

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Stanisław Kowalczyk — Katarzyna Nowakowska

ABSTRACT. We present some properties of [0]-lower continuous functions. We give an equivalent condition of [0]-lower continuity and find maximal additive family and maximal multiplicative family for the class of [0]-lower continuous functions.

1. Preliminaries

In the paper, we apply standard symbols and notations. By \mathbb{R} we denote the set of all real numbers, by \mathbb{N} we denote the set of all positive integers. By \mathcal{L} we denote the family of measurable in sense of Lebesgue subsets of real line. The symbol $|\cdot|$ stands for the Lebesgue measure on \mathbb{R} . Throughout the paper, I = (a, b) denotes an open interval (not necessarily bounded) and f is a real-valued function defined on I. By \mathcal{A} we denote the class of approximately continuous functions.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. According to [2], the numbers

$$\underline{d}^+(E,x) = \liminf_{t \to 0^+} \frac{|E \cap [x,x+t]|}{t} \quad \text{and} \quad \overline{d}^+(E,x) = \limsup_{t \to 0^+} \frac{|E \cap [x,x+t]|}{t}$$

are called the right lower density of E at x and right upper density of E at x, respectively. The left lower and upper densities of E at x are defined analogously. If

$$\underline{d}^{+}(E,x) = \overline{d}^{+}(E,x) \qquad \left(\underline{d}^{-}(E,x) = \overline{d}^{-}(E,x)\right),$$

^{© 2014} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 26A15, 54C30.

Keywords: density of a set at a point, continuous functions, path continuity, $[\lambda, \varrho]$ -continuity, [0]-lower continuity, sparse set, T^* -continuity.

then we call these numbers the right density (left density) of E at x and denote them by $d^+(E, x)$ ($d^-(E, x)$). The numbers

$$\overline{d}(E,x) = \limsup_{\substack{t \to 0^+ \\ k \to 0^+}} \frac{|E \cap [x-t,x+k]|}{k+t} \text{ and } \underline{d}(E,x) = \liminf_{\substack{t \to 0^+ \\ k \to 0^+}} \frac{|E \cap [x-t,x+k]|}{k+t}$$

are called the upper and lower density of E at x, respectively. It is clear that $\overline{d}(E, x) = \max\{\overline{d}^+(E, x), \overline{d}^-(E, x)\}$ and $\underline{d}(E, x) = \min\{\underline{d}^+(E, x), \underline{d}^-(E, x)\}$.

If $\overline{d}(E, x) = \underline{d}(E, x)$, we call this number the density of E at x and denote it by d(E, x).

Let us recall the definition of $[\lambda, \varrho]$ -continuous function.

DEFINITION 1.1 ([7]). Let $E \in \mathcal{L}$, $x \in \mathbb{R}$ and $0 < \lambda \leq \varrho \leq 1$, $\lambda < 1$. We say that x is a point of $[\lambda, \varrho]$ -type density of E, if

$$\underline{d}(E,x) > \lambda$$
 and $\overline{d}(E,x) > \varrho$ when $\lambda < 1$ and $\varrho < 1$

or

$$\underline{d}(E, x) > \lambda$$
 and $\overline{d}(E, x) = \varrho$ when $\lambda < 1$ and $\varrho = 1$.

DEFINITION 1.2 ([7]). A real-valued function f defined on an open interval I is called $[\lambda, \varrho]$ -continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of $[\lambda, \varrho]$ -density of $E, x \in E$ and f|E is continuous at x. If f is $[\lambda, \varrho]$ -continuous at every point of I, we simply say that f is $[\lambda, \varrho]$ -continuous.

We will denote the class of $[\lambda, \varrho]$ -continuous functions by $\mathcal{C}_{[\lambda, \rho]}$.

In [7], an equivalent condition of $\mathcal{C}_{[\lambda,\rho]}$ -continuity was proved.

THEOREM 1.1 ([7]). Let $0 < \lambda \leq \varrho < 1$, $x_0 \in I$ and let $f: I \to \mathbb{R}$ be a measurable function. Then f is $[\lambda, \varrho]$ -continuous at x_0 if and only if

$$\lim_{\varepsilon \to 0^+} \frac{d}{d} \Big(\big\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) > \lambda$$

and

$$\lim_{\varepsilon \to 0^+} \overline{d} \Big(\big\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) > \varrho$$

We will need the following technical lemma from [6].

