



NOTES ON MODIFICATIONS OF A wQN-SPACE

JAROSLAV ŠUPINA

ABSTRACT. We continue to investigate the generalizations of the notion of wQN-space introduced by [L. Bukovský—J. Šupina: Modifications of sequence selection principles, Topology Appl. **160** (2013), 2356–2370] and by [J. Šupina: On Ohta–Sakai's properties of a topological space (to appear)]. We present covering characterizations, slightly different formulations, and some new relations among them.

1. Introduction

All topological spaces are assumed to be infinite and Hausdorff. By a function we mean a real-valued function, and symbol 0 denotes both the number and the function with constant zero value (defined on appropriate topological space). Basic set-theoretical and topological terminology follows mainly [2] and [8]. Preliminary definitions can be found in [1], [3], [12] or in the introduction here.

We continue with investigation of properties introduced in [6] and [16]. Their definitions are generalizations of the definition of wQN-space. Definitions of properties of [16] were motivated by H. O h t a and M. S a k a i [12]. To simplify the notation, we need to denote the following preordering on ${}^{\omega}({}^{X}\mathbb{R})$. Let $\langle f_n; n \in \omega \rangle$, $\langle g_n; n \in \omega \rangle$ be two sequences of real-valued functions on X. Then we write that $\langle f_n; n \in \omega \rangle \leq^* \langle g_n; n \in \omega \rangle$ if for any $x \in X$ the sequence $\{g_n(x)\}_{n=0}^{\infty}$ eventually dominates sequence $\{f_n(x)\}_{n=0}^{\infty}$, i.e.,

$$\langle f_n; n \in \omega \rangle \leq^* \langle g_n; n \in \omega \rangle \equiv (\forall x \in X) (\exists n_0) (\forall n \ge n_0) \qquad f_n(x) \le g_n(x).$$

To make our results easy to formulate, we introduce the following schema which is more general than the schemas of [6] and [16]. Let X be a set, $\mathcal{F}, \mathcal{G}, \mathcal{H} \subseteq {}^X \mathbb{R}$ being families of functions containing the zero constant function, i.e., $0 \in \mathcal{F}, \mathcal{G}, \mathcal{H}$.

^{© 2014} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: Primary 54C50; Secondary 54C30.

Keywords: semicontinuous function, wQN-space.

The work on this research has been partially supported by the grant 1/0002/12 of Slovak Grant Agency VEGA and by P. J. Šafárik University in Košice during author's postdoctoral position.

We say that X has a **property wED** $_{\mathcal{F},\mathcal{G}}^{\mathcal{H}}$, if for any sequence $\langle f_m; m \in \omega \rangle$ of functions from \mathcal{F} converging to a function $f \in \mathcal{H}$, there are sequences $\langle g_m; m \in \omega \rangle$ and $\langle h_m; m \in \omega \rangle$ of functions from \mathcal{G} converging to f, and there is an increasing sequence of natural numbers $\{n_m\}_{m=0}^{\infty}$ such that

for any $x \in X$, the sequence $\{g_m(x)\}_{m=0}^{\infty}$ eventually dominates $\{f_{n_m}(x)\}_{m=0}^{\infty}$, and the sequence $\{f_{n_m}(x)\}_{m=0}^{\infty}$ eventually dominates $\{h_m(x)\}_{m=0}^{\infty}$, i.e.,

$$\langle h_m; m \in \omega \rangle \leq^* \langle f_{n_m}; m \in \omega \rangle \leq^* \langle g_m; m \in \omega \rangle.$$

If $\mathcal{H} = \{0\}$, then we say that X has a property wED_{*F*,*G*}. We will use some assumptions about families of functions:

(a)
$$\{-f; f \in \mathcal{F}\} \subseteq \mathcal{F},$$

(b) $\{|f|; f \in \mathcal{F}\} \subseteq \mathcal{F},$
(c) $\{\min\{f,1\}; f \in \mathcal{F}\} \subseteq \mathcal{F},$
(d) $\{\max\{f,0\}; f \in \mathcal{F}\} \subseteq \mathcal{F}.$

