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PRODUCTS OF INTERNALLY QUASI-CONTINUOUS

FUNCTIONS

Paulina Szczuka — Mariola Marciniak

ABSTRACT. In this paper we characterize the product of internally quasi-

-continuous functions and we construct a bounded internally quasi-continuous

strong Świa̧tkowski function which cannot be written as a finite product of inter-

nally strong Świa̧tkowski functions.

1. Preliminaries

The letters R and N denote the real line and the set of positive integers,
respectively. The symbol I(a, b) denotes an open interval with the endpoints
a and b. For each A ⊂ R we use the symbols intA, clA, bdA, and cardA
to denote the interior, the closure, the boundary, and the cardinality of A, re-
spectively. We say that a set A ⊂ R is simply open [1], if it can be written as
the union of an open set and a nowhere dense set.

The word function denotes a mapping from R into R unless otherwise explic-
itly stated. The symbol C(f) stands for the set of all points of continuity of f.
We say that f is a Darboux function, if it maps the connected sets onto connected
sets. We say that f is cliquish [11] (f ∈ Cq), if the set C(f) is dense in R. We
say that f is internally cliquish (f ∈ Cqi), if the set intC(f) is dense in R. We
say that f is quasi-continuous in the sense of K em p i s t y [5] (f ∈ Q), if for all
x ∈ R and open sets U � x and V � f(x), the set int

(
U ∩ f−1(V )

) �= ∅. We say
that f is internally quasi-continuous [8] (f ∈ Qi), if it is quasi-continuous and
its set of points of discontinuity is nowhere dense; equivalently, f is internally
quasi-continuous if f� intC(f) is dense in f. We say that x0 is a point of internal
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quasi-continuity of f if and only if there is a sequence (xn) ⊂ intC(f) such that

xn → x0 and f(xn) → f(x0) (see [8]). We say that f is a strong Świa̧tkowski

function [6] (f ∈ Śs), if whenever a, b ∈ R, a < b, and y ∈ I
(
f(a), f(b)

)
,

there is x0 ∈ (a, b) ∩ C(f) such that f(x0) = y. We say that f is an internally

strong Świa̧tkowski function [8] (f ∈ Śsi), if whenever a, b ∈ R, a < b, and
y ∈ I

(
f(a), f(b)

)
, there is

x0 ∈ (a, b) ∩ intC(f) such that f(x0) = y.

Clearly, each strong Świa̧tkowski function has the Darboux property. Moreover,
we can easily see that the following inclusions

Śsi ⊂ Śs ⊂ Q ⊂ Cq and Śsi ⊂ Qi ⊂ Cqi ⊂ Cq

are satisfied.

Finally, the symbol [f = a] stands for the set
{
x ∈ R : f(x) = a

}
.

2. Introduction

In 1960 S. M a r c u s remarked that not every function is the product of
Darboux functions [9]. The problem of characterizing the class of products of
Darboux functions was solved by J. G. C e d e r [2], [3]. In 1985 Z. G r a n d e
constructed a nonnegative Baire one function which cannot be the product of a fi-
nite number of quasi-continuous functions, and asked for characterization of such
products [4]. The following theorem (see [7, Theorem III.2.1]) gives an answer
to this question.

������� 2.1� For each function f the following conditions are equivalent :

i) there are quasi-continuous functions g1 and g2 with f = g1g2,

ii) f is a finite product of quasi-continuous functions,

iii) f is cliquish and the set [f = 0] is simply open.

In 1996 A. M a l i s z e w s k i characterized the product of Darboux quasi-
-continuous functions [7, Theorem III.3.1] and proved that there exists a bounded
Darboux quasi-continuous function which cannot be written as the finite prod-

uct of strong Świa̧tkowski functions [7, Proposition III.4.1]. Ten years later

P. S z c z u k a characterized the product of four and more strong Świa̧tkowski
functions [10, Theorem 4.2].

In this paper we characterize the product of internally quasi-continuous func-
tions (Theorem 4.2) and we construct a bounded internally quasi-continuous

strong Świa̧tkowski function which cannot be written as the finite product of in-

ternally strong Świa̧tkowski functions (Proposition 4.3).
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3. Auxiliary lemmas

Lemma 3.1 is due to A. M a l i s z e w s k i [7, Lemma III.1.10].

����	 3.1� Let I = (a, b), Γ > 0 be an extended real number, and k > 1. There
are functions g1, . . . , gk such that g1 . . . gk = 0 on R and for i ∈ {1, . . . , k}:
R \ C(gi) = bd I and gi

[
(a, c)

]
= gi

[
(c, b)

]
= (−Γ,Γ) for each c ∈ I.