LEMMA 1.1 ([6, Lemma 2.3]). Let F be a measurable set and let $x \in \mathbb{R}$. There exists a sequence of closed intervals $\{I_n = [a_n, b_n]: x < \cdots < b_{n+1} < a_n < \cdots\}$ such that

$$\overline{d}^+\left(F\setminus\bigcup_{n=1}^{\infty}I_n,x\right)=\overline{d}^+\left(\bigcup_{n=1}^{\infty}I_n\setminus F,x\right)=0.$$

Now, we will give a basic definition of the present paper.

DEFINITION 1.3. A real-valued function $f: I \to \mathbb{R}$ is called [0]-lower continuous at $x \in I$ if there exists $\lambda_x > 0$ such that f is $[\lambda_x, \lambda_x]$ -continuous at x. If f is [0]-lower continuous at every point of I, we simply say that f is [0]-lower continuous.

We will denote the class of [0]-lower continuous functions by $\mathcal{C}_{[0]}$.

THEOREM 1.2. Let $f: I \to \mathbb{R}$ be a measurable function and let $x_0 \in I$. The following conditions are equivalent:

- i) function f is [0]-lower continuous at x_0 ,
- ii) there exists measurable set $E \subset I$ such that $x_0 \in E$, f|E is continuous at x_0 and $\underline{d}(E, x_0) > 0$,
- iii) $\lim_{\varepsilon \to 0^+} \underline{d} \big(\{ x \in I : |f(x) f(x_0)| < \varepsilon \}, x_0 \big) > 0.$

Proof. Assume that f is [0]-lower continuous at x_0 . There exists $\lambda > 0$ such that function f is $[\lambda, \lambda]$ -continuous at x_0 . So, we can find a measurable set $E \subset I$ such that $x_0 \in E$, f | E is continuous at x_0 and $\underline{d}(E, x_0) > \lambda > 0$.

Assume that there exists a measurable set $E \subset I$ such that $x_0 \in E$, f|E is continuous at x_0 and $\underline{d}(E, x_0) > 0$. Then, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $[x_0 - \delta, x_0 + \delta] \cap E \subset \{x : |f(x) - f(x_0)| < \varepsilon\}$. Hence,

$$\underline{d}\Big(\big\{x \in I \colon |f(x) - f(x_0)| < \varepsilon\big\}, x_0\Big) \ge \\ \underline{d}\Big(\big\{x \in E \colon |f(x) - f(x_0)| < \varepsilon\big\}, x_0\Big) = \underline{d}(E, x_0) \quad \text{for every } \varepsilon > 0.$$

Therefore,

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(\big\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) \ge \underline{d}(E, x_0) > 0.$$

Now, suppose that

$$\lim_{\varepsilon \to 0^+} \underline{d} \big(\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \}, x_0 \big) > 0.$$

There exists $\lambda > 0$ such that

$$\lim_{\varepsilon \to 0^+} \underline{d} \big(\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \}, x_0 \big) > \lambda.$$

From Theorem 1.1, we conclude that f is $[\lambda, \lambda]$ -continuous at x_0 . Hence f is [0]-lower continuous at x_0 .

EXAMPLE 1.1. We shall show that there exists $f \in \mathcal{C}_{[0]} \setminus \bigcup_{0 < \lambda < \rho < 1, \lambda < 1} \mathcal{C}_{[\lambda, \rho]}$.

Let $\{x_n\}_{n\geq 1}$ be a sequence of points from I such that $\lim_{n\to\infty} x_n = b$ and $x_{n+1} > x_n$ for every $n \geq 1$. We can find a sequence $\{J_n = [p_n, q_n]\}_{n\geq 1} \subset (a, b)$ of pairwise disjoint closed intervals, for which $x_n \in (p_n, q_n)$.

