DOI: 10.2478/tmmp-2014-0012
Tatra Mt. Math. Publ. 58 (2014), 137-144

MICROSCOPIC SETS
 WITH RESPECT TO SEQUENCES OF FUNCTIONS

Grażyna Horbaczewska

Abstract

Consequences of replacing the geometric sequence with another in the definition of microscopic sets are considered.

The notion of a microscopic set on the real line was introduced by J. A p pell in [1 at the beginning of the 21st century. Thereafter, some papers were devoted to this topic ([7], [9-11). Lately, a chapter on microscopic sets was published in a monography 8].

Definition 1. A set $E \subset \mathbb{R}$ is microscopic if for each $\epsilon>0$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \quad \text { and } \quad \lambda\left(I_{n}\right) \leq \epsilon^{n} \quad \text { for } \quad n \in \mathbb{N} .
$$

The family of all microscopic sets will be denoted by \mathcal{M}.
A special role in this definition is played by a geometric sequence. A question about the consequences of replacing this specific sequence with another one was raised by J. Appell, E. D'Aniello and M. Väth in [3].

If we consider an arbitrary sequence here, we get a definition of a family of strong measure zero sets ([5]), denoted by \mathcal{S}.

Definition 2. A set $E \subset \mathbb{R}$ is of strong measure zero if for each sequence of positive reals $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \quad \text { and } \quad \lambda\left(I_{n}\right) \leq \epsilon_{n} \quad \text { for } \quad n \in \mathbb{N} .
$$

Obviously, $\mathcal{S} \subsetneq \mathcal{M}$. An example of a microscopic set which is not a strong measure zero set is given in [6].

[^0]Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of increasing functions $f_{n}:(0,1) \rightarrow(0,1)$ such that $\lim _{x \rightarrow 0^{+}} f_{n}(x)=0$, and there exists $x_{0} \in(0,1)$ such that for every $x \in\left(0, x_{0}\right)$ the series $\sum_{n \in \mathbb{N}} f_{n}(x)$ is convergent and the sequence $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is nonincreasing.
Definition 3. A set $E \subset \mathbb{R}$ belongs to $\mathcal{M}_{\left(f_{n}\right)}$ if for each $x \in(0,1)$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \quad \text { and } \quad \lambda\left(I_{n}\right) \leq f_{n}(x) \quad \text { for } \quad n \in \mathbb{N}
$$

For $f_{n}(x)=x^{n}, n \in \mathbb{N}$, we have $\mathcal{M}_{\left(f_{n}\right)}=\mathcal{M}$.
If \mathcal{H} denotes the family of all sequences of functions with properties described above, then

$$
\bigcap_{\left(f_{n}\right) \in \mathcal{H}} \mathcal{M}_{\left(f_{n}\right)}=\mathcal{S} .
$$

Now, we may ask several questions. We would like to know for which sequences we get microscopic sets, when different sequences give different families of sets, under which condition $\mathcal{M}_{\left(f_{n}\right)}$ is a σ-ideal.

The next theorem gives a sufficient condition for getting microscopic sets.
Theorem 4. If there exists $k \in \mathbb{N}$ such that for every $n \in \mathbb{N}$ and for every $x \in(0,1)$ we have $x^{n+k} \leq f_{n}(x) \leq x^{n}$, then

$$
\mathcal{M}_{\left(f_{n}\right)}=\mathcal{M}
$$

Proof. Since the inclusion $\mathcal{M}_{\left(f_{n}\right)} \subset \mathcal{M}$ is obvious, we have to justify only the inverse one.

Let $E \in \mathcal{M}$. Fix $x \in(0,1)$. Since $E \in \mathcal{M}$ for $x_{0}=x^{k+1}$, there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that

Therefore

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \quad \text { and } \quad \lambda\left(I_{n}\right)<\left(x_{0}\right)^{n} \quad \text { for } n \in \mathbb{N}
$$

$$
\lambda\left(I_{n}\right)<\left(x^{k+1}\right)^{n}=x^{n k+n} \leq x^{n+k} \leq f_{n}(x), \quad \text { so } \quad E \in \mathcal{M}_{\left(f_{n}\right)} .
$$

The above condition is not necessary, for example, for a sequence $f_{n}(x)=x^{2 n}$, $n \in \mathbb{N}$, the assumption of the above theorem is not satisfied, but $\mathcal{M}_{\left(f_{n}\right)}=\mathcal{M}$.

