$), if the set $\mathcal{C}(f)$ is dense in \mathbb{R} . We say that f is *internally cliquish* ($f \in \mathbb{C}_{qi}$), if the set int $\mathcal{C}(f)$ is dense in \mathbb{R} . We say that f is *quasi-continuous* in the sense of K e m p is t y [5] ($f \in \mathbb{Q}$), if for all $x \in \mathbb{R}$ and open sets $U \ni x$ and $V \ni f(x)$, the set $\operatorname{int}(U \cap f^{-1}(V)) \neq \emptyset$. We say that f is *internally quasi-continuous* [8] ($f \in \mathbb{Q}_i$), if it is quasi-continuous and its set of points of discontinuity is nowhere dense; equivalently, f is internally quasi-continuous if $f \upharpoonright$ int $\mathcal{C}(f)$ is dense in f. We say that x_0 is a point of internal

^{© 2013} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A21, 54C30; Secondary 26A15, 54C08.

Keywords: quasi-continuous function, internally quasi-continuous function, strong Świątkowski function, internally strong Świątkowski function, product of functions. Supported by Kazimierz Wielki University.

quasi-continuity of f if and only if there is a sequence $(x_n) \subset \operatorname{int} \mathbb{C}(f)$ such that $x_n \to x_0$ and $f(x_n) \to f(x_0)$ (see [8]). We say that f is a strong Świątkowski function [6] $(f \in S_s)$, if whenever $a, b \in \mathbb{R}$, a < b, and $y \in I(f(a), f(b))$, there is $x_0 \in (a, b) \cap \mathbb{C}(f)$ such that $f(x_0) = y$. We say that f is an internally strong Świątkowski function [8] $(f \in S_{si})$, if whenever $a, b \in \mathbb{R}$, a < b, and $y \in I(f(a), f(b))$, there is

$$x_0 \in (a, b) \cap \operatorname{int} \mathcal{C}(f)$$
 such that $f(x_0) = y$.

Clearly, each strong Świątkowski function has the Darboux property. Moreover, we can easily see that the following inclusions

$$\dot{\mathcal{S}}_{si} \subset \dot{\mathcal{S}}_s \subset \mathbb{Q} \subset \mathbb{C}_q \quad ext{and} \quad \dot{\mathcal{S}}_{si} \subset \mathbb{Q}_i \subset \mathbb{C}_{qi} \subset \mathbb{C}_q$$

are satisfied.

Finally, the symbol [f = a] stands for the set $\{x \in \mathbb{R} : f(x) = a\}$.

2. Introduction

In 1960 S. Marcus remarked that not every function is the product of Darboux functions [9]. The problem of characterizing the class of products of Darboux functions was solved by J. G. Ceder [2], [3]. In 1985 Z. Grande constructed a nonnegative Baire one function which cannot be the product of a finite number of quasi-continuous functions, and asked for characterization of such products [4]. The following theorem (see [7, Theorem III.2.1]) gives an answer to this question.

THEOREM 2.1. For each function f the following conditions are equivalent:

- i) there are quasi-continuous functions g_1 and g_2 with $f = g_1 g_2$,
- ii) f is a finite product of quasi-continuous functions,
- iii) f is cliquish and the set [f = 0] is simply open.

In 1996 A. Maliszewski characterized the product of Darboux quasicontinuous functions [7, Theorem III.3.1] and proved that there exists a bounded Darboux quasi-continuous function which cannot be written as the finite product of strong Świątkowski functions [7, Proposition III.4.1]. Ten years later P. Szczuka characterized the product of four and more strong Świątkowski functions [10, Theorem 4.2].

In this paper we characterize the product of internally quasi-continuous functions (Theorem 4.2) and we construct a bounded internally quasi-continuous strong Świątkowski function which cannot be written as the finite product of internally strong Świątkowski functions (Proposition 4.3).

3. Auxiliary lemmas

Lemma 3.1 is due to A. Maliszewski [7, Lemma III.1.10].