For each $n \in \mathbb{N}$ there exists a sequence of closed intervals $\{[a_m^n, b_m^n]\}_{m \ge 1}$ such that $x_n < b_{m+1}^n < a_m^n < b_m^n$ and $[a_m^n, b_m^n] \subset J_n$ for every $m \ge 1$ and

$$\underline{d}^{+}\left(\bigcup_{m=1}^{\infty} \left[a_{m}^{n}, b_{m}^{n}\right], x_{n}\right) = \frac{1}{n}$$

For each $n \geq 1$ there exists a sequence of pairwise disjoint closed intervals $\{[c_m^n, d_m^n]\}_{m\geq 1}$ such that $[c_m^n, d_m^n] \subset J_n$ and $[a_m^n, b_m^n] \subset (c_m^n, d_m^n)$ for every $m \geq 1$ and

$$\overline{d}^+\left(\bigcup_{m=1}^{\infty}\left([c_m^n, d_m^n] \setminus \left[a_m^n, b_m^n\right]\right), x_n\right) = 0.$$

Let $I_m^n = [a_m^n, b_m^n]$ and $K_m^n = [c_m^n, d_m^n]$ for every $m \ge 1$. Finally, for every $n \in \mathbb{N}$ take any $y_n \in (p_n, x_n)$. Define $f: (a, b) \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{for } x \in \bigcup_{n=1}^{\infty} \left([y_n, x_n] \cup \bigcup_{m=1}^{\infty} I_m^n \right), \\ 1 & \text{for } x \in \left((a, b) \setminus \bigcup_{n=1}^{\infty} J_n \right) \cup \left(\bigcup_{n=1}^{\infty} \left((x_n, d_1^n] \setminus \bigcup_{m=1}^{\infty} K_m^n \right) \right), \\ \text{linear on the intervals } \left[c_m^n, a_m^n \right], \left[b_m^n, d_m^n \right], \left[p_n, y_n \right], \left[d_1^n, q_n \right], n, m \ge 1. \end{cases}$$

Then, f is continuous at every point except at x_1, x_2, \ldots and constant on every set

$$E_n = \left([y_n, x_n] \cup \bigcup_{m=1}^{\infty} I_m^n \right).$$

Since $\underline{d}(E_n, x_n) = \frac{1}{n} > 0$, f is $C_{[0]}$ -continuous at x_1, x_2, \ldots Hence, $f \in C_{[0]}$.

Let λ , ρ be any real numbers such that $0 < \lambda \leq \rho \leq 1$ and $\lambda < 1$. There exists n_0 such that $\frac{1}{n_0} < \lambda$. Then

$$\underline{d}\Big(\big\{x \in J_{n_0} \colon |f(x) - f(x_{n_0})| < 1\big\}, x_{n_0}\Big) \le \underline{d}^+ \left(\bigcup_{m=1}^{\infty} K_m^{n_0}, x_{n_0}\right) \le \underline{d}^+ \left(\bigcup_{m=1}^{\infty} I_m^{n_0}, x_{n_0}\right) + \overline{d}^+ \left(\bigcup_{m=1}^{\infty} \left(K_m^{n_0} \setminus I_m^{n_0}\right), x_{n_0}\right) = \frac{1}{n_0} + 0 < \lambda.$$

Hence $f \notin \mathcal{C}_{[\lambda,\varrho]}$ and $f \notin \bigcup_{0 < \lambda \le \varrho \le 1, \lambda < 1} \mathcal{C}_{[\lambda,\varrho]}$.

Corollary 1.1. $C_{[0]} \supseteq \bigcup_{0 < \lambda \le \varrho < 1} C_{[\lambda, \varrho]}$.

Remark 1.1. It seems that, in the same way as in [1, Theorem 4], one can prove that the set $\bigcup_{0 < \lambda \le \rho < 1} C_{[\lambda,\rho]}$ is even nowhere dense in $C_{[0]}$.

2. Basic results

THEOREM 2.1. If $f \in C_{[0]}$, then f is measurable.