More examples of sequences of functions leading to microscopic sets can be given for:

$$
\begin{aligned}
& f_{n}(x)=\left(\frac{x}{a}\right)^{n}, \quad \text { where } \quad a>0 \\
& f_{n}(x)=x^{a n}, \quad \text { where } \quad a>0 \\
& f_{n}(x)=\frac{x^{n}}{n^{a}}, \quad \text { where } \quad a \geq 1,
\end{aligned}
$$

the family $\mathcal{M}_{\left(f_{n}\right)}$ is exactly the family of microscopic sets.

MICROSCOPIC SETS WITH RESPECT TO SEQUENCES OF FUNCTIONS

For reader's convenience we show that in the last case every microscopic set belongs to $\mathcal{M}_{\left(f_{n}\right)}$. Let $A \in \mathcal{M}$. Fix $x \in(0,1)$ and find $n_{0} \in \mathbb{N}$ such that $1 / n_{0}<x$. For $\epsilon:=\frac{1}{n_{0}^{a+1}}$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that

Then

$$
E \subset \bigcup_{n \in \mathbb{N}} I_{n} \quad \text { and } \quad \lambda\left(I_{n}\right) \leq \epsilon^{n} \quad \text { for } \quad n \in \mathbb{N}
$$

$$
\lambda\left(I_{n}\right) \leq \epsilon^{n}=\frac{1}{\left(n_{0}^{a+1}\right)^{n}}=\frac{1}{\left(n_{0}^{a}\right)^{n} n_{0}^{n}}<\frac{1}{\left(n_{0}^{n}\right)^{a}} x^{n}<\frac{x^{n}}{n^{a}}
$$

since $n_{0}^{n}>n$ for $n_{0}>1$. Therefore, $a \in \mathcal{M}_{\left(f_{n}\right)}$.
One can observe an obvious sufficient condition for an inclusion between the families $\mathcal{M}_{\left(g_{n}\right)}$ and $\mathcal{M}_{\left(f_{n}\right)}$ for sequences $\left(f_{n}\right)_{n \in \mathbb{N}},\left(g_{n}\right)_{n \in \mathbb{N}}$ from the family \mathcal{H} :

$$
\forall_{x \in(0,1)} \forall_{n \in \mathbb{N}} g_{n}(x) \leq f_{n}(x) \Rightarrow \mathcal{M}_{\left(g_{n}\right)} \subset \mathcal{M}_{\left(f_{n}\right)}
$$

The next theorem gives a not so obvious sufficient condition.
Theorem 5. If for every $x \in(0,1)$ there exists $y \in(0,1)$ such that there exists a sequence $\left(P_{m}\right)_{m \in \mathbb{N}}$ of pairwise disjoint, nonempty subsets of \mathbb{N} such that
then

$$
g_{m}(y) \leq \sum_{i \in P_{m}} f_{i}(x) \quad \text { for every } \quad m \in \mathbb{N},
$$

$$
\mathcal{M}_{\left(g_{n}\right)} \subset \mathcal{M}_{\left(f_{n}\right)}
$$

Proof. Let $E \in \mathcal{M}_{\left(g_{n}\right)}$. Let $x \in(0,1)$. By our assumption, there exists $y \in(0,1)$ and a sequence $\left\{P_{m}\right\}$ of pairwise disjoint nonempty subsets of \mathbb{N} such that $g_{m}(y) \leq \sum_{i \in P_{m}} f_{i}(x)$. Since $E \in \mathcal{M}_{\left(g_{n}\right)}$, for y there exists a sequence of intervals $\left(I_{m}\right)_{m \in \mathbb{N}}$ such that

$$
E \subset \bigcup_{m \in \mathbb{N}} I_{m} \quad \text { and } \quad \lambda\left(I_{m}\right) \leq g_{m}(y)
$$

Since $\lambda\left(I_{m}\right) \leq g_{m}(y) \leq \sum_{i \in P_{m}} f_{i}(x)$, we may divide the interval I_{m} into nonoverlapping intervals $J_{i}^{(m)}, i \in P_{m}$, such that

$$
\lambda\left(J_{i}^{(m)}\right) \leq f_{i}(x) \quad \text { for } \quad i \in P_{m}
$$