LEMMA 3.1. Let I = (a, b), $\Gamma > 0$ be an extended real number, and k > 1. There are functions g_1, \ldots, g_k such that $g_1 \ldots g_k = 0$ on \mathbb{R} and for $i \in \{1, \ldots, k\}$: $\mathbb{R} \setminus \mathbb{C}(g_i) = \operatorname{bd} I$ and $g_i[(a, c)] = g_i[(c, b)] = (-\Gamma, \Gamma)$ for each $c \in I$.

The proof of Lemma 3.2 can be found in [10, Lemma 3.4].

LEMMA 3.2. Assume that $F \subset C$ are closed and \mathcal{J} is a family of components of $\mathbb{R} \setminus C$ such that $C \subset \operatorname{cl} \bigcup \mathcal{J}$. There is a family $\mathcal{J}' \subset \mathcal{J}$ such that:

- i) for each $J \in \mathcal{J}$, if $F \cap \operatorname{bd} J \neq \emptyset$, then $J \in \mathcal{J}'$,
- ii) for each $c \in F$, if c is a right-hand (left-hand) limit point of C, then c is a right-hand (respectively left-hand) limit point of the union $\bigcup \mathcal{J}'$,
- iii) $\operatorname{cl} \bigcup \mathcal{J}' \subset F \cup \bigcup_{J \in \mathcal{J}'} \operatorname{cl} J.$

LEMMA 3.3. Let I = (a, b) and let the function $f: \operatorname{cl} I \to (0, +\infty)$ be continuous. There are continuous functions $\psi_1, \psi_2: I \to (0, +\infty)$ such that $f = \psi_1 \psi_2$ on I and $\psi_i[(a, c)] = \psi_i[(c, b)] = (0, +\infty)$ for each $i \in \{1, 2\}$ and $c \in I$.

Proof. Define the function $\bar{\psi} \colon \mathbb{R} \to (0, +\infty)$ by

$$\bar{\psi}(x) = \begin{cases} \max\{\frac{\sin x^{-1} + 1}{|x|}, |x|\} & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

Then, clearly, $\mathcal{C}(\bar{\psi}) = \mathbb{R} \setminus \{0\}$ and $\bar{\psi}[(-\delta, 0)] = \bar{\psi}[(0, \delta)] = (0, +\infty)$ for each $\delta > 0$. Choose elements $x_1, x_2 \in (a, b)$ and assume that $x_1 < x_2$. Define the function $\psi_1 \colon I \to (0, +\infty)$ by the formula

$$\psi_1(x) = \begin{cases} \bar{\psi}(x-a) & \text{if } x \in (a, x_1], \\ \bar{\psi}(x-b) & \text{if } x \in [x_2, b), \\ \text{linear,} & \text{on the interval } [x_1, x_2] \end{cases}$$

Observe that ψ_1 is continuous on I and it is easy to see that $\psi_1\lfloor(a,c)\rfloor = \psi_1\lfloor(c,b)\rfloor = (0,+\infty)$ for each $c \in I$. Now, define the function $\psi_2 \colon I \to (0,+\infty)$ as follows

$$\psi_2 = \frac{f}{\psi_1}.$$

Since f is positive, bounded and continuous on cl I, the function ψ_2 is continuous on I and $\psi_2[(a,c)] = \psi_2[(c,b)] = (0,+\infty)$ for each $c \in I$. Finally, $f = \psi_1\psi_2$ on I, which completes the proof.

LEMMA 3.4. Let I = (a, b) and $y \in (0, 1]$. There is a strong Świątkowski function ψ : cl $I \to (0, 1]$ such that $\psi[I] = \psi[I \cap \mathbb{C}(\psi)] = (0, 1]$, $\psi(a) = \psi(b) = y$, bd $I \subset \mathbb{C}(\psi)$, and card $(I \setminus \mathbb{C}(\psi)) = 1$.