The proof of Lemma 3.2 can be found in [10, Lemma 3.4].

����	 3.2� Assume that F ⊂ C are closed and J is a family of components
of R \ C such that C ⊂ cl

⋃J. There is a family J ′⊂ J such that :

i) for each J ∈ J, if F ∩ bd J �= ∅, then J ∈ J ′,
ii) for each c ∈ F, if c is a right-hand (left-hand) limit point of C, then c is

a right-hand (respectively left-hand) limit point of the union
⋃J ′,

iii) cl
⋃J ′⊂ F ∪⋃

J∈J ′ cl J.

����	 3.3� Let I = (a, b) and let the function f : cl I → (0,+∞) be continuous.
There are continuous functions ψ1, ψ2 : I → (0,+∞) such that f = ψ1ψ2 on I
and ψi

[
(a, c)

]
= ψi

[
(c, b)

]
= (0,+∞) for each i ∈ {1, 2} and c ∈ I.

P r o o f. Define the function ψ̄ : R → (0,+∞) by

ψ̄(x) =

{
max

{
sinx−1+1

|x| , |x|} if x �= 0,

1 if x = 0.

Then, clearly, C(ψ̄) = R \ {0} and ψ̄
[
(−δ, 0)] = ψ̄

[
(0, δ)

]
= (0,+∞) for each

δ > 0. Choose elements x1, x2 ∈ (a, b) and assume that x1 < x2. Define the
function ψ1 : I → (0,+∞) by the formula

ψ1(x) =

⎧⎪⎨
⎪⎩
ψ̄(x− a) if x ∈ (a, x1],

ψ̄(x− b) if x ∈ [x2, b),

linear, on the interval [x1, x2].

Observe that ψ1 is continuous on I and it is easy to see that ψ1

[
(a, c)

]
=

ψ1

[
(c, b)

]
= (0,+∞) for each c ∈ I. Now, define the function ψ2 : I → (0,+∞)

as follows
ψ2 =

f

ψ1
.

Since f is positive, bounded and continuous on cl I, the function ψ2 is continuous
on I and ψ2

[
(a, c)

]
= ψ2

[
(c, b)

]
= (0,+∞) for each c ∈ I. Finally, f = ψ1ψ2

on I, which completes the proof. �

����	 3.4� Let I = (a, b) and y ∈ (0, 1]. There is a strong Świa̧tkowski function
ψ : cl I → (0, 1] such that ψ[I] = ψ

[
I ∩ C(ψ)

]
= (0, 1], ψ(a) = ψ(b) = y,

bd I ⊂ C(ψ), and card
(
I \ C(ψ)) = 1.
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P r o o f. Define the function ψ̄ : R → (0, 1] by

ψ̄(x) =

{
min

{
1, sinx−1 + |x|+ 1

}
if x �= 0,

2−1 if x = 0.

Then, clearly, ψ̄ ∈ Śs. Choose elements x1, x2, x3 ∈ (a, b) and assume that
x1 < x2 < x3. Define the function ψ : cl I → (0, 1] by the formula

ψ(x) =

⎧⎪⎨
⎪⎩
ψ̄(x− x2) if x ∈ [x1, x3],

y if x ∈ {a, b},
linear, on intervals [a, x1] and [x3, b].

One can easily show that the function ψ has all required properties. �

4. Main results

Remark 4.1� Product of two internally cliquish functions is internally cliquish.

P r o o f. If the functions f and g are internally cliquish, then the sets intC(f)
and intC(g) are dense in R. Hence, the set intC(f)∩ intC(g) is dense in R, too.
Moreover, intC(f) ∩ intC(g) ⊂ intC(fg), which proves that the function fg is
internally cliquish. �

������� 4.2� For each function f the following conditions are equivalent :

i) there are internally quasi-continuous functions g1 and g2 with f = g1g2,

ii) f is a finite product of internally quasi-continuous functions,

iii) f is internally cliquish and the set [f = 0] is simply open.

P r o o f. The implication i)⇒ ii) is evident.

ii)⇒ iii). Assume that there is k ∈ N and there are internally quasi-continuous
functions g1, . . . , gk such that f = g1 . . . gk. Since each internally quasi-conti-
nuous function is internally cliquish, using Remark 4.1 we obtain that the func-
tion f is internally cliquish. Moreover, since each internally quasi-continuous
function is quasi-continuous, by Theorem 2.1, [f = 0] is simply open.

iii)⇒ i). Now, assume that the set [f = 0] is simply open and the function f
is internally cliquish. Hence, intC(f) is dense in R. Let U = intC(f) \bd[f = 0].
Observe that the set R \ U is closed. Moreover,

R \ U =
(
R \ intC(f)) ∪ bd[f = 0].