Proof. Let $f: I \to \mathbb{R}$, $f \in \mathcal{C}_{[0]}$ and suppose that f is not measurable. There exists a number $a \in \mathbb{R}$ for which at least one of the sets $\{x \in I: f(x) < a\}$, $\{x \in I: f(x) > a\}$ is non-measurable. We may assume that the $\{x \in I: f(x) < a\}$ is non-measurable. Let $A = \{x \in I: f(x) < a\}$ and $B = \{x \in I: f(x) \geq a\}$. Then $B = I \setminus A$ is also non-measurable. There exist measurable sets $A_1 \subset A$, $B_1 \subset B$ such that $A \setminus A_1$ and $B \setminus B_1$ do not contain any measurable set of positive measure. Therefore $A \setminus A_1$ and $B \setminus B_1$ are non-measurable. Moreover,

$$F = (A \setminus A_1) \cup (B \setminus B_1) = I \setminus (A_1 \cup B_1)$$

is measurable. Let L(F) be a set of all density points of a set F. Since $|F \setminus L(F)| = 0$, there exists $x_0 \in (A \setminus A_1) \cap L(F)$.

It follows that there exists a measurable set $E \subset I$ such that $x_0 \in E$, $\underline{d}(E, x_0) > 0$ and f|E is continuous at x_0 , because f is 0-lower continuous at x_0 . As $x_0 \in A$, we have $f(x_0) < a$. Therefore it is possible to find $\delta > 0$ such that $E \cap (x_0 - \delta, x_0 + \delta) \subset A$. Let $E' = E \cap (x_0 - \delta, x_0 + \delta)$. Hence $x_0 \in E'$, f|E' is continuous at x_0 , $E' \subset A$ and

$$\underline{d}(E', x_0) = \underline{d}(E, x_0) > 0. \tag{R}$$

We have

 $E' = (E' \cap A_1) \cup (E' \cap (A \setminus A_1)).$

Since E' and $E' \cap A_1$ are measurable, $E' \cap (A \setminus A_1)$ is also measurable. Hence, $|E' \cap (A \setminus A_1)| = 0$. Moreover,

$$\underline{d}(E' \cap A_1, x_0) = 1 - \overline{d}(I \setminus (E' \cap A_1), x_0) \le 1 - \overline{d}(F, x_0) = 1 - 1 = 0.$$

Therefore,

$$\underline{d}(E', x_0) = \underline{d}\left(\left(E' \cap A\right) \cup \left(E' \cap (A \setminus A_1), x_0\right)\right)$$

$$\leq \underline{d}(E' \cap A, x_0) + \overline{d}\left(E' \cap (A \setminus A_1), x_0\right)$$

$$= 0 + 0 = 0,$$

contradicting to (\mathcal{R}) .

Applying Proposition 7 from [1], we see that $C_{[0]}$ is not closed under the uniform limit.

THEOREM 2.2. Let a sequence $\{f_n\}_{n\geq 1}$ of measurable functions $f_n: I \to \mathbb{R}$ be uniformly convergent to $f, f: I \to \mathbb{R}$ and let $x_0 \in I$. Then f is [0]-lower continuous at x_0 if and only if

$$\inf_{\delta>0} \liminf_{k\to\infty} \underline{d}\Big(\big\{x\in I\colon |f_k(x)-f_k(x_0)|<\delta\big\}, x_0\Big)>0.$$
(1)

115

Proof. Let

$$\alpha = \inf_{\delta > 0} \liminf_{k \to \infty} \underline{d} \Big(\big\{ x \in I \colon |f_k(x) - f_k(x_0)| < \delta \big\}, x_0 \Big) > 0.$$

Take any $\varepsilon > 0$. There exists $n_0 \ge 1$ such that for every $k > n_0$ and every $x \in I$, the inequality

$$|f_k(x) - f(x)| < \frac{\varepsilon}{3}$$

holds. In particular,

$$|f_k(x_0) - f(x_0)| < \frac{\varepsilon}{3}$$

for $n \ge n_1$. By (1), we can find $n > n_0$ such that

,

$$\underline{d}\left(\left\{x \in I : |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}\right\}, x_0\right) > \frac{\alpha}{2}.$$

Notice that

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \varepsilon$$

for $x \in \left\{ t \in I : |f_n(t) - f_n(x_0)| < \frac{\varepsilon}{3} \right\}.$