Proof. Define the function $\bar{\psi} \colon \mathbb{R} \to (0,1]$ by

$$\bar{\psi}(x) = \begin{cases} \min\{1, \sin x^{-1} + |x| + 1\} & \text{if } x \neq 0, \\ 2^{-1} & \text{if } x = 0. \end{cases}$$

Then, clearly, $\bar{\psi} \in \hat{S}_s$. Choose elements $x_1, x_2, x_3 \in (a, b)$ and assume that $x_1 < x_2 < x_3$. Define the function $\psi \colon \operatorname{cl} I \to (0, 1]$ by the formula

$$\psi(x) = \begin{cases} \bar{\psi}(x - x_2) & \text{if } x \in [x_1, x_3], \\ y & \text{if } x \in \{a, b\}, \\ \text{linear,} & \text{on intervals } [a, x_1] \text{ and } [x_3, b]. \end{cases}$$

One can easily show that the function ψ has all required properties.

4. Main results

Remark 4.1. Product of two internally cliquish functions is internally cliquish.

Proof. If the functions f and g are internally cliquish, then the sets int $\mathcal{C}(f)$ and int $\mathcal{C}(g)$ are dense in \mathbb{R} . Hence, the set int $\mathcal{C}(f) \cap \operatorname{int} \mathcal{C}(g)$ is dense in \mathbb{R} , too. Moreover, $\operatorname{int} \mathcal{C}(f) \cap \operatorname{int} \mathcal{C}(g) \subset \operatorname{int} \mathcal{C}(fg)$, which proves that the function fg is internally cliquish.

THEOREM 4.2. For each function f the following conditions are equivalent:

- i) there are internally quasi-continuous functions g_1 and g_2 with $f = g_1 g_2$,
- ii) f is a finite product of internally quasi-continuous functions,
- iii) f is internally cliquish and the set [f = 0] is simply open.

Proof. The implication i) \Rightarrow ii) is evident.

ii) \Rightarrow iii). Assume that there is $k \in \mathbb{N}$ and there are internally quasi-continuous functions g_1, \ldots, g_k such that $f = g_1 \ldots g_k$. Since each internally quasi-continuous function is internally cliquish, using Remark 4.1 we obtain that the function f is internally cliquish. Moreover, since each internally quasi-continuous function is quasi-continuous, by Theorem 2.1, [f = 0] is simply open.

iii) \Rightarrow i). Now, assume that the set [f = 0] is simply open and the function f is internally cliquish. Hence, int $\mathcal{C}(f)$ is dense in \mathbb{R} . Let $U = \operatorname{int} \mathcal{C}(f) \setminus \operatorname{bd}[f = 0]$. Observe that the set $\mathbb{R} \setminus U$ is closed. Moreover,

$$\mathbb{R} \setminus U = (\mathbb{R} \setminus \operatorname{int} \mathcal{C}(f)) \cup \operatorname{bd}[f = 0].$$

Since $\mathbb{R} \setminus \operatorname{int} \mathbb{C}(f)$ is boundary and closed, and [f = 0] is simply open, the set $\mathbb{R} \setminus U$ is nowhere dense. Let \mathcal{J} be the family of all components of U. Since [f = 0] is simply open, $J \subset [f = 0]$ or $J \cap [f = 0] = \emptyset$ for each $J \in \mathcal{J}$. So, if there is

 $J \in \mathcal{J}$ such that $J \cap [f = 0] = \emptyset$, then f > 0 on J or f < 0 on J. Write the set U as the union of families \mathcal{I}_1 and \mathcal{I}_2 consisting of the pairwise disjoint compact intervals, such that for each $x \in U$, there are $I_1 \in \mathcal{I}_1$ and $I_2 \in \mathcal{I}_2$ with $x \in int(I_1 \cup I_2)$.