Since R \ intC(f) is boundary and closed, and [f = 0] is simply open, the set
R\U is nowhere dense. Let J be the family of all components of U . Since [f = 0]
is simply open, J ⊂ [f = 0] or J ∩ [f = 0] = ∅ for each J ∈ J. So, if there is
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J ∈ J such that J ∩ [f = 0] = ∅, then f > 0 on J or f < 0 on J . Write
the set U as the union of families I1 and I2 consisting of the pairwise disjoint
compact intervals, such that for each x ∈ U , there are I1 ∈ I1 and I2 ∈ I2 with
x ∈ int(I1 ∪ I2).

Fix an interval J ∈ J and let J = (a, b). If J ⊂ [f = 0], then by Lemma 3.1
applied for Γ = +∞ and k = 2, there are continuous functions g1J , g2J : J → R

such that 0 = f�J = g1Jg2J and for i ∈ {1, 2}
giJ

[
(a, c)

]
= giJ

[
(c, b)

]
= R for each c ∈ J . (1)

If J ∩ [f = 0] = ∅, then |f | > 0 on J . Fix an interval I ∈ I1 ∪ I2 such
that I ⊂ J and let I = [α, β]. Since |f�I| > 0 and f is continuous on I, by
Lemma 3.3 there are continuous functions ψ1I , ψ2I : (α, β) → (0,+∞) such that
|f | = ψ1Iψ2I on (α, β) and for i ∈ {1, 2}

ψiI

[
(α, c)

]
= ψiI

[
(c, β)

]
= (0,+∞) for each c ∈ (α, β). (2)

Now, define functions ψ1J , ψ2J : J → R as follows:

ψ1J(x) =

⎧⎪⎨
⎪⎩

ψ1I(x) if x ∈ int I and I ∈ I1,
−ψ1I(x) if x ∈ int I and I ∈ I2,
1 otherwise,

ψ2J(x) =

⎧⎪⎨
⎪⎩

ψ2I(x) · sgn f(x) if x ∈ int I and I ∈ I1,
−ψ2I(x) · sgn f(x) if x ∈ int I and I ∈ I2,
f(x) otherwise.

Then, clearly, f�J=ψ1Jψ2J . By condition (2) and since |f |>0 on J , for i∈{1, 2}
ψiJ

[
(a, c)

]
= ψiJ

[
(c, b)

]
= R \ {0} for each c ∈ J . (3)

ψ1J and ψ2J are internally quasi-continuous on J . Fix x ∈ J . If there is I ∈ I1∪I2
such that x ∈ int I, then, since ψ1I and ψ2I are continuous on I, the functions
ψ1J and ψ2J are internally quasi-continuous at x. In another case, there are
I1 ∈ I1 and I2 ∈ I2 such that x ∈ bd I1∩bd I2. Since ψ1J(x) = 1 and ψ1J = ψ1I

is positive and continuous on int I1, using (2), we clearly obtain that ψ1J is
internally quasi-continuous at x. Moreover, ψ2J(x) = f(x) and ψ2J is continuous
on int I1, it has the same sign as the function f on I1. (Recall that f does not
change its sign on J .) So, by (2), ψ2J is internally quasi-continuous at x, too.

Further, we define functions g1, g2 : R → R as follows:

g1(x) =

⎧⎪⎨
⎪⎩
g1J(x) if x ∈ J , J ∈ J and J ⊂ [f = 0],

ψ1J (x) if x ∈ J , J ∈ J and J ∩ [f = 0] = ∅,
1 otherwise,
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g2(x) =

⎧⎪⎨
⎪⎩
g2J(x) if x ∈ J , J ∈ J and J ⊂ [f = 0],

ψ2J (x) if x ∈ J , J ∈ J and J ∩ [f = 0] = ∅,
f(x) otherwise.

Then, clearly, f = g1g2. Finally we will show that functions g1 and g2 are inter-
nally quasi-continuous.

Fix i ∈ {1, 2} and let x ∈ R. First, assume that there is J ∈ J such that
x ∈ cl J . If x ∈ int J then, since giJ is continuous on J and ψiJ is internally
quasi-continuous on J , the function gi is internally quasi-continuous at x. So, let
x ∈ bd J . Since gi�J is internally quasi-continuous, by (1) or (3), we clearly
obtain that gi is internally quasi-continuous at x.