Let $n \in \mathbb{N}$. If n belongs to none of $P_{m}, m \in \mathbb{N}$, then $J_{n}:=\emptyset$. If $n \in P_{m}$, then $J_{n}:=J_{n}^{(m)}$. Therefore,

$$
E \subset \bigcup_{m \in \mathbb{N}} I_{m}=\bigcup_{n \in \mathbb{N}} J_{n} \quad \text { and } \quad \lambda\left(J_{n}\right) \leq f_{n}(x), \quad \text { so } \quad E \in \mathcal{M}_{\left(f_{n}\right)}
$$

GRAŻYNA HORBACZEWSKA

Theorem 6.

$$
\mathcal{M}_{\left(f_{n}\right)} \backslash \mathcal{S} \neq \emptyset \quad \text { for every } \quad\left(f_{n}\right)_{n \in \mathbb{N}} \in \mathcal{H}
$$

Proof.
Let $I:=[0,1]$. We will define by induction the sequence of open intervals $\left\{J_{n, i}\right\}, i \in\left\{1, \ldots, 2^{n-1}\right\}, n \in \mathbb{N}$, in the following way.

Let $k_{1}:=\min \left\{k: f_{2^{k}}\left(\frac{1}{k+1}\right)<\frac{1}{3}\right\}$. Put $J_{1,1}:=\left(f_{2^{k_{1}}}\left(\frac{1}{k_{1}+1}\right), 1-f_{2^{k_{1}}}\left(\frac{1}{k_{1}+1}\right)\right)$. Then, of course, $\lambda\left(J_{1,1}\right)>\frac{1}{3}$.

Let $K_{1,1}, K_{1,2}$ denote successive components of the set $I \backslash J_{1,1}$. Obviously, $\lambda\left(K_{1, i}\right)=f_{2^{k_{1}}}\left(\frac{1}{k_{1}+1}\right)$ for $i \in\{1,2\}$.

Let $k_{2}:=\min \left\{k: f_{2^{k}}\left(\frac{1}{k+1}\right)<\frac{1}{3} f_{2^{k_{1}}}\left(\frac{1}{k_{1}+1}\right)\right\}$.
Let $J_{2,1}, J_{2,2}$ be two open intervals concentric with $K_{1,1}$ and $K_{1,2}$, respectively, such that $\lambda\left(J_{2,1}\right)=\lambda\left(J_{2,2}\right)=\lambda\left(K_{1,1}\right)-2 f_{2^{k_{2}}}\left(\frac{1}{k_{2}+1}\right)$.

Let $K_{2,1}, K_{2,2}, K_{2,3}$, and $K_{2,4}$ denote successive components of the set $I \backslash\left(J_{1,1} \cup J_{2,1} \cup J_{2,2}\right)$. Notice that $\lambda\left(K_{2, i}\right)=f_{2^{k_{2}}}\left(\frac{1}{k_{2}+1}\right)$ for $i \in\{1,2,3,4\}$.

Let $m \geq 2$. Assume that we have constructed the open, nonempty intervals $J_{l, 1}, \ldots, J_{l, 2^{l-1}}$ concentric with $K_{l-1,1}, \ldots, K_{l-1,2^{l-1}}$, respectively, such that $\lambda\left(J_{l, i}\right)=\lambda\left(K_{l-1,1}\right)-2 f_{2^{k_{l}}}\left(\frac{1}{k_{l}+1}\right)$ for $l \in\{2, \ldots, m\}, i \in\left\{1, \ldots, 2^{l-1}\right\}$, where $k_{l}:=\min \left\{k: f_{2^{k}}\left(\frac{1}{k+1}\right)<\frac{1}{3} f_{2^{k_{l-1}}}\left(\frac{1}{k_{l-1}+1}\right)\right\}$, for $l \in\{2, \ldots, m\}$.