Therefore,

$$\left\{x \in I : |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}\right\} \subset \left\{x \in I : |f(x) - f(x_0)| < \varepsilon\right\}.$$

Hence,

$$\underline{d}\Big(\big\{x\in I\colon |f(x)-f(x_0)|<\varepsilon\big\}, x_0\Big) \ge \underline{d}\Big(\big\{x\in I\colon |f_n(x)-f_n(x_0)|<\frac{\varepsilon}{3}\big\}, x_0\Big) > \frac{\alpha}{2}$$

Since $\varepsilon > 0$ was taken arbitrarily,

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(\big\{ x \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) \ge \frac{\alpha}{2} > 0.$$

It follows that f is [0]-lower continuous at x_0 .

Now, suppose that f is [0]-lower continuous at x_0 . Let

$$\beta = \lim_{\varepsilon \to 0^+} \underline{d} \Big(\big\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) > 0.$$

Then, $\underline{d}(\{x \in I : |f(x) - f(x_0)| < \varepsilon\}, x_0) \ge \beta$ for $\varepsilon > 0$. Fix any $\delta > 0$. There exists $n_0 \ge 1$ such that for every $k > n_0$ and every $x \in I$ the inequality

$$|f_k(x) - f(x)| < \frac{\delta}{3}$$

holds. Similarly as earlier, we can easily check that

$$\left\{x \in I : |f(x) - f(x_0)| < \frac{\delta}{3}\right\} \subset \left\{x \in I : |f_n(x) - f_n(x_0)| < \delta\right\} \quad \text{for } n > n_0.$$

Therefore,

$$\underline{d}(\{x \in I : |f_k(x) - f_k(x_0)| < \delta\}, x_0) \ge \beta \quad \text{for } n \ge n_0$$

and

$$\liminf_{k \to \infty} \underline{d} \Big(\big\{ x \in I \colon |f_k(x) - f_k(x_0)| < \delta \big\}, x_0 \Big) \ge \beta.$$

Since $\delta > 0$ was taken arbitrarily,

$$\inf_{\delta>0} \liminf_{k\to\infty} \underline{d}\Big(\big\{x\in I\colon |f_k(x)-f_k(x_0)|<\delta\big\}, x_0\Big)\geq\beta>0,$$

and (1) holds.

COROLLARY 2.1. Assume that every function $f_n: I \to \mathbb{R}$ is measurable and there exists $\lambda > 0$ such that every f_n is $[\lambda, \lambda]$ -continuous at some $x_0 \in I$. If the sequence $\{f_n\}_{n\geq 1}$ is uniformly convergent to $f, f: I \to \mathbb{R}$, then f is also [0]-lower continuous at x_0 .

3. Maximal additive class

DEFINITION 3.1. Let \mathcal{F} be any family of real valued functions defined on I. The set C V \mathcal{F}

$$\mathcal{M}_a(\mathcal{F}) = \{g \colon \forall_{f \in \mathcal{F}} \ f + g \in \mathcal{F}\}$$

is called the maximal additive family for \mathcal{F} .

Remark 3.1. Let f be a constant function, f(x) = 0 for each x. If $f \in \mathcal{F}$, then $\mathcal{M}_a(\mathcal{F}) \subset \mathcal{F}.$

Now, we will find a maximal additive family for the family of [0]-lower continuous functions.

THEOREM 3.1. A measurable function $f: I \to \mathbb{R}$ belongs to $\mathcal{M}_a(\mathcal{C}_{[0]})$ if and only if at every $x_0 \in I$ the following condition

$$\forall_{\substack{E \in \mathcal{L}, \\ E \subset I}} \left(\underline{d}(E, x_0) > 0 \Rightarrow \lim_{\varepsilon \to 0^+} \underline{d} \left(E \cap \left\{ x \colon |f(x) - f(x_0)| < \varepsilon \right\}, x_0 \right) > 0 \right)$$
(A)
fulfilled

is fulfilled.