Assume now that x ∈ R \⋃J∈J cl J . In this case, x ∈ R \ U . Since R \ U is
nowhere dense and conditions (1) and (3) hold, for each n ∈ N, there is Jn ∈ J
such that Jn ⊂ (

x, x+ 1
n

)
and there is

xn ∈ Jn ∩ intC(gi) with |gi(xn)− gi(x)| < 1

n
.

Hence there is a sequence (xn) ⊂ intC(gi) such that xn → x. Consequently, the
function gi is internally quasi-continuous at x. This completes the proof. �


�������� 4.3� There is a bounded internally quasi-continuous strong Świa̧t-
kowski function which cannot be written as the finite product of internally strong

Świa̧tkowski functions.

P r o o f. Let C ⊂ [0, 1] be the Cantor ternary set, and let I1 and I2 be disjoint
families of all components of the set [0, 1] \C such that C ∪⋃ I1 ∪

⋃ I2 = [0, 1]
and C =

(
cl
⋃ I1

) ∩ (
cl
⋃ I1

)
. Put I = I1 ∪ I2 and define

A = C \⋃I∈I bd I. (4)

Since A is a Gδ-set, then C \ A is an Fσ-set, whence there is a sequence (Fn)
consisting of closed sets such that

C \A =
⋃

n∈N
Fn. (5)

Define F ′
0 = ∅. For each n ∈ N, use Lemma 3.2 two times to construct a sequence

of sets (F ′
n) and a sequence of families of intervals (J ′

n) such that

J ′
n = J ′

1,n ∪ J ′
2,n, (6)

F ′
n = Fn ∪⋃

k<n

(
F ′
k ∪

⋃
I∈J ′

k
bd I

)
(7)

and for j ∈ {1, 2},
J ′
j,n ⊂ Ij , (8)
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for each I ∈ Ij , if F ′
n ∩ bd I �= ∅, then I ∈ J ′

j,n, (9)

for each c ∈ F ′
n, if c is a right-hand (left-hand) limit point of C,

then c is a right-hand (left-hand) limit point of the union
⋃J ′

j,n,
(10)

cl
⋃J ′

j,n ⊂ F ′
n ∪⋃

J∈J ′
j,n

cl J. (11)

Observe that by (11), for each k < n, the set F ′
k∪

⋃
I∈J ′

k
bd I is closed. So, by (7),

the set F ′
n is also closed and F ′

n ⊂ C\A. Fix an interval I ∈ I. Using Lemma 3.4,

we construct a strong Świa̧tkowski function fI [I] = fI
[
I ∩ C(fI)

]
= (0, 1],

fI(inf I) = fI(sup I) = 2−1, bd I ⊂ C(fI), and card
(
I \ C(fI)

)
= 1. Put

nI = min {n ∈ N : I ∈ J ′
n} ,

and observe that by (9),
⋃

n∈N

⋃J ′
n = [0, 1] \ C, whence nI is well defined.

Now, define the function f : R → [−2−1, 2−1] by the formula:

f(x) =

{
(−1)j2−nIfI(x) if x ∈ cl I and I ∈ Ij , j ∈ {1, 2},
0 otherwise.

Clearly, f is bounded and A ⊂ [f = 0]. First, we will show that A ⊂ C(f).

Take an x0 ∈ A and let ε > 0. Choose n0 ∈ N such that 2−n0 < ε and put
δ = dist

(
cl
⋃J ′

n0
, x0

)
. Since by (11), (7), (4), and (5),

A ∩ cl
⋃J ′

j,n0
⊂ (

A ∩ F ′
n0

) ∪ (
A ∩⋃

J∈J ′
j,n0

clJ
)

⊂
(
A ∩⋃

n≤n0
Fn

)
∪
((
C \⋃I∈I bd I

) ∩⋃
J∈I cl J

)
= ∅,

we have x0 /∈ cl
⋃J ′

j,n0
and δ > 0.

Observe that by (10), F ′
n0

⊂ cl
⋃J ′

n0
. If |x − x0| < δ, then x /∈ cl

⋃J ′
n0
,

whence

|f(x)− f(x0)| = |f(x)| ≤ 2−n0 < ε.

So, x0 ∈ C(f).