Let $K_{m, 1}, \ldots, K_{m, 2^{m}}$ be successive components of the set $I \backslash \bigcup_{l=1}^{m} \bigcup_{i=1}^{2^{l-1}} J_{l, i}$. Notice that $\lambda\left(K_{m, i}\right)=f_{2^{k_{m}}}\left(\frac{1}{k_{m}+1}\right)$ for $i \in\left\{1, \ldots, 2^{m}\right\}$.

Now, let $k_{m+1}:=\min \left\{k: f_{2^{k}}\left(\frac{1}{k+1}\right)<\frac{1}{3} f_{2^{k_{m}}}\left(\frac{1}{k_{m}+1}\right)\right\}$ and $J_{m+1,1}, \ldots, J_{m+1,2^{m}}$ be open intervals concentric with $K_{m, 1}, \ldots, K_{m, 2^{m}}$, respectively, such that $\lambda\left(J_{m+1, i}\right)=\lambda\left(K_{m, 1}\right)-2 f_{2^{k_{m+1}}}\left(\frac{1}{k_{m+1}+1}\right)$ for $i \in\left\{1, \ldots, 2^{m}\right\}$.

Let $K_{m+1,1}, \ldots, K_{m+1,2^{m+1}}$ be successive components of the set

$$
I \backslash \bigcup_{l=1}^{m+1} \bigcup_{i=1}^{2^{l-1}} J_{l, i}
$$

Obviously, $\lambda\left(K_{m+1, i}\right)=f_{2^{k_{m+1}}}\left(\frac{1}{k_{m+1}+1}\right)$ for $i \in\left\{1, \ldots, 2^{m+1}\right\}$.
Let us put $M:=\bigcap_{m \in \mathbb{N}} \bigcup_{i=1}^{2^{m}} K_{m, i}$.
Now, let $x \in(0,1)$. There exists $m_{0} \in \mathbb{N}$ such that $\frac{1}{k_{m_{0}}}<x$.
Let $I_{i}:=K_{m_{0}, i}$ for $i \in\left\{1, \ldots, 2^{m_{0}}\right\}$ and $I_{i}:=\emptyset$ for $i>2^{m_{0}}$. Obviously, $M \subset \bigcup_{i=1}^{2^{m_{0}}} K_{m_{0}, i}=\bigcup_{i \in \mathbb{N}} I_{i}$ and $\lambda\left(I_{i}\right)=\lambda\left(K_{m_{0}, i}\right)=f_{2^{k_{m_{0}}}}\left(\frac{1}{k_{m_{0}}+1}\right) \leq f_{2^{m_{0}}}\left(\frac{1}{k_{m_{0}}+1}\right)<$ $f_{2^{m_{0}}}(x) \leq f_{i}(x)$ for $i \in\left\{1, \ldots, 2^{m_{0}}\right\}$. Hence, M is a Cantor-type set from $\mathcal{M}_{\left(f_{n}\right)}$. As a perfect set, M cannot be a strong measure zero set (compare [5, Corollary 8.1.5]), so $M \in \mathcal{M}_{\left(f_{n}\right)} \backslash \mathcal{S}$.

MICROSCOPIC SETS WITH RESPECT TO SEQUENCES OF FUNCTIONS

Theorem 7. Let $\left(f_{n}\right),\left(g_{n}\right) \in \mathcal{H}$ and let k_{n} be a sequence of natural numbers chosen as in the proof of the previous theorem. Suppose that there exists $\delta>0$ such that $g_{n}(x)<f_{n}(x)$ for every $n \in \mathbb{N}$ and for every $x \in(0, \delta)$. If there exists a point $x_{0} \in(0,1)$ such that $g_{n}\left(x_{0}\right)<f_{2^{k_{n}}}\left(\frac{1}{k_{n}+1}\right)$, for every $n \in \mathbb{N}$, then

$$
\mathcal{M}_{\left(g_{n}\right)} \subsetneq \mathcal{M}_{\left(f_{n}\right)}
$$

Proof. Since the inclusion $\mathcal{M}_{\left(g_{n}\right)} \subset \mathcal{M}_{\left(f_{n}\right)}$ is obvious, we only need to show that these families are different.