For particular families $\mathcal{F}, \mathcal{G}, \mathcal{H} \subseteq {}^{X}\mathbb{R}$, we obtain some modifications of wQN--space considered earlier. If $\mathcal{F} \subseteq {}^{X}[0,1]$ and \mathcal{G} satisfies (c), (d), then property wED_{\mathcal{F},\mathcal{G}} is equivalent to the property with the same name introduced in [16]. In fact, many pairs \mathcal{F}, \mathcal{G} of families of functions in wED_{\mathcal{F},\mathcal{G}} will satisfy the former condition, and therefore, property wED_{\mathcal{F},\mathcal{G}} of this paper often corresponds to property wED_{\mathcal{F},\mathcal{G}} of [16]. Let Const denote the family of all constant functions on the considered set. For property wQN_{\mathcal{F}} from [6], we have

$$\mathrm{wQN}_{\mathcal{F}} \equiv \mathrm{wED}_{\mathcal{F},\mathrm{Const}}.$$

 $C_p(X)$ denotes the family of all continuous functions from X to \mathbb{R} . L. B u k o v - s k ý, I. R e c ł a w and M. R e p i c k ý introduced wQN-space in [4] and w $\overline{\mathcal{F}}$ QN-space in [5],

$$wQN = wED_{C_p(X),Const}, \quad w\overline{\mathcal{F}}QN = wED_{\mathcal{F},Const}^{X\mathbb{R}}$$

L. Bukovský [1] introduced wQN*-space and wQN_{*}-space.¹ \mathcal{U} and \mathcal{L} are families of all upper and lower semicontinuous functions on X, respectively. For a family $\mathcal{F} \subseteq {}^{X}\mathbb{R}$ we denote $\widetilde{\mathcal{F}} = \mathcal{F} \cap {}^{X}[0,1]$. Then,

$$\mathrm{wQN}^* \!\equiv \mathrm{wED}_{\widetilde{\mathcal{U}},\mathrm{Const}}, \qquad \qquad \mathrm{wQN}_* \!\equiv \mathrm{wED}_{\widetilde{\mathcal{L}},\mathrm{Const}}$$

We begin with simple properties of wED $_{\mathcal{F},\mathcal{G}}^{\mathcal{H}}$. If X is any set and $\mathcal{G} \subseteq \mathcal{F} \subseteq {}^{X}\mathbb{R}$, $\mathcal{H} \subseteq {}^{X}\mathbb{R}$, then property wED $_{\mathcal{F},\mathcal{G}}^{\mathcal{H}}$ is trivially satisfied in X. If $\mathcal{F}_1 \subseteq \mathcal{F}_2$, $\mathcal{G}_1 \subseteq \mathcal{G}_2$ and $\mathcal{H}_1 \subseteq \mathcal{H}_2$, then

$$\mathrm{wED}_{\mathcal{F}_2,\mathcal{G}_1}^{\mathcal{H}_2} \to \mathrm{wED}_{\mathcal{F}_1,\mathcal{G}_2}^{\mathcal{H}_1}.$$

By \mathcal{B} we denote the family of all Borel functions on X. If X is a perfectly normal space, $\mathcal{F}, \mathcal{H} \subseteq \mathcal{B}$ and Const $\subseteq \mathcal{G}$ then, in accordance with Tsaban–Zdomskyy Theorem [17], we have

$$\mathrm{QN} \to \mathrm{wED}^{\mathcal{B}}_{\mathcal{B},\mathrm{Const}} \to \mathrm{wED}^{\mathcal{H}}_{\mathcal{F},\mathcal{G}}$$

¹For more information about values of functions in their definitions see [15].

If a family \mathcal{F} satisfies (b) and \mathcal{G} satisfies (a), (d), then

 $\mathrm{wED}_{\mathcal{F},\mathcal{G}} \equiv \mathrm{wED}_{\mathcal{F}\cap^X[0,\infty),\mathcal{G}\cap^X[0,\infty)}.$

If a family ${\cal F}$ satisfies (b), (c) and ${\cal G}$ satisfies (a), (c), (d), then

 $\operatorname{wED}_{\mathcal{F},\mathcal{G}} \equiv \operatorname{wED}_{\widetilde{\mathcal{F}},\widetilde{\mathcal{G}}}.$

Finally, if $\mathcal{F} \subseteq {}^{X}[0,1]$ and \mathcal{G} satisfies (c), (d), then wED_{\mathcal{F},\mathcal{G}} \equiv wED_{$\mathcal{F},\widetilde{\mathcal{G}}$}.

We will use these relations without any comment.