Fix an interval $J \in \mathcal{J}$ and let J = (a, b). If $J \subset [f = 0]$, then by Lemma 3.1 applied for $\Gamma = +\infty$ and k = 2, there are continuous functions $g_{1J}, g_{2J}: J \to \mathbb{R}$ such that $0 = f \upharpoonright J = g_{1J}g_{2J}$ and for $i \in \{1, 2\}$

$$g_{iJ}[(a,c)] = g_{iJ}[(c,b)] = \mathbb{R} \qquad \text{for each} \quad c \in J.$$
(1)

If $J \cap [f = 0] = \emptyset$, then |f| > 0 on J. Fix an interval $I \in \mathcal{I}_1 \cup \mathcal{I}_2$ such that $I \subset J$ and let $I = [\alpha, \beta]$. Since $|f \upharpoonright I| > 0$ and f is continuous on I, by Lemma 3.3 there are continuous functions $\psi_{1I}, \psi_{2I} \colon (\alpha, \beta) \to (0, +\infty)$ such that $|f| = \psi_{1I} \psi_{2I}$ on (α, β) and for $i \in \{1, 2\}$

$$\psi_{iI}[(\alpha, c)] = \psi_{iI}[(c, \beta)] = (0, +\infty) \quad \text{for each} \quad c \in (\alpha, \beta).$$
(2)

Now, define functions $\psi_{1J}, \psi_{2J} \colon J \to \mathbb{R}$ as follows:

$$\psi_{1J}(x) = \begin{cases} \psi_{1I}(x) & \text{if } x \in \text{int } I \text{ and } I \in \mathcal{I}_1, \\ -\psi_{1I}(x) & \text{if } x \in \text{int } I \text{ and } I \in \mathcal{I}_2, \\ 1 & \text{otherwise,} \end{cases}$$

$$\psi_{2J}(x) = \begin{cases} \psi_{2I}(x) \cdot \operatorname{sgn} f(x) & \text{if } x \in \operatorname{int} I \text{ and } I \in \mathcal{I}_1, \\ -\psi_{2I}(x) \cdot \operatorname{sgn} f(x) & \text{if } x \in \operatorname{int} I \text{ and } I \in \mathcal{I}_2, \\ f(x) & \text{otherwise.} \end{cases}$$

Then, clearly, $f \upharpoonright J = \psi_{1J} \psi_{2J}$. By condition (2) and since |f| > 0 on J, for $i \in \{1, 2\}$

$$\psi_{iJ}[(a,c)] = \psi_{iJ}[(c,b)] = \mathbb{R} \setminus \{0\} \quad \text{for each} \quad c \in J.$$
(3)

 ψ_{1J} and ψ_{2J} are internally quasi-continuous on J. Fix $x \in J$. If there is $I \in \mathcal{I}_1 \cup \mathcal{I}_2$ such that $x \in \text{int } I$, then, since ψ_{1I} and ψ_{2I} are continuous on I, the functions ψ_{1J} and ψ_{2J} are internally quasi-continuous at x. In another case, there are $I_1 \in \mathcal{I}_1$ and $I_2 \in \mathcal{I}_2$ such that $x \in \text{bd } I_1 \cap \text{bd } I_2$. Since $\psi_{1J}(x) = 1$ and $\psi_{1J} = \psi_{1I}$ is positive and continuous on $\text{int } I_1$, using (2), we clearly obtain that ψ_{1J} is internally quasi-continuous at x. Moreover, $\psi_{2J}(x) = f(x)$ and ψ_{2J} is continuous on $\text{int } I_1$, it has the same sign as the function f on I_1 . (Recall that f does not change its sign on J.) So, by (2), ψ_{2J} is internally quasi-continuous at x, too.