Consider the set M from the proof of the previous theorem.
Let $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ be any sequence of intervals such that $\lambda\left(I_{n}\right) \leq g_{n}\left(x_{0}\right)$.
As $\lambda\left(I_{1}\right) \leq g_{1}\left(x_{0}\right)<f_{2^{k_{1}}}\left(\frac{1}{2}\right), I_{1}$ cannot have common points with both sets $K_{1,1}$ and $K_{1,2}$, since $f_{2^{k_{1}}}\left(\frac{1}{2}\right)<\frac{1}{3}<\lambda\left(J_{1,1}\right)=\operatorname{dist}\left(K_{1,1}, K_{1,2}\right)$.

Put $P_{0}:=[0,1]$.
Let $P_{1}:=K_{1, i_{1}}$, where $i_{1} \in\{1,2\}$ and $I_{1} \cap K_{1, i_{1}}=\emptyset$.
Let $n \geq 2$. We assume that for $l \in\{1, \ldots, n-1\}$ we have already chosen an interval P_{l}, such that $P_{l}:=K_{l, i_{l}}$, where $i_{l} \in\left\{1, \ldots, 2^{l}\right\}, I_{l} \cap K_{l, i_{l}}=\emptyset$ and $P_{l} \subset P_{l-1}$.

The interval I_{n} satisfies a condition

$$
\lambda\left(I_{n}\right) \leq g_{n}\left(x_{0}\right)<f_{2^{k_{n}}}\left(\frac{1}{k_{n}+1}\right)=\lambda\left(K_{n, i}\right)
$$

for $i \in\left\{1, \ldots, 2^{n}\right\}$ and by the construction of M, precisely by the way of defining k_{n}, we have $\lambda\left(K_{n, i}\right)<\lambda\left(J_{l, j}\right)$, where $J_{l, j}$ is a gap between the intervals $K_{n, i}$ and $K_{n, i^{\prime}}$ contained in P_{n-1}, so one of them has no common points with I_{n}. We denote it by P_{n}.

Therefore, we have inductively constructed a descending sequence of closed intervals P_{n}, such that $\lambda\left(P_{n}\right)=f_{2^{k_{n}}}\left(\frac{1}{k_{n}+1}\right)$ and $P_{n} \cap I_{n}=\emptyset$ for $n \in \mathbb{N}$. By Cantor Theorem, there exists a point $x \in \bigcap_{n \in \mathbb{N}} P_{n}$. Of course $x \in M$ and $x \notin \bigcup_{n \in \mathbb{N}} I_{n}$, so $M \notin \mathcal{M}_{\left(g_{n}\right)}$.

Theorem 8. For every $\left(f_{n}\right) \in \mathcal{H}$, there exists $\left(g_{n}\right) \in \mathcal{H}$ such that

$$
\mathcal{S} \subsetneq \mathcal{M}_{\left(g_{n}\right)} \subsetneq \mathcal{M}_{\left(f_{n}\right)}
$$

Proof. Suffice it to put $g_{n}(x):=f_{n}(x) f_{2^{k_{n}}}\left(\frac{1}{k_{n}+1}\right)$, for $n \in \mathbb{N}$, where k_{n} is chosen as in the proof of Theorem 6. Then $\left(g_{n}\right) \in \mathcal{H}$ and $\left(g_{n}\right)$ satisfies the condition from Theorem 7 , since for every $x \in(0,1)$

$$
g_{n}(x)=f_{n}(x) f_{2^{k_{n}}}\left(\frac{1}{k_{n}+1}\right)<f_{2^{k_{n}}}\left(\frac{1}{k_{n}+1}\right) .
$$

Therefore, by Theorem 6 and Theorem 7, we are done.

Remark 9. If $f_{2}\left(\frac{1}{2}\right)<\frac{1}{3}$ and $\frac{f_{2 l}\left(\frac{1}{l+1}\right)}{f_{2 l-1}\left(\frac{1}{l}\right)}<\frac{1}{3}$ for $l \geq 2$, then $k_{n}=n$ and for such a sequence $\left(f_{n}\right)$ the condition from the Theorem 7 is as follows

$$
\begin{equation*}
\exists_{x_{0} \in(0,1)} \forall_{n \in \mathbb{N}} g_{n}\left(x_{0}\right)<f_{2^{n}}\left(\frac{1}{n+1}\right) . \tag{*}
\end{equation*}
$$

