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MICROSCOPIC SETS

WITH RESPECT TO SEQUENCES OF FUNCTIONS

Grażyna Horbaczewska

ABSTRACT. Consequences of replacing the geometric sequence with another
in the definition of microscopic sets are considered.

The notion of a microscopic set on the real line was introduced by J. A p p e l l
in [1] at the beginning of the 21st century. Thereafter, some papers were devoted
to this topic ([7], [9]–[11]). Lately, a chapter on microscopic sets was published
in a monography [8].

���������� 1� A set E ⊂ R is microscopic if for each ε > 0 there exists
a sequence of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) ≤ εn for n ∈ N .

The family of all microscopic sets will be denoted by M.

A special role in this definition is played by a geometric sequence. A question
about the consequences of replacing this specific sequence with another one was
raised by J. A p p e l l, E. D’ A n i e l l o and M. V ä t h in [3].

If we consider an arbitrary sequence here, we get a definition of a family
of strong measure zero sets ([5]), denoted by S .
���������� 2� A set E ⊂ R is of strong measure zero if for each sequence
of positive reals {εn}n∈N there exists a sequence of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) ≤ εn for n ∈ N .

Obviously, S � M. An example of a microscopic set which is not a strong
measure zero set is given in [6].

c© 2014 Mathematical Institute, Slovak Academy of Sciences.
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Let (fn)n∈N be a sequence of increasing functions fn : (0, 1) → (0, 1) such that

limx→0+ fn(x) = 0, and there exists x0 ∈ (0, 1) such that for every x ∈ (0, x0) the
series

∑
n∈N fn(x) is convergent and the sequence

(
fn(x)

)
n∈N is nonincreasing.

���������� 3� A set E ⊂ R belongs to M(fn) if for each x ∈ (0, 1) there exists
a sequence of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) ≤ fn(x) for n ∈ N .

For fn(x) = xn, n ∈ N, we have M(fn) = M.

If H denotes the family of all sequences of functions with properties described
above, then ⋂

(fn)∈H
M(fn) = S .

Now, we may ask several questions. We would like to know for which sequences
we get microscopic sets, when different sequences give different families of sets,
under which condition M(fn) is a σ-ideal.

The next theorem gives a sufficient condition for getting microscopic sets.

	
����� 4� If there exists k ∈ N such that for every n ∈ N and for every
x ∈ (0, 1) we have xn+k ≤ fn(x) ≤ xn, then

M(fn) = M .

P r o o f. Since the inclusion M(fn) ⊂ M is obvious, we have to justify only the
inverse one.

Let E ∈ M. Fix x ∈ (0, 1). Since E ∈ M for x0 = xk+1, there exists a sequence
of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) < (x0)
n for n ∈ N .

Therefore

λ(In) < (xk+1)n = xnk+n≤ xn+k≤ fn(x), so E ∈ M(fn) . �

The above condition is not necessary, for example, for a sequence fn(x) = x2n,
n ∈ N, the assumption of the above theorem is not satisfied, but M(fn) = M.

More examples of sequences of functions leading to microscopic sets can be
given for:

fn(x) =
(x
a

)n

, where a > 0,

fn(x) = xan, where a > 0,

fn(x) =
xn

na
, where a ≥ 1,

the family M(fn) is exactly the family of microscopic sets.
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For reader’s convenience we show that in the last case every microscopic set
belongs toM(fn). Let A ∈ M. Fix x ∈ (0, 1) and find n0 ∈ N such that 1/n0 < x.

For ε := 1
na+1
0

there exists a sequence of intervals {In}n∈N such that

E ⊂
⋃
n∈N

In and λ(In) ≤ εn for n ∈ N .

Then

λ(In) ≤ εn =
1

(na+1
0 )n

=
1

(na
0)

nnn
0

<
1

(nn
0 )

a
xn <

xn

na

since nn
0 > n for n0 > 1. Therefore, a ∈ M(fn).

One can observe an obvious sufficient condition for an inclusion between the
families M(gn) and M(fn) for sequences (fn)n∈N, (gn)n∈N from the family H :

∀x∈(0,1) ∀n∈N gn(x) ≤ fn(x) ⇒ M(gn) ⊂ M(fn) .

The next theorem gives a not so obvious sufficient condition.

	
����� 5� If for every x ∈ (0, 1) there exists y ∈ (0, 1) such that there exists
a sequence (Pm)m∈N of pairwise disjoint, nonempty subsets of N such that

gm(y)≤
∑
i∈Pm

fi(x) for every m ∈ N ,

then

M(gn) ⊂ M(fn) .