Further, we define functions $g_1, g_2 \colon \mathbb{R} \to \mathbb{R}$ as follows:

$$g_1(x) = \begin{cases} g_{1J}(x) & \text{if } x \in J, \ J \in \mathcal{J} \text{ and } J \subset [f=0], \\ \psi_{1J}(x) & \text{if } x \in J, \ J \in \mathcal{J} \text{ and } J \cap [f=0] = \emptyset, \\ 1 & \text{otherwise}, \end{cases}$$

$$g_2(x) = \begin{cases} g_{2J}(x) & \text{if } x \in J, \ J \in \mathcal{J} \text{ and } J \subset [f=0], \\ \psi_{2J}(x) & \text{if } x \in J, \ J \in \mathcal{J} \text{ and } J \cap [f=0] = \emptyset, \\ f(x) & \text{otherwise.} \end{cases}$$

Then, clearly, $f = g_1 g_2$. Finally we will show that functions g_1 and g_2 are internally quasi-continuous.

Fix $i \in \{1, 2\}$ and let $x \in \mathbb{R}$. First, assume that there is $J \in \mathcal{J}$ such that $x \in \operatorname{cl} J$. If $x \in \operatorname{int} J$ then, since g_{iJ} is continuous on J and ψ_{iJ} is internally quasi-continuous on J, the function g_i is internally quasi-continuous at x. So, let $x \in \operatorname{bd} J$. Since $g_i | J$ is internally quasi-continuous, by (1) or (3), we clearly obtain that g_i is internally quasi-continuous at x.

Assume now that $x \in \mathbb{R} \setminus \bigcup_{J \in \mathcal{J}} \operatorname{cl} J$. In this case, $x \in \mathbb{R} \setminus U$. Since $\mathbb{R} \setminus U$ is nowhere dense and conditions (1) and (3) hold, for each $n \in \mathbb{N}$, there is $J_n \in \mathcal{J}$ such that $J_n \subset (x, x + \frac{1}{n})$ and there is

$$x_n \in \mathcal{J}_n \cap \operatorname{int} \mathfrak{C}(g_i) \quad ext{with} \quad |g_i(x_n) - g_i(x)| < rac{1}{n}.$$

Hence there is a sequence $(x_n) \subset \operatorname{int} \mathcal{C}(g_i)$ such that $x_n \to x$. Consequently, the function g_i is internally quasi-continuous at x. This completes the proof. \Box

PROPOSITION 4.3. There is a bounded internally quasi-continuous strong Świątkowski function which cannot be written as the finite product of internally strong Świątkowski functions.

Proof. Let $C \subset [0,1]$ be the Cantor ternary set, and let \mathcal{I}_1 and \mathcal{I}_2 be disjoint families of all components of the set $[0,1] \setminus C$ such that $C \cup \bigcup \mathcal{I}_1 \cup \bigcup \mathcal{I}_2 = [0,1]$ and $C = (c \cup \bigcup \mathcal{I}_1) \cap (c \cup \bigcup \mathcal{I}_1)$. Put $\mathcal{I} = \mathcal{I}_1 \cup \mathcal{I}_2$ and define

$$A = C \setminus \bigcup_{I \in \mathcal{I}} \operatorname{bd} I.$$
(4)

Since A is a G_{δ} -set, then $C \setminus A$ is an F_{σ} -set, whence there is a sequence (F_n) consisting of closed sets such that

$$C \setminus A = \bigcup_{n \in \mathbb{N}} F_n. \tag{5}$$

Define $F'_0 = \emptyset$. For each $n \in \mathbb{N}$, use Lemma 3.2 two times to construct a sequence of sets (F'_n) and a sequence of families of intervals (\mathcal{J}'_n) such that

$$\mathcal{J}_n' = \mathcal{J}_{1,n}' \cup \mathcal{J}_{2,n}',\tag{6}$$

$$F'_{n} = F_{n} \cup \bigcup_{k < n} \left(F'_{k} \cup \bigcup_{I \in \mathcal{J}'_{k}} \operatorname{bd} I \right)$$