2. Coverings

There are already known covering characterizations of some properties wED_{\mathcal{F},\mathcal{G}}. Such a characterization for wQN-space was found in [3]. By [1], [3], [13], property $\alpha_1(\Gamma,\Gamma)$ in the sense of L j. D. R. K očin a c [10] is a characterization of wED_{$\mathcal{L},C_p(X)$} and wED_{$\mathcal{U},C_p(X)$}.

A family $\mathcal{A} \subseteq \mathcal{P}(X)$ is a cover of a topological space X if $X = \bigcup \mathcal{A}$ and $X \notin \mathcal{A}^2$ An infinite cover \mathcal{A} is a γ -cover if every $x \in X$ lies in all but finitely many members of \mathcal{A} . Γ denotes the family of all open γ -covers of X. L. B u k o v - s k \circ [1] showed that any $S_1(\Gamma, \Gamma)$ -space has wED_{$\tilde{\mathcal{U}}, Const}$, and M. S a k a i [14] proved that if a topological space X has wED_{$\tilde{\mathcal{U}}, Const}$, then X is an $S_1(\Gamma, \Gamma)$ -space. We prove generalizations of these results using ideas of their proofs.</sub></sub>

Let X be a set and $\mathcal{A} \subseteq \mathcal{P}(X)$. \mathcal{A}^c denotes the family $\{X \setminus A; A \in \mathcal{A}\}$. By $\Gamma_{\mathcal{A}}$ we mean the family of all γ -covers of X by sets from \mathcal{A} . A function f on X is called lower, upper \mathcal{A} -measurable if $f^{-1}((r, \infty)) \in \mathcal{A}$, $f^{-1}((-\infty, r)) \in \mathcal{A}$ for any $r \in \mathbb{R}$, respectively. The family of all lower, upper \mathcal{A} -measurable functions on X with values in [0, 1] is denoted by $\mathcal{L}(\mathcal{A})$, $\mathcal{U}(\mathcal{A})$, respectively.

THEOREM 2.1. Let X be a topological space, $\mathcal{A} \subseteq \mathcal{P}(X)$ being closed under finite unions and intersections.³ Then the following are equivalent.

- (1) X is an $S_1(\Gamma_A, \Gamma_A)$ -space.
- (2) X has wED_{$\mathcal{U}(\mathcal{A})$,Const.}
- (3) X has wED_{$\mathcal{L}(\mathcal{A}^c)$,Const.}

²Similarly to [3], the empty set \emptyset can be an element of a cover. If we consider the enumeration of a cover, then we always assume that the set is repeated only finitely many times in the enumeration, i.e., the enumeration is adequate in the sense of [2]. ³Thus $\emptyset, X \in \mathcal{A}$.

Proof. (1) \rightarrow (2) Let $\langle f_m; m \in \omega \rangle$ be a sequence of upper \mathcal{A} -measurable functions on X with values in [0, 1] such that $f_m \rightarrow 0$. We define the sets $A_{n,m}, n, m \in \omega$ by

$$A_{n,m} = \{ x \in X; f_m(x) < 2^{-n} \}.$$

If there are increasing sequences $\{n_k\}_{k=0}^{\infty}, \{m_k\}_{k=0}^{\infty}$ such that $A_{n_k,m_k} = X$ for all $k \in \omega$, then $\langle f_{m_k}; k \in \omega \rangle$ converges uniformly. Thus, we may assume that $\langle \{A_{n,m}; m \in \omega\}; n \in \omega \rangle$ is a sequence of γ -covers by sets from \mathcal{A} . By $S_1(\Gamma_{\mathcal{A}}, \Gamma_{\mathcal{A}})$ there is an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $\{A_{n,m_n}; n \in \omega\}$ is a γ -cover enumerated bijectively. Then, $\langle f_{m_n}; n \in \omega \rangle$ converges quasi-normally to zero with the control $\{2^{-n}\}_{n=0}^{\infty}$.

 $(2) \to (1)$ Let $\langle \{A_{n,m}; m \in \omega\}; n \in \omega \rangle$ be a sequence of γ -covers by sets from \mathcal{A} . Since \mathcal{A} is closed under finite intersections, we may assume that $A_{n+1,m} \subseteq A_{n,m}$ for any $n, m \in \omega$. We define the upper \mathcal{A} -measurable functions $f_m, m \in \omega$ by

$$f_m(x) = \begin{cases} 1, & x \in X \setminus A_{0,m}, \\ \frac{1}{2^{n+1}}, & x \in A_{n,m} \setminus A_{n+1,m}, n \in \omega, \\ 0, & \text{otherwise.} \end{cases}$$

Sequence $\langle f_m; m \in \omega \rangle$ converges to zero. We have $f_m(x) < \frac{1}{2^n}$ if and only if $x \in A_{n,m}$. By wED_{$\mathcal{U}(\mathcal{A})$,Const} there is an increasing sequence $\{m_n\}_{n=0}^{\infty}$ such that $\langle f_{m_n}; n \in \omega \rangle$ converges quasi-normally to zero with the control $\{2^{-n}\}_{n=0}^{\infty}$. Thus, $\{A_{n,m_n}; n \in \omega\}$ is a γ -cover (by respective reselection we may assume that the enumeration is bijective).

The equivalence of (1) and (3) can be proved similarly.

Let us denote by **F** the family of all closed subsets of X. Then, we have Corollary 2.2. Note that according to B. Tsaban and L. Zdomskyy [17] and L. Bukovský [1] the result is known for perfectly normal space.

COROLLARY 2.2. A topological space X has $wED_{\widetilde{\mathcal{L}},Const}$ if and only if X is an $S_1(\Gamma_{\mathbf{F}},\Gamma_{\mathbf{F}})$ -space.

Note that the paper [6] contains characterizations of properties of Theorem 2.1 by so-called sequence selection properties.

3. Various families of functions

The paper [6] contains relations among properties wED_{\mathcal{F} ,Const} for various interesting families \mathcal{F} , e.g., if $\widetilde{\mathcal{L}} \subseteq \mathcal{F} \subseteq \mathcal{B}$, then we have

$$QN \equiv wED_{\mathcal{F},Const}, \qquad S_1(\Gamma,\Gamma) \equiv wED_{\widetilde{\mathcal{U}},Const}$$

We accomplish the similar investigations of properties $\operatorname{wED}_{\widetilde{\mathcal{F}}, C_p(X)}$ and $\operatorname{wED}_{\widetilde{\mathcal{F}}, \mathcal{U}}$. For interesting families, these properties can be divided into two groups of equivalent properties. By \mathcal{B}_1 we denote the family of all pointwise limits of continuous functions on X. If X is a perfectly normal space, then \mathcal{B}_1 is the family of all F_{σ} -measurable functions on X.

THEOREM 3.1. Let X be a perfectly normal space.

- (1) X has wED_{$\tilde{\mathcal{L}},C_n(X)$} if and only if X has wED_{$\tilde{\mathcal{L}},\mathcal{U}$}.
- (2) If $\widetilde{\mathcal{B}}_1 \subseteq \mathcal{F} \subseteq \widetilde{\mathcal{B}}$, then

$$\operatorname{wED}_{\mathcal{B}, \mathcal{C}_p(X)} \equiv \operatorname{wED}_{\mathcal{F}, \mathcal{C}_p(X)} \equiv \operatorname{wED}_{\mathcal{F}, \mathcal{U}}.$$

Proof.

- (1) Let us assume that X has $\operatorname{wED}_{\tilde{\mathcal{L}},\mathcal{U}}$. By [16, Corollary 5.2] we have that X has $\operatorname{wED}_{\tilde{\mathcal{U}},C_p(X)}$. One can easily see that if X has $\operatorname{wED}_{\tilde{\mathcal{L}},\mathcal{U}}$ and $\operatorname{wED}_{\tilde{\mathcal{U}},C_p(X)}$, then X has $\operatorname{wED}_{\tilde{\mathcal{L}},C_p(X)}$ [16, Lemma 2.2].
- (2) Similarly to (1), one can show that if X has wED_{$\mathcal{F},\mathcal{C}_p(X)$}, then X has wED_{$\mathcal{F},\mathcal{C}_p(X)$}. If X has wED_{$\mathcal{F},\mathcal{C}_p(X)$}, then X is a σ -set according to [16, Corollary 5.2]. Therefore, any Borel function is F_{σ}-measurable and belongs to family \mathcal{F} . Hence, X has wED_{$\widetilde{\mathcal{F}},\mathcal{C}_p(X)$}.

However, following in [16, Theorem 1.2], we have

PROPOSITION 3.2. Let X be a perfectly normal space with Hurewicz property⁴, $\widetilde{\mathcal{L}} \subseteq \mathcal{F} \subseteq \widetilde{\mathcal{B}}$. Then

$$QN \equiv wED_{\mathcal{F},C_p}(X) \equiv wED_{\mathcal{F},\mathcal{U}}.$$

In [16], we showed that, for any perfectly normal space, the property wED_{$\tilde{\mathcal{L}}, C_p(X)$} is hereditary. The same is true for wED_{$\mathcal{B}, C_p(X)$}.

LEMMA 3.3. Let X be a topological space, and let $\mathcal{G} \in \{C_p(X), \mathcal{U}, \mathcal{L}, \mathcal{B}_1\}$. Then, any Borel subset of X with property wED_{\widetilde{B} , \mathcal{G}} has wED_{\widetilde{B} , \mathcal{G}} as well.

Proof. Let $B \subseteq X$. For a sequence $\langle f_n; n \in \omega \rangle$ of Borel functions on B, one can define a sequence $\langle h_n; n \in \omega \rangle$ of Borel functions on X by $h_n(x) = f_n(x)$ for $x \in B$ and $h_n(x) = 0$ for $x \in X \setminus B$.

If X is perfectly normal space, then by Kuratowski Extension Theorem for Borel measurable functions (see, e.g., $[11, \S{3}1, VI, Théorème]$ or [7, Theorem 2.4]) we obtain

PROPOSITION 3.4. For any perfectly normal space X, the property wED_{$\mathcal{B},C_p(X)$} is hereditary.

⁴We say that a topological space X possesses Hurewicz property if for any sequence $\langle \mathcal{U}_n; n \in \omega \rangle$ of countable open covers not containing a finite subcover, there exist finite sets $\mathcal{V}_n \subseteq \mathcal{U}_n, n \in \omega$ such that $\{\bigcup \mathcal{V}_n; n \in \omega\}$ is a γ -cover. Note that this definition corresponds to property \mathbf{E}_{ω}^{**} rather than to original property \mathbf{E}^{**} by W. Hurewicz [9], see, e.g., [3].

4. Different formulations

In [15], we showed that the range of functions in definitions of properties wED_{$\tilde{\mathcal{U}}$,Const} and wED_{$\tilde{\mathcal{L}}$,Const} is essential, e.g., if X is a normal space, then

$$wED_{\tilde{\mathcal{L}},Const} \equiv wED_{\mathcal{L},Const} \equiv wED_{\mathcal{U},Const}.$$

In this section, we present similar, but not the same, results on main objects of investigation in [16], i.e., on properties $\text{wED}_{\widetilde{\mathcal{U}}, C_n(X)}$ and $\text{wED}_{\widetilde{\mathcal{L}}, C_n(X)}$.

For a perfectly normal space X, we show that the limit function in the definition of property wED_{$\tilde{U}, C_p(X)$} can be any F_{σ}-measurable function, and the range of functions can be \mathbb{R} .

PROPOSITION 4.1. Let X be a perfectly normal space. The following are equivalent.

- (1) X possesses wED_{$\tilde{\mathcal{U}}, C_p(X)$}.
- (2) For any sequence $\langle f_m; m \in \omega \rangle$ of upper semicontinuous functions on X with values in \mathbb{R} converging to F_{σ} -measurable function f, there exists a sequence $\langle g_m; m \in \omega \rangle$ of continuous functions converging to f, and there is an increasing sequence of natural numbers $\{n_m\}_{m=0}^{\infty}$ such that

$$\langle f_{n_m}; m \in \omega \rangle \leq^* \langle g_m; m \in \omega \rangle.$$

Proof. Since there is an increasing homeomorphism between (0,1) and \mathbb{R} , we will restrict our proof to functions with (0,1) range. Thus, let $\langle f_m; m \in \omega \rangle$ be a sequence of upper semicontinuous functions on X with values in (0,1) converging to an F_{σ} -measurable function f, and let $\langle h_n; n \in \omega \rangle$ be continuous functions such that $h_n \to f$. Then, max $\{f_n - h_n; 0\} \to 0$. In accordance with wED $\widetilde{u}_{\mathcal{C}_p(X)}$, there exist a sequence $\langle g'_m; m \in \omega \rangle$ of continuous functions converging to zero and an increasing sequence of natural numbers $\{n_m\}_{m=0}^{\infty}$ such that for any $x \in X$ there is $m_0 \in \omega$ with max $\{f_{n_m}(x) - h_{n_m}(x); 0\} \leq g'_m(x)$ for any $m \geq m_0$. Then, $f_{n_m}(x) \leq g'_m(x) + h_{n_m}(x)$ for any $m \geq m_0$.

Finally, we define a sequence $\langle g_m; m \in \omega \rangle$ by

$$g_m = \min\{1 - 2^{-m-1}; \max\{2^{-m-1}; g'_m + h_{n_m}\}\}$$

and we obtain functions with ranges in (0, 1) such that

$$\langle f_{n_m}; m \in \omega \rangle \leq^* \langle g_m; m \in \omega \rangle.$$

Although the condition (2) of Proposition 4.1 resembles property wED^{\mathcal{B}_1}_{$\mathcal{U}, C_p(X)$}, it cannot be replaced with this property, as Theorem 4.2 shows.

Let property $\mathrm{ED}_{\mathcal{F},\mathcal{G}}^{\mathcal{H}}$ be defined as property $\mathrm{wED}_{\mathcal{F},\mathcal{G}}^{\mathcal{H}}$, except for the condition asking $\langle h_m; m \in \omega \rangle \leq^* \langle f_m; m \in \omega \rangle \leq^* \langle g_m; m \in \omega \rangle$. In [16], we showed that a topological space X has $\mathrm{wED}_{\mathcal{L},C_p(X)}$ if and only if X has $\mathrm{ED}_{\mathcal{L},C_p(X)}$.

NOTES ON MODIFICATIONS

THEOREM 4.2. Let X be a perfectly normal space. Then

$$\operatorname{wED}_{\widetilde{\mathcal{L}}, \mathcal{C}_p(X)} \equiv \operatorname{wED}_{\mathcal{L}, \mathcal{C}_p(X)}^{\mathcal{B}} \equiv \operatorname{wED}_{\mathcal{U}, \mathcal{C}_p(X)}^{\mathcal{B}}.$$

Proof. If X has wED^B_{$\mathcal{L},C_p(X)$}, then X has wED_{$\mathcal{L},C_p(X)$} as well. Since there is an increasing homeomorphism between (0,1) and \mathbb{R} , to prove the reversed implication, we will restrict to the functions with (0,1) range. Let X possess wED_{$\mathcal{L},C_p(X)$}, and let $\langle f_m; m \in \omega \rangle$ be a sequence of upper semicontinuous functions on X with values in (0,1) converging to $f \in \mathcal{B}$. By [16, Corollary 5.2], the function f is Δ^0_2 -measurable, thus $f \in \mathcal{B}_1$. Moreover, X has USC by the same corollary and [12, Corollary 2.4]. Thus, by [16, Theorem 6.1], there is a sequence $\langle \varphi_m; m \in \omega \rangle$ of continuous functions $\varphi_m - f_m$, we have $\varphi_m - f_m \to 0$. Due to wED_{$\mathcal{L},C_p(X)$}, there is a sequence $\langle \psi_m; m \in \omega \rangle$ of continuous functions converging to zero such that $\langle \varphi_m - f_m; m \in \omega \rangle \leq^* \langle \psi_m; m \in \omega \rangle$. The sequences $\langle h_m; m \in \omega \rangle$ and $\langle g_m; m \in \omega \rangle$ will be defined by

$$h_m = \max\{2^{-m-1}; \varphi_m - \psi_m\}, g_m = \min\{1 - 2^{-m-1}; \varphi_m\}.$$

To prove the equivalence wED $_{\mathcal{L},C_p(X)}^{\mathcal{B}} \equiv \text{wED}_{\mathcal{U},C_p(X)}^{\mathcal{B}}$ for a sequence $\langle f_m; m \in \omega \rangle$ of upper/lower semicontinuous functions converging to a Borel function f, we can consider the lower/upper semicontinuous functions $-f_m, m \in \omega$ and the Borel function -f.

Let us remark that

1

$$\mathrm{wED}^{\mathcal{B}}_{\widetilde{\mathcal{L}},\mathrm{C}_p(X)} \equiv \mathrm{wED}^{\mathcal{B}}_{\widetilde{\mathcal{U}},\mathrm{C}_p(X)}.$$

To prove this, one can use functions $1-f_m$, $m \in \omega$ and 1-f instead of $-f_m$, $m \in \omega$ and -f in the second part of the proof of Theorem 4.2.