P r o o f. Let E ∈ M(gn). Let x ∈ (0, 1). By our assumption, there exists
y ∈ (0, 1) and a sequence {Pm} of pairwise disjoint nonempty subsets of N

such that gm(y) ≤ ∑
i∈Pm

fi(x). Since E ∈ M(gn), for y there exists a sequence

of intervals (Im)m∈N such that

E ⊂
⋃

m∈N
Im and λ(Im) ≤ gm(y) .

Since λ(Im) ≤ gm(y) ≤ ∑
i∈Pm

fi(x), we may divide the interval Im into

nonoverlapping intervals J
(m)
i , i ∈ Pm , such that

λ(J
(m)
i ) ≤ fi(x) for i ∈ Pm .

Let n ∈ N. If n belongs to none of Pm, m ∈ N, then Jn := ∅. If n ∈ Pm ,

then Jn := J
(m)
n . Therefore,

E ⊂
⋃

m∈N
Im =

⋃
n∈N

Jn and λ(Jn) ≤ fn(x), so E ∈ M(fn) .

�
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����� 6� M(fn) \ S 
= ∅ for every (fn)n∈N ∈ H.

P r o o f.

Let I := [0, 1]. We will define by induction the sequence of open intervals
{Jn,i}, i ∈ {1, . . . , 2n−1}, n ∈ N, in the following way.

Let k1 := min
{
k : f2k

(
1

k+1

)
< 1

3

}
. Put J1,1 :=

(
f2k1

(
1

k1+1

)
, 1− f2k1

(
1

k1+1

))
.

Then, of course, λ(J1,1) >
1
3 .

Let K1,1, K1,2 denote successive components of the set I \ J1,1. Obviously,
λ(K1,i) = f2k1

(
1

k1+1

)
for i ∈ {1, 2}.

Let k2 := min
{
k : f2k

(
1

k+1

)
< 1

3f2k1

(
1

k1+1

)}
.

Let J2,1, J2,2 be two open intervals concentric withK1,1 andK1,2, respectively,
such that λ(J2,1) = λ(J2,2) = λ(K1,1)− 2f2k2

(
1

k2+1

)
.

Let K2,1, K2,2, K2,3, and K2,4 denote successive components of the set
I \ (J1,1 ∪ J2,1 ∪ J2,2). Notice that λ(K2,i) = f2k2

(
1

k2+1

)
for i ∈ {1, 2, 3, 4}.

Let m ≥ 2. Assume that we have constructed the open, nonempty inter-
vals Jl,1, . . . , Jl,2l−1 concentric with Kl−1,1, . . . , Kl−1,2l−1 , respectively, such that

λ(Jl,i) = λ(Kl−1,1) − 2f2kl

(
1

kl+1

)
for l ∈ {2, . . . ,m}, i ∈ {1, . . . , 2l−1}, where

kl := min
{
k : f2k

(
1

k+1

)
< 1

3f2kl−1

(
1

kl−1+1

)}
, for l ∈ {2, . . . ,m}.

Let Km,1, . . . , Km,2m be successive components of the set I \⋃m
l=1

⋃2l−1

i=1 Jl,i.

Notice that λ(Km,i) = f2km

(
1

km+1

)
for i ∈ {1, . . . , 2m}.

Now, let km+1 := min
{
k :f2k

(
1

k+1

)
< 1

3f2km

(
1

km+1

)}
and Jm+1,1, . . . , Jm+1,2m

be open intervals concentric with Km,1, . . . , Km,2m , respectively, such that
λ(Jm+1,i) = λ(Km,1)− 2f2km+1

(
1

km+1+1

)
for i ∈ {1, . . . , 2m}.

Let Km+1,1, . . . ,Km+1,2m+1 be successive components of the set

I \
m+1⋃
l=1

2l−1⋃
i=1

Jl,i.

Obviously, λ(Km+1,i) = f2km+1

(
1

km+1+1

)
for i ∈ {1, . . . , 2m+1}.

Let us put M :=
⋂

m∈N
⋃2m

i=1Km,i.

Now, let x ∈ (0, 1). There exists m0 ∈ N such that 1
km0

< x.