$$\tag{7}$$

and for $j \in \{1, 2\}$,

$$\mathcal{J}_{j,n}^{\prime} \subset \mathcal{I}_j,\tag{8}$$

for each
$$I \in \mathcal{I}_i$$
, if $F'_n \cap \operatorname{bd} I \neq \emptyset$, then $I \in \mathcal{J}'_{i,n}$, (9)

for each $c \in F'_n$, if c is a right-hand (left-hand) limit point of C, (10) then c is a right-hand (left-hand) limit point of the union $\bigcup \mathcal{J}'_{i,n}$,

$$\operatorname{cl} \bigcup \mathcal{J}'_{j,n} \subset F'_n \cup \bigcup_{J \in \mathcal{J}'_{j,n}} \operatorname{cl} J.$$

$$(11)$$

Observe that by (11), for each k < n, the set $F'_k \cup \bigcup_{I \in \mathcal{J}'_k}$ bd I is closed. So, by (7), the set F'_n is also closed and $F'_n \subset C \setminus A$. Fix an interval $I \in \mathcal{I}$. Using Lemma 3.4, we construct a strong Świątkowski function $f_I[I] = f_I[I \cap \mathcal{C}(f_I)] = (0, 1]$, $f_I(\inf I) = f_I(\sup I) = 2^{-1}$, bd $I \subset \mathcal{C}(f_I)$, and $\operatorname{card}(I \setminus \mathcal{C}(f_I)) = 1$. Put

$$n_I = \min\left\{n \in \mathbb{N} : I \in \mathcal{J}'_n\right\}$$

and observe that by (9), $\bigcup_{n \in \mathbb{N}} \bigcup \mathcal{J}'_n = [0, 1] \setminus C$, whence n_I is well defined. Now, define the function $f \colon \mathbb{R} \to [-2^{-1}, 2^{-1}]$ by the formula:

$$f(x) = \begin{cases} (-1)^j 2^{-n_I} f_I(x) & \text{if } x \in \operatorname{cl} I \text{ and } I \in \mathcal{I}_j, \ j \in \{1, 2\}, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, f is bounded and $A \subset [f = 0]$. First, we will show that $A \subset \mathcal{C}(f)$.

Take an $x_0 \in A$ and let $\varepsilon > 0$. Choose $n_0 \in \mathbb{N}$ such that $2^{-n_0} < \varepsilon$ and put $\delta = \operatorname{dist}(\operatorname{cl} \bigcup \mathcal{J}'_{n_0}, x_0)$. Since by (11), (7), (4), and (5),

$$A \cap \operatorname{cl} \bigcup \mathcal{J}'_{j,n_0} \subset \left(A \cap F'_{n_0}\right) \cup \left(A \cap \bigcup_{J \in \mathcal{J}'_{j,n_0}} \operatorname{cl} J\right)$$
$$\subset \left(A \cap \bigcup_{n \le n_0} F_n\right) \cup \left(\left(C \setminus \bigcup_{I \in \mathcal{I}} \operatorname{bd} I\right) \cap \bigcup_{J \in \mathcal{I}} \operatorname{cl} J\right) = \emptyset,$$

we have $x_0 \notin \operatorname{cl} \bigcup \mathcal{J}'_{j,n_0}$ and $\delta > 0$.

Observe that by (10), $F'_{n_0} \subset \operatorname{cl} \bigcup \mathcal{J}'_{n_0}$. If $|x - x_0| < \delta$, then $x \notin \operatorname{cl} \bigcup \mathcal{J}'_{n_0}$, whence

$$|f(x) - f(x_0)| = |f(x)| \le 2^{-n_0} < \varepsilon.$$

So, $x_0 \in \mathcal{C}(f)$.

Now, we will prove that

$$\bigvee_{n \in \mathbb{N}} \bigvee_{\delta > 0} \left(x \in F'_n \setminus \{ \sup I : I \in \mathcal{I} \} \Rightarrow f \left[(x - \delta, x) \cap \mathcal{C}(f) \right] \supset \left[-2^{-n}, 2^{-n} \right] \right).$$
(12)

Let $n \in \mathbb{N}$, $\delta > 0$ and $x \in F'_n \setminus \{ \sup I : I \in \mathcal{I} \}$. Then for $j \in \{1, 2\}$, by (10), there is $I_j \in \mathcal{J}'_{j,n}$ with $I_j \subset (x - \delta, x)$. Notice that $\max\{n_{I_1}, n_{I_2}\} \leq n$. So,

$$f[(x-\delta,x)\cap \mathfrak{C}(f)] \supset f[I_1\cap \mathfrak{C}(f)] \cup f[I_2\cap \mathfrak{C}(f)] \supset [-2^{-n},2^{-n}] \setminus \{0\}$$

Since $x \notin \{\sup I : I \in \mathcal{I}\}$, we have $(x - \delta, x) \cap A \neq \emptyset$ and finally

$$f[(x-\delta,x)\cap \mathcal{C}(f)] \supset [-2^{-n},2^{-n}].$$

Similarly, we can prove that

$$\underset{n \in \mathbb{N}}{\forall} \ \forall \\ \delta > 0 \ \left(x \in F'_n \setminus \{ \inf I : I \in \mathcal{I} \} \Rightarrow f\left[(x, x + \delta) \cap \mathcal{C}(f) \right] \supset \left[-2^{-n}, 2^{-n} \right] \right).$$

Now, we will show that $f \in \dot{S}_s$. Let $c, d \in \mathbb{R}$, c < d, and $y \in I(f(c), f(d))$. Without loss of generality, we can assume that $c, d \in [0, 1]$ and f(c) < f(d). If $c, d \in cl I$ for some $I \in \mathcal{I}$, then since $f_I \in \dot{S}_s$, there is $x_0 \in (c, d) \cap \mathcal{C}(f)$ with $f(x_0) = y$. So, assume that the opposite case holds.

Assume that $y \ge 0$. (The case y < 0 is analogous.) Then f(d) > 0, whence $d \notin A$. We consider two cases.

Case 1. $d \notin \bigcup_{n \in \mathbb{N}} F'_n$ or $d \in \{ \sup I : I \in \mathcal{I} \}.$

Then there is $I \in \mathcal{I}$ such that $d \in \operatorname{cl} I$ and $c \notin \operatorname{cl} I$. If $y \in \operatorname{I}(f(\operatorname{inf} I), f(d))$, then, since $f_I \in S_s$, there is $x_0 \in (\operatorname{inf} I, d) \cap \operatorname{C}(f) \subset (c, d) \cap \operatorname{C}(f)$ with $f(x_0) = y$.

Now, let $y \in [0, f(\inf I)]$. By (7), since $I \in \mathcal{J}'_{n_I}$, we have $\inf I \in F'_{n_I+1}$. By (12),

$$y \in \left[0, f(\inf I)\right] \subset \left[-2^{-n_I-1}, 2^{-n_I-1}\right] \subset f\left[(c, \inf I) \cap \mathcal{C}(f)\right].$$

So, there is $x_0 \in (c, \inf I) \cap \mathcal{C}(f) \subset (c, d) \cap \mathcal{C}(f)$ with $f(x_0) = y$.

Case 2. $d \in \bigcup_{n \in \mathbb{N}} F'_n \setminus \{ \sup I : I \in \mathcal{I} \}.$

Then, $d \in F'_n \setminus F'_{n-1}$ for some $n \in \mathbb{N}$. By (12),

$$y \in [0, f(d)) \subset [-2^{-n}, 2^{-n}] \subset f[(c, d) \cap \mathcal{C}(f)].$$

Consequently, there is $x_0 \in (c, d) \cap \mathcal{C}(f)$ with $f(x_0) = y$. So, $f \in \dot{S}_s$.

Observe now that $\mathbb{R} \setminus \mathcal{C}(f) = (C \setminus A) \cup \bigcup_{I \in \mathcal{I}} (I \setminus \mathcal{C}(f_I))$. However, card $(I \setminus \mathcal{C}(f_I)) = 1$ for each $I \in \mathcal{I}$. So, the set $\mathbb{R} \setminus \mathcal{C}(f)$ is nowhere dense. Hence and since each strong Świątkowski function is quasi-continuous, the function f is internally quasi-continuous.

To complete the proof, suppose that there is $k \in \mathbb{N}$ and there are functions $g_1, \ldots, g_k \in \dot{S}_{si}$ such that $f = g_1 \ldots g_k$ on \mathbb{R} . Then, $\operatorname{sgn} \circ f = \operatorname{sgn} \circ (g_1 \ldots g_k)$. Let $(a, b) \subset [0, 1]$ be an interval in which the function f changes its sign. Then, at least one of the functions g_1, \ldots, g_k , say g_1 , has the same property. Since $g_1 \in \dot{S}_{si}$, there is $x_0 \in (a, b) \cap \operatorname{int} \mathcal{C}(g_1)$ such that $g_1(x_0) = 0$. Note that $[f = 0] \cap [0, 1] = A$, whence $g(x_1) \neq 0$ for some $x_1 \in (a, b) \cap \operatorname{int} \mathcal{C}(g_1) \cap (C \setminus A)$. Since g_1 is continuous at x_1 , there is an open interval (a_1, b_1) such that $g_1[(a_1, b_1)] \cap [g_1 = 0] = \emptyset$ and f changes its sign in (a_1, b_1) . Hence at least one of the functions g_2, \ldots, g_k , say g_2 , changes its sign in (a_1, b_1) , too. Observe that $g_2 \in \dot{S}_{si}$. Proceeding as above, after k steps, we obtain that there is an open interval J in which the function f changes its sign and $g_i[J] \cap [g_i = 0] = \emptyset$ for each $i \in \{1, \ldots, k\}$, a contradiction.

Consequently, the function f cannot be written as the finite product of internally strong Świątkowski functions.

Finally, we would like to present the problem.

PROBLEM 4.4. Characterize the products of internally strong Świątkowski functions.

REFERENCES

- BISWAS, N.: On some mappings in topological spaces, Bull. Calcutta Math. Soc. 61 (1969), 127–135.
- [2] CEDER, J. G.: On factoring a function into a product of Darboux functions, Rend. Circ. Mat. Palermo (2) 31 (1982), 16–22.
- [3] CEDER, J. G.: A necessary and sufficient condition for a Baire α function to be a product of two Darboux Baire α functions, Rend. Circ. Mat. Palermo (2) 36 (1987), 78–84.
- [4] GRANDE, Z.: Sur le fonctions cliquish, Časopis Pěst. Mat. 110 (1985), 225–236.
- [5] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
- [6] MALISZEWSKI, A.: On the limits of strong Świątkowski functions, Zeszyty Nauk. Politech. Łódz. Mat. 27 (1995), 87–93.
- [7] MALISZEWSKI, A.: Darboux Property and Quasi-Continuity. A Uniform Approach. WSP, Słupsk, 1996.
- [8] MARCINIAK, M.—SZCZUKA, P.: On internally strong Świątkowski functions (preprint).
- [9] MARCUS, S.: Sur la représentation d'une fonction arbitraire par des fonctions jouissant de la propriété de Darboux, Trans. Amer. Math. Soc. 95 (1960), 484–494.
- [10] SZCZUKA, P.: Products of strong Świątkowski functions, J. Appl. Anal. 12 (2006), 129–145.
- [11] THIELMAN, H. P.: Types of functions, Amer. Math. Monthly 60 (1953), 156–161.

Received October 12, 2012

Institute of Mathematics Kazimierz Wielki University pl. Weyssenhoffa 11 PL-85-072 Bydgoszcz POLAND

E-mail: paulinaszczuka@wp.pl marmac@ukw.edu.pl