Proof. Assume that a measurable function f fulfills condition (A). Let $x_0 \in I$ and let g be a lower [0]-continuous at x_0 . There exists a measurable set E such that $x_0 \in E$, g|E is continuous at x_0 and $\underline{d}(E, x_0) > 0$. Hence, for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$E \cap (x_0 - \delta, x_0 + \delta) \subset \left\{ x \colon |g(x) - g(x_0)| < \frac{\varepsilon}{2} \right\}.$$

Therefore,

$$\left\{x \in I : \left|(f+g)(x) - (f+g)(x_0)\right| < \varepsilon\right\} \supset \\ \left\{x \in E \cap (x_0 - \delta, x_0 + \delta) : \left|f(x) - f(x_0)\right| < \frac{\varepsilon}{2}\right\}.$$

Hence,

$$\underline{d}\Big(\big\{x\in I\colon |(f+g)(x)-(f+g)(x_0)|<\varepsilon\big\}, x_0\Big) \ge \\ \underline{d}\Big(\big\{x\in E\colon |f(x)-f(x_0)|<\frac{\varepsilon}{2}\big\}, x_0\Big)$$

and

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(\Big\{ x \in I \colon |(f+g)(x) - (f+g)(x_0)| < \varepsilon \Big\}, x_0 \Big) \ge \\ \lim_{\varepsilon \to 0^+} \underline{d} \Big(\Big\{ x \in E \colon |f(x) - f(x_0)| < \frac{\varepsilon}{2} \Big\}, x_0 \Big) = \\ \lim_{\varepsilon \to 0^+} \underline{d} \Big(E \cap \Big\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \Big\}, x_0 \Big) > 0.$$

By Theorem 1.2, f + g is [0]-lower continuous at x_0 .

Let $f \in \mathcal{M}_a(\mathcal{C}_{[0]})$. Suppose that there exists $x_0 \in I$ at which condition (A) is not fulfilled. Then, there exists a measurable set $E \subset I$ such that $\underline{d}(E, x_0) > 0$ and

$$\lim_{\varepsilon \to 0^+} \underline{d} \left(E \cap \left\{ x \colon |f(x) - f(x_0)| < \varepsilon \right\}, x_0 \right) = 0.$$

Hence,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \Big(E \cap \big\{ x \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) = 0$$

or

$$\lim_{\varepsilon \to 0^-} \underline{d}^- \Big(E \cap \big\{ x \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) = 0$$

We may assume that

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \Big(E \cap \big\{ x \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) = 0.$$

By Lemma 1.1, there exists a sequence of closed intervals $\{[a_n, b_n]\}_{n \ge 1}$ such that $x_0 < b_{n+1} < a_n < b_n$ for $n \ge 1$ and

$$\overline{d}^+\left(E\setminus\bigcup_{n=1}^{\infty}[a_n,b_n],x_0\right)=\overline{d}^+\left(\bigcup_{n=1}^{\infty}[a_n,b_n]\setminus E,x_0\right)=0.$$

Let $\{[c_n, d_n]\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint closed intervals such that $[a_n, b_n] \subset (c_n, d_n)$ and $\overline{d}^+ (\bigcup_{n=1}^{\infty} ([c_n, d_n] \setminus [a_n, b_n]), x_0) = 0$. Let $I_n = [a_n, b_n]$ and $J_n = [c_n, d_n]$ for every $n \ge 1$. Define a function $g: (a, b) \to \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & \text{if } x \in (a, x_0] \cup \bigcup_{n=1}^{\infty} I_n, \\ f(x_0) - f(x) + 1 & \text{if } x \in (x_0, b) \setminus \bigcup_{n=1}^{\infty} \text{int} J_n, \\ \text{linear on every interval } [c_n, a_n], [b_n, d_n], n \in \mathbb{N} \end{cases}$$

Clearly, g is [0]-lower continuous at every point except at x_0 . Since

$$\underline{d}\left((a,x_0] \cup \bigcup_{n=1}^{\infty} I_n, x_0\right) = \underline{d}^+(E,x_0) > 0$$

and g restricted to $(a, x_0] \cup \bigcup_{n=1}^{\infty} I_n$ is constant, we conclude that $g \in C_{[0]}$. Take any $\varepsilon \in (0, 1)$.