Let Ii := Km0,i for i ∈ {1, . . . , 2m0} and Ii := ∅ for i > 2m0 . Obviously,

M⊂⋃2m0

i=1 Km0,i=
⋃

i∈N Ii and λ(Ii)=λ(Km0,i)=f2km0

(
1

km0
+1

)≤f2m0

(
1

km0
+1

)
<

f2m0 (x) ≤ fi(x) for i ∈ {1, . . . , 2m0}. Hence, M is a Cantor-type set from M(fn).
As a perfect set, M cannot be a strong measure zero set (compare [5, Corollary
8.1.5]), so M ∈ M(fn)\ S .
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�

	
����� 7� Let (fn), (gn) ∈ H and let kn be a sequence of natural numbers
chosen as in the proof of the previous theorem. Suppose that there exists δ > 0
such that gn(x) < fn(x) for every n ∈ N and for every x ∈ (0, δ). If there exists
a point x0 ∈ (0, 1) such that gn(x0) < f2kn

(
1

kn+1

)
, for every n ∈ N, then

M(gn) � M(fn) .

P r o o f. Since the inclusion M(gn) ⊂ M(fn) is obvious, we only need to show
that these families are different.

Consider the set M from the proof of the previous theorem.

Let {In}n∈N be any sequence of intervals such that λ(In) ≤ gn(x0).

As λ(I1) ≤ g1(x0) < f2k1

(
1
2

)
, I1 cannot have common points with both sets

K1,1 and K1,2, since f2k1

(
1
2

)
< 1

3 < λ(J1,1) = dist(K1,1, K1,2).

Put P0 := [0, 1].

Let P1 := K1,i1 , where i1 ∈ {1, 2} and I1 ∩K1,i1 = ∅.
Let n ≥ 2. We assume that for l ∈ {1, . . . , n − 1} we have already chosen

an interval Pl, such that Pl := Kl,il , where il ∈ {1, . . . , 2l}, Il ∩ Kl,il = ∅ and
Pl ⊂ Pl−1.

The interval In satisfies a condition

λ(In) ≤ gn(x0) < f2kn

(
1

kn + 1

)
= λ(Kn,i)

for i ∈ {1, . . . , 2n} and by the construction of M , precisely by the way of defining
kn, we have λ(Kn,i) < λ(Jl,j), where Jl,j is a gap between the intervals Kn,i

and Kn,i′ contained in Pn−1, so one of them has no common points with In.
We denote it by Pn.

Therefore, we have inductively constructed a descending sequence of closed
intervals Pn, such that λ(Pn)=f2kn

(
1

kn+1

)
and Pn ∩ In=∅ for n∈N. By Cantor

Theorem, there exists a point x ∈ ⋂
n∈N Pn. Of course x ∈ M and x /∈ ⋃

n∈N In,

so M /∈ M(gn). �

	
����� 8� For every (fn) ∈ H, there exists (gn) ∈ H such that

S � M(gn) � M(fn) .

P r o o f. Suffice it to put gn(x) := fn(x)f2kn

(
1

kn+1

)
, for n ∈ N, where kn is

chosen as in the proof of Theorem 6. Then (gn) ∈ H and (gn) satisfies the
condition from Theorem 7, since for every x ∈ (0, 1)

gn(x) = fn(x)f2kn

(
1

kn + 1

)
< f2kn

(
1

kn + 1

)
.

Therefore, by Theorem 6 and Theorem 7, we are done. �
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Remark 9� If f2
(
1
2

)
< 1

3 and
f
2l(

1
l+1 )

f
2l−1( 1

l )
< 1

3 for l ≥ 2, then kn = n and for such

a sequence (fn) the condition from the Theorem 7 is as follows

∃x0∈(0,1)∀n∈N gn(x0) < f2n

(
1

n+ 1

)
. (∗)

The sequence fn(x) = xn satisfies assumptions from the above remark, so for

the sequence gn(x) =
xn

(n+1)2n
(see the proof of Theorem 8), we have

M(gn) � M .

Another sequence satisfying condition (∗) for fn(x) = xn is the sequence
gn(x) = xnn

, more precisely, for x0 = 1
4 and for every n > 2, we have

gn(x0) <

(
1

n+ 1

)2n

, so M(xnn
) � M .

The next theorem gives a sufficient condition for a family M(fn) to be
a σ-ideal.

	
����� 10� Let fn ∈ H for n ∈ N. If there exists a bijection Φ: N× N → N

such that for a fixed k ∈ N a function Φk(n) := Φ(n, k) is increasing and for
every x > 0 and for every k ∈ N limn→+∞ f−1

n

(
fΦ(n,k)(x)

)
> 0, then M(fn)

is a σ-ideal.

P r o o f. Suffice it to show that a countable sum of sets from M(fn) belongs
to M(fn). Let {Ak}k∈N be a sequence of sets, such that Ak ∈M(fn) for k ∈N.