In fact, notice that slightly more is proved in Theorem 4.2, i.e.,

$$\operatorname{wED}_{\widetilde{\mathcal{L}}, \mathcal{C}_p(X)} \equiv \operatorname{ED}_{\mathcal{L}, \mathcal{C}_p(X)}^{\mathcal{B}} \equiv \operatorname{ED}_{\mathcal{U}, \mathcal{C}_p(X)}^{\mathcal{B}}$$

Consequently, for any $\{0\} \subseteq \mathcal{F} \subseteq \mathcal{B}$, we obtain

$$wED_{\widetilde{\mathcal{L}},C_p(X)} \equiv wED_{\mathcal{L},C_p(X)}^{\mathcal{F}} \equiv wED_{\mathcal{L},C_p(X)}^{\mathcal{F}} \equiv ED_{\mathcal{L},C_p(X)}^{\mathcal{F}} \equiv ED_{\mathcal{L},C_p(X)}^{\mathcal{F}}$$

Finally, note that, for perfectly normal space X and $\widetilde{\mathcal{B}}_1 \subseteq \mathcal{F} \subseteq \mathcal{B}$, we have

$$\operatorname{wED}_{\mathcal{B}, \mathcal{C}_p(X)} \equiv \operatorname{wED}_{\mathcal{F}, \mathcal{C}_p(X)}^{\mathcal{B}}.$$

Acknowledgements. I would like to thank Professor L ev B u k o v s k ý and the referee for valuable comments.

REFERENCES

- [1] BUKOVSKÝ, L.: On wQN_{*} and wQN^{*} spaces, Topology Appl. 156 (2008), 24–27.
- [2] BUKOVSKÝ, L.: The Structure of the Real Line, in: Monogr. Mat., Vol. 71, Birkhäuser, Basel, 2011.
- [3] BUKOVSKÝ, L.—HALEŠ, J.: QN-spaces, wQN-spaces and covering properties, Topology Appl. 154 (2007), 848–858.
- [4] BUKOVSKÝ, L.—RECLAW, I.—REPICKÝ, M.: Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25–40.
- BUKOVSKÝ, L.—RECLAW, I.—REPICKÝ, M.: Spaces not distinguishing convergences of real-valued functions, Topology Appl. 112 (2001), 13–40.
- BUKOVSKÝ, L.—ŠUPINA, J.: Modifications of sequence selection principles, Topology Appl. 160 (2013), 2356–2370.
- [7] CSÁSZÁR, Á.: Extensions of discrete and equal Baire functions, Acta Math. Hungar. 56 (1990), 93–99.
- [8] ENGELKING, R.: General Topology. Heldermann, Berlin, 1989.
- [9] HUREWICZ, W.: Über Folgen stetiger Funktionen, Fund. Math. 9 (1927), 193–204.
- [10] KOČINAC, LJ. D. R.: Selection principles related to α_i-properties, Taiwanese J. Math. 12 (2008), 561–571.
- [11] KURATOWSKI, K.: Topologie I, in: Monogr. Mat., Vol. 20, Warszawa, 1948.
- [12] OHTA, H.—SAKAI, M.: Sequences of semicontinuous functions accompanying continuous functions, Topology Appl. 156 (2009), 2683–2906.
- [13] SAKAI, M.: The sequence selection properties of $C_p(X)$, Topology Appl. 154 (2007), 552–560.
- [14] SAKAI, M.: Selection principles and upper semicontinuous functions, Colloq. Math. 117 (2009), 251–256.
- [15] ŠUPINA, J.: wQN spaces and related notions, Tatra Mt. Math. Publ. 46 (2010), 71–77.
- [16] SUPINA, J.: On Ohta-Sakai's properties of a topological space (to appear).
- [17] TSABAN, B.—ZDOMSKYY, L.: Hereditary Hurewicz spaces and Arhangel'skiĭ sheaf amalgamations, J. Eur. Math. Soc. (JEMS) 14 (2012), 353–372.

Received December 2, 2013

Institute of Mathematics P. J. Šafárik University in Košice Jesenná 5 SK-040-01 Košice SLOVAKIA E-mail: jaroslav.supina@upjs.sk