If $x \in (x_0, b) \setminus \bigcup_{n=1}^{\infty} J_n$, then $(f+g)(x) - (f+g)(x_0) = 1$. Hence,

$$\underline{d}^{+}\left(\left\{x \in I : \left|(f+g)(x) - (f+g)(x_{0})\right| < \varepsilon\right\}, x_{0}\right) = \\ \underline{d}^{+}\left(\left\{x \in \bigcup_{n=1}^{\infty} I_{n} : \left|f(x) - f(x_{0})\right| < \varepsilon\right\}, x_{0}\right) = \\ \underline{d}^{+}\left(\left\{x \in E : \left|f(x) - f(x_{0})\right| < \varepsilon\right\}, x_{0}\right).$$

By assumption,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \left(E \cap \{ x \colon |f(x) - f(x_0)| < \varepsilon \}, x_0 \right) = 0.$$

Hence,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \left(\left\{ x \in I : \left| (f+g)(x) - (f+g)(x_0) \right| < \varepsilon \right\}, x_0 \right) = 0.$$

re, $f + g \notin \mathcal{C}_{[0]}$.

Therefore, $f + g \notin \mathcal{C}_{[0]}$.

We will show connections between $\mathcal{M}_a(\mathcal{C}_{[0]})$ and the so-called T^* -continuity. To this end, we need the notion and some properties of sparse sets and definition of T^* continuous functions. Details of this notion can be found in [4], [8]. We will need only the following

DEFINITION 3.2 ([4]). We say that a measurable set $E \subset \mathbb{R}$ is sparse at $x_0 \in \mathbb{R}$ if for every measurable set $F \subset \mathbb{R}$, if $\overline{d}(F, x_0) < 1$ then $\overline{d}(E \cup F, x_0) < 1$. We say that E is sparse if E is sparse at every $x_0 \in \mathbb{R}$.

DEFINITION 3.3 ([4]). We say that a function $f: I \to \mathbb{R}$ is T^* continuous at $x_0 \in I$ if for each $\varepsilon > 0$ the complement of the set $\{x \in I: |f(x) - f(x_0)| < \varepsilon\}$ is sparse at x_0 . A function $f: I \to \mathbb{R}$ is T^* continuous if and only if it is T^* continuous at each point of I.

(Actually, these definitions are equivalent conditions of original definitions of sparsity and T^* continuity.)

THEOREM 3.2 ([4]). A complement of a measurable set E is sparse at x if and only if for each measurable set $F \subset \mathbb{R}$ such that $\underline{d}(F, x) > 0$ the inequality $\underline{d}(E \cap F, x) > 0$ holds.

STANISŁAW KOWALCZYK — KATARZYNA NOWAKOWSKA

Applying Definition 3.3 and Theorem 3.2, we have

THEOREM 3.3. A function $f: I \to \mathbb{R}$ is T^* continuous at $x_0 \in I$ if and only if

$$\forall_{\substack{E \in \mathcal{L}, \\ E \subset I}} \left(\underline{d}(E, x_0) > 0 \Rightarrow \forall_{\varepsilon > 0} \underline{d} \left(E \cap \left\{ x \colon |f(x) - f(x_0)| < \varepsilon \right\}, x_0 \right) > 0 \right).$$
(B)

Corollary 3.1. $\mathcal{A} \subset \mathcal{M}_aig(\mathcal{C}_{[0]}ig) \subset \mathcal{C}_{T^*}$.

LEMMA 3.1. Let $x_0 \in \mathbb{R}$ and $F = \bigcup_{n=1}^{\infty} [a_n, b_n]$, where $x_0 < b_{n+1} < a_n < b_n$ for every $n \ge 1$, $\lim_{n\to\infty} a_n = x_0$. If

$$\lim_{n \to \infty} \frac{b_n - a_n}{a_n - x_0} = \infty \tag{2}$$

and

$$\limsup_{n \to \infty} \frac{a_n - b_{n+1}}{b_{n+1} - x_0} < \infty, \tag{3}$$

then

$$\forall_{\substack{E \in \mathcal{L}, \\ E \subset I}} \left(\underline{d}