Fix k ∈ N and x > 0. A sequence
{
f−1
n (fΦ(n,k)(x))

}
n∈N is monotonous,

so denoting ak := limn→+∞ f−1
n

(
fΦ(n,k)(x)

)
, we have f−1

n

(
fΦ(n,k)(x)

) ≥ ak > ak

2

for every n ∈ N. By monotonocity of fn, we get

fΦ(n,k)(x) ≥ fn

(ak
2

)
.

For ak

2 there exists a cover {I(k)n }n∈N of the set Ak such that λ(I
(k)
n ) <

fn
(
ak

2

)
. Arrange intervals {I(k)n }n∈N, k∈N in a sequence {Im}m∈N, where

m = Φ(n, k). Then
⋃

k∈N Ak ⊂ ⋃
m∈N Im and

λ(Im) = λ
(
Iφ(n,k)

)
= λ

(
I(k)n

)
< fn

(ak
2

)
≤ fΦ(n,k)(x) = fm(x) .

Therefore,
⋃

k∈NAk ∈ M(fn). �

It is known that if I is a σ-ideal containing all singletons and Gδ-generated
then a family I∗ := {A ⊂ R : ∃B∈Fσ∩IA ⊂ B} is also a σ-ideal ([4]). We do not
know if M(x2n) is a σ-ideal, but we can proove that M∗

(x2n)
—a family of sets

which can be covered byFσ sets from M(x2n) is a σ-ideal.
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���� 11� Let Ak ∈ M(x2n) and Ak be compact for every k ∈ N. Then,⋃
k∈N

Ak ∈ M(x2n).

P r o o f. Let x ∈ (0, 1). For x1 := x there exists a cover {I(1)n } of A1 such

that λ(I
(1)
n ) < (x1)

2n

for every n ∈ N. By compactness of A1, we can choose

a finite subcover {I(1)n }n1
n=1. For x2 := x2n1

there exists a cover {I(2)n } of A2 such

that λ(I
(2)
n ) < (x2)

2n

for every n ∈ N. By compactness of A2, we can choose

a finite subcover {I(2)n }n2
n=1. And so on, for xk := (xk−1)

2nk−1
we find a finite

cover {I(k)n }nk
n=1 of Ak such that λ(I

(k)
n ) < (xk)

2n

for every n ∈ N.

Now, for every k ∈ N, there exists t ∈ N such that Σt
i=0ni < k ≤ Σt+1

i=0ni,
where n0 := 0, and there exists l ∈ {1, . . . , nt+1} such that k = n0 + · · ·+nt + l.

Let Jk = I
(t+1)
l . Then,

⋃
k∈N Ak ⊂ ⋃

k∈N Jk and

λ(Jk) = λ
(
I
(t+1)
l

)
< (xt+1)

2l

=
(
x2n1+n2+···+nt )2l

= x2n1+n2+···+nt+l

= x2k

,

so
⋃

k∈NAk ∈ M(x2n). �


���� 12� If An∈M∗
(x2n)

for every n∈N, then there exists a sequence of com-

pact sets {Dk}k∈N ⊂ M(x2n) such that⋃
n∈N

An ⊂
⋃
k∈N

Dk .

P r o o f. Since An ∈ M∗
(x2n)

for every n ∈ N then, for every n ∈ N, there exists

Bn∈Fσ∩M(x2n ) such that An⊂Bn. Then, Bn=
⋃

l∈N B
(n)
l , where B

(n)
l is closed,

hence it is a countable union of compact sets D
(l,n)
t for t ∈ N, so

⋃
n∈N

An ⊂
⋃
n∈N

⋃
l∈N

⋃
t∈N

D
(l,n)
t =

⋃
k∈N

Dk .

Obviously, {Dk}k∈N ⊂ M(x2n) . �

	
����� 13� M∗
(x2n )

is a σ-ideal.

P r o o f. It suffices to show that M∗
(x2n)

is closed under a countable union.

Let An ∈ M∗
(x2n )

for n ∈ N. By Lemma 12, there exists a sequence {Dk}k∈N
such that Dk ∈ M(x2n) and Dk is compact for

⋃
n∈NAn ⊂ ⋃

k∈NDk and

for every k ∈ N. By Lemma 11, we have
⋃

k∈NDk ∈ M(x2n) and, of course,⋃
k∈NDk ∈ Fσ, so

⋃
n∈NAn ∈ M∗

(x2n )
. �
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Banacha 22
PL–90-238 �Lódź
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