Now, we will prove that

∀
n∈N

∀
δ>0

(
x ∈ F ′

n\{sup I : I ∈ I} ⇒ f
[
(x−δ, x)∩C(f)] ⊃ [−2−n, 2−n

])
. (12)

Let n ∈ N, δ > 0 and x ∈ F ′
n \ {sup I : I ∈ I}. Then for j ∈ {1, 2}, by (10),

there is Ij ∈ J ′
j,n with Ij ⊂ (x− δ, x). Notice that max

{
nI1 , nI2

} ≤ n. So,

f
[
(x− δ, x) ∩ C(f)

] ⊃ f
[
I1 ∩ C(f)

] ∪ f[I2 ∩ C(f)
] ⊃ [−2−n, 2−n] \ {0}.

Since x /∈ {sup I : I ∈ I}, we have (x− δ, x) ∩ A �= ∅ and finally

f
[
(x− δ, x) ∩ C(f)

] ⊃ [−2−n, 2−n].
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Similarly, we can prove that

∀
n∈N

∀
δ>0

(
x ∈ F ′

n \ {inf I : I ∈ I} ⇒ f
[
(x, x+ δ) ∩ C(f)

] ⊃ [−2−n, 2−n
])
.

Now, we will show that f ∈ Śs. Let c, d ∈ R, c < d, and y ∈ I
(
f(c), f(d)

)
.

Without loss of generality, we can assume that c, d ∈ [0, 1] and f(c) < f(d).

If c, d ∈ cl I for some I ∈ I, then since fI ∈ Śs, there is x0 ∈ (c, d) ∩ C(f) with
f(x0) = y. So, assume that the opposite case holds.

Assume that y ≥ 0. (The case y < 0 is analogous.) Then f(d) > 0, whence
d /∈ A. We consider two cases.

Case 1. d /∈ ⋃
n∈N

F ′
n or d ∈ {sup I : I ∈ I}.

Then there is I ∈ I such that d ∈ cl I and c /∈ cl I. If y ∈ I
(
f(inf I), f(d)

)
,

then, since fI ∈ Śs, there is x0 ∈ (inf I, d)∩C(f) ⊂ (c, d)∩C(f) with f(x0) = y.

Now, let y ∈ [
0, f(inf I)

]
. By (7), since I ∈ J ′

nI
, we have inf I ∈ F ′

nI+1.
By (12),

y ∈ [
0, f(inf I)

] ⊂ [−2−nI−1, 2−nI−1
] ⊂ f

[
(c, inf I) ∩ C(f)

]
.

So, there is x0 ∈ (c, inf I) ∩ C(f) ⊂ (c, d) ∩ C(f) with f(x0) = y.

Case 2. d ∈ ⋃
n∈N

F ′
n \ {sup I : I ∈ I}.

Then, d ∈ F ′
n \ F ′

n−1 for some n ∈ N. By (12),

y ∈ [
0, f(d)

) ⊂ [−2−n, 2−n] ⊂ f
[
(c, d) ∩ C(f)

]
.

Consequently, there is x0 ∈ (c, d) ∩ C(f) with f(x0) = y. So, f ∈ Śs.

Observe now that R \ C(f) = (C \ A) ∪⋃
I∈I

(
I \ C(fI)

)
. However, card

(
I \

C(fI)
)
= 1 for each I ∈ I. So, the set R \ C(f) is nowhere dense. Hence and

since each strong Świa̧tkowski function is quasi-continuous, the function f is
internally quasi-continuous.

To complete the proof, suppose that there is k ∈ N and there are functions
g1, . . . , gk ∈ Śsi such that f = g1 . . . gk on R. Then, sgn ◦ f = sgn ◦ (g1 . . . gk).
Let (a, b) ⊂ [0, 1] be an interval in which the function f changes its sign. Then, at

least one of the functions g1, . . . , gk, say g1, has the same property. Since g1 ∈ Śsi,
there is x0 ∈ (a, b)∩ intC(g1) such that g1(x0) = 0. Note that [f = 0]∩ [0, 1] = A,
whence g(x1) �= 0 for some x1 ∈ (a, b)∩ intC(g1)∩(C \A). Since g1 is continuous
at x1, there is an open interval (a1, b1) such that g1

[
(a1, b1)

]∩ [g1 = 0] = ∅ and f
changes its sign in (a1, b1). Hence at least one of the functions g2, . . . , gk, say

g2, changes its sign in (a1, b1), too. Observe that g2 ∈ Śsi. Proceeding as above,
after k steps, we obtain that there is an open interval J in which the function f
changes its sign and gi[J ] ∩ [gi = 0] = ∅ for each i ∈ {1, . . . , k}, a contradiction.

Consequently, the function f cannot be written as the finite product of inter-

nally strong Świa̧tkowski functions. �
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Finally, we would like to present the problem.


������ 4.4� Characterize the products of internally strong Świa̧tkowski func-
tions.
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