The sequence $f_{n}(x)=x^{n}$ satisfies assumptions from the above remark, so for the sequence $g_{n}(x)=\frac{x^{n}}{(n+1)^{2 n}}$ (see the proof of Theorem (8), we have

$$
\mathcal{M}_{\left(g_{n}\right)} \subsetneq \mathcal{M}
$$

Another sequence satisfying condition $(*)$ for $f_{n}(x)=x^{n}$ is the sequence $g_{n}(x)=x^{n^{n}}$, more precisely, for $x_{0}=\frac{1}{4}$ and for every $n>2$, we have

$$
g_{n}\left(x_{0}\right)<\left(\frac{1}{n+1}\right)^{2^{n}}, \quad \text { so } \quad \mathcal{M}_{\left(x^{n^{n}}\right)} \subsetneq \mathcal{M}
$$

The next theorem gives a sufficient condition for a family $\mathcal{M}_{\left(f_{n}\right)}$ to be a σ-ideal.

Theorem 10. Let $f_{n} \in \mathcal{H}$ for $n \in \mathbb{N}$. If there exists a bijection $\Phi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for a fixed $k \in \mathbb{N}$ a function $\Phi_{k}(n):=\Phi(n, k)$ is increasing and for every $x>0$ and for every $k \in \mathbb{N} \lim _{n \rightarrow+\infty} f_{n}^{-1}\left(f_{\Phi(n, k)}(x)\right)>0$, then $\mathcal{M}_{\left(f_{n}\right)}$ is a σ-ideal.

Proof. Suffice it to show that a countable sum of sets from $\mathcal{M}_{\left(f_{n}\right)}$ belongs to $\mathcal{M}_{\left(f_{n}\right)}$. Let $\left\{A_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of sets, such that $A_{k} \in \mathcal{M}_{\left(f_{n}\right)}$ for $k \in \mathbb{N}$. Fix $k \in \mathbb{N}$ and $x>0$. A sequence $\left\{f_{n}^{-1}\left(f_{\Phi(n, k)}(x)\right)\right\}_{n \in \mathbb{N}}$ is monotonous, so denoting $a_{k}:=\lim _{n \rightarrow+\infty} f_{n}^{-1}\left(f_{\Phi(n, k)}(x)\right)$, we have $f_{n}^{-1}\left(f_{\Phi(n, k)}(x)\right) \geq a_{k}>\frac{a_{k}}{2}$ for every $n \in \mathbb{N}$. By monotonocity of f_{n}, we get

$$
f_{\Phi(n, k)}(x) \geq f_{n}\left(\frac{a_{k}}{2}\right) .
$$

For $\frac{a_{k}}{2}$ there exists a cover $\left\{I_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ of the set A_{k} such that $\lambda\left(I_{n}^{(k)}\right)<$ $f_{n}\left(\frac{a_{k}}{2}\right)$. Arrange intervals $\left\{I_{n}^{(k)}\right\}_{n \in \mathbb{N}, k \in \mathbb{N}}$ in a sequence $\left\{I_{m}\right\}_{m \in \mathbb{N}}$, where $m=\Phi(n, k)$. Then $\bigcup_{k \in \mathbb{N}} A_{k} \subset \bigcup_{m \in \mathbb{N}} I_{m}$ and

$$
\lambda\left(I_{m}\right)=\lambda\left(I_{\phi(n, k)}\right)=\lambda\left(I_{n}^{(k)}\right)<f_{n}\left(\frac{a_{k}}{2}\right) \leq f_{\Phi(n, k)}(x)=f_{m}(x)
$$

Therefore, $\bigcup_{k \in \mathbb{N}} A_{k} \in \mathcal{M}_{\left(f_{n}\right)}$.
It is known that if \mathcal{I} is a σ-ideal containing all singletons and \mathcal{G}_{δ}-generated then a family $\mathcal{I}^{*}:=\left\{A \subset \mathbb{R}: \exists_{B \in \mathcal{F}_{\sigma} \cap \mathcal{I}} A \subset B\right\}$ is also a σ-ideal ([4). We do not know if $\mathcal{M}_{\left(x^{2^{n}}\right)}$ is a σ-ideal, but we can proove that $\mathcal{M}_{\left(x^{2^{n}}\right)}^{*}$-a family of sets which can be covered by F_{σ} sets from $\mathcal{M}_{\left(x^{2^{n}}\right)}$ is a σ-ideal.

microscopic sets with respect to sequences of functions

Lemma 11. Let $A_{k} \in \mathcal{M}_{\left(x^{2^{n}}\right)}$ and A_{k} be compact for every $k \in \mathbb{N}$. Then,

$$
\bigcup_{k \in \mathbb{N}} A_{k} \in \mathcal{M}_{\left(x^{2^{n}}\right)}
$$

Proof. Let $x \in(0,1)$. For $x_{1}:=x$ there exists a cover $\left\{I_{n}^{(1)}\right\}$ of A_{1} such that $\lambda\left(I_{n}^{(1)}\right)<\left(x_{1}\right)^{2^{n}}$ for every $n \in \mathbb{N}$. By compactness of A_{1}, we can choose a finite subcover $\left\{I_{n}^{(1)}\right\}_{n=1}^{n_{1}}$. For $x_{2}:=x^{2^{n_{1}}}$ there exists a cover $\left\{I_{n}^{(2)}\right\}$ of A_{2} such that $\lambda\left(I_{n}^{(2)}\right)<\left(x_{2}\right)^{2^{n}}$ for every $n \in \mathbb{N}$. By compactness of A_{2}, we can choose a finite subcover $\left\{I_{n}^{(2)}\right\}_{n=1}^{n_{2}}$. And so on, for $x_{k}:=\left(x_{k-1}\right)^{2^{n_{k-1}}}$ we find a finite cover $\left\{I_{n}^{(k)}\right\}_{n=1}^{n_{k}}$ of A_{k} such that $\lambda\left(I_{n}^{(k)}\right)<\left(x_{k}\right)^{2^{n}}$ for every $n \in \mathbb{N}$.

Now, for every $k \in \mathbb{N}$, there exists $t \in \mathbb{N}$ such that $\Sigma_{i=0}^{t} n_{i}<k \leq \Sigma_{i=0}^{t+1} n_{i}$, where $n_{0}:=0$, and there exists $l \in\left\{1, \ldots, n_{t+1}\right\}$ such that $k=n_{0}+\cdots+n_{t}+l$. Let $J_{k}=I_{l}^{(t+1)}$. Then, $\bigcup_{k \in \mathbb{N}} A_{k} \subset \bigcup_{k \in \mathbb{N}} J_{k}$ and

$$
\lambda\left(J_{k}\right)=\lambda\left(I_{l}^{(t+1)}\right)<\left(x_{t+1}\right)^{2^{l}}=\left(x^{2^{n_{1}+n_{2}+\cdots+n_{t}}}\right)^{2^{l}}=x^{2^{n_{1}+n_{2}+\cdots+n_{t}+l}}=x^{2^{k}}
$$

so $\bigcup_{k \in \mathbb{N}} A_{k} \in \mathcal{M}_{\left(x^{2^{n}}\right)}$.
Lemma 12. If $A_{n} \in \mathcal{M}_{\left(x^{2^{n}}\right)}^{*}$ for every $n \in \mathbb{N}$, then there exists a sequence of compact sets $\left\{D_{k}\right\}_{k \in \mathbb{N}} \subset \mathcal{M}_{\left(x^{2^{n}}\right)}$ such that

$$
\bigcup_{n \in \mathbb{N}} A_{n} \subset \bigcup_{k \in \mathbb{N}} D_{k}
$$

Proof. Since $A_{n} \in \mathcal{M}_{\left(x^{2^{n}}\right)}^{*}$ for every $n \in \mathbb{N}$ then, for every $n \in \mathbb{N}$, there exists $B_{n} \in \mathcal{F}_{\sigma} \cap \mathcal{M}_{\left(x^{\left.2^{n}\right)}\right.}$ such that $A_{n} \subset B_{n}$. Then, $B_{n}=\bigcup_{l \in \mathbb{N}} B_{l}^{(n)}$, where $B_{l}^{(n)}$ is closed, hence it is a countable union of compact sets $D_{t}^{(l, n)}$ for $t \in \mathbb{N}$, so

$$
\bigcup_{n \in \mathbb{N}} A_{n} \subset \bigcup_{n \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} \bigcup_{t \in \mathbb{N}} D_{t}^{(l, n)}=\bigcup_{k \in \mathbb{N}} D_{k}
$$

Obviously, $\left\{D_{k}\right\}_{k \in \mathbb{N}} \subset \mathcal{M}_{\left(x^{2^{n}}\right)}$.
Theorem 13. $\mathcal{M}_{\left(x^{2^{n}}\right)}^{*}$ is a σ-ideal.
Proof. It suffices to show that $\mathcal{M}_{\left(x^{2^{n}}\right)}^{*}$ is closed under a countable union. Let $A_{n} \in \mathcal{M}_{\left(x^{2 n}\right)}^{*}$ for $n \in \mathbb{N}$. By Lemma [12, there exists a sequence $\left\{D_{k}\right\}_{k \in \mathbb{N}}$ such that $D_{k} \in \mathcal{M}_{\left(x^{2 n}\right)}$ and D_{k} is compact for $\bigcup_{n \in \mathbb{N}} A_{n} \subset \bigcup_{k \in \mathbb{N}} D_{k}$ and for every $k \in \mathbb{N}$. By Lemma 11, we have $\bigcup_{k \in \mathbb{N}} D_{k} \in \mathcal{M}_{\left(x^{\left.2^{n}\right)}\right.}$ and, of course, $\bigcup_{k \in \mathbb{N}} D_{k} \in \mathcal{F}_{\sigma}$, so $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{M}_{\left(x^{2^{n}}\right)}^{*}$.

GRAŻYNA HORBACZEWSKA

REFERENCES

[1] APPELL, J.: Insiemi ed operatori "piccoli" in analisi funzionale, Rend. Instit. Mat. Univ. Trieste 33 (2001), 127-199.
[2] APPELL, J.: A short story on microscopic sets, Atti. Sem. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 229-233.
[3] APPELL, J.-D'ANIELLO, E.-VÄTH, M.: Some remarks on small sets, Ric. Mat. 50 (2001), 255-274.
[4] BALCERZAK, M.-BAUMGARTNER, J. E.-HEJDUK, J.: On certain σ-ideals of sets, Real Anal. Exchange 14 (1988-89), 447-453.
[5] BARTOSZYŃSKI, T.-JUDAH, H.: Set Theory: On the Structure of the Real Line. A. K. Peters, Ltd., Wellesley, MA, 1995.
[6] FILIPCZAK, M.-WAGNER-BOJAKOWSKA, E.: Remarks on small sets on the real line, Tatra Mt. Math. Publ. 42 (2009), 73-80.
[7] HORBACZEWSKA, G.-WAGNER-BOJAKOWSKA, E.: Some kinds of convergence with respect to small sets, Reports on Real Analysis, Conference at Rowy (2003), 88-97.
[8] HORBACZEWSKA, G.-KARASIŃSKA, A.-WAGNER-BOJAKOWSKA, E.: Properties of the σ-ideal of microscopic sets, in: Traditional and Present-Day Topics in Real Analysis, Łódź University Press, Łódź, 2013, pp. 325-343.
[9] KARASIŃSKA, A.—POREDA, W.-WAGNER-BOJAKOWSKA, E.: Duality principle for microscopic sets, in: Monograph Real Functions, Density Topology and Related Topics, Łódź University Press, Łódź, 2011, pp. 83-87.
[10] KARASIŃSKA, A.-WAGNER-BOJAKOWSKA, E.: Nowhere monotone functions and microscopic sets, Acta Math. Hungar. 120 (2008), 235-248.
[11] KARASIŃSKA, A.-WAGNER-BOJAKOWSKA, E.: Homeomorphisms of linear and planar sets of the first category into microscopic sets, Topology Appl. 159 (2012), 1894-1898.

Received January 2, 2014
Department of Mathematics and Computer Science
University of Łódź
Banacha 22
PL-90-238 Łódź
POLAND
E-mail: grhorb@math.uni.lodz.pl

[^0]: © 2014 Mathematical Institute, Slovak Academy of Sciences.
 2010 Mathematics Subject Classification: 28A05, 54H05, 03E15.
 Keywords: microscopic sets, null sets, strong measure zero sets, Cantor-type sets, comparison of σ-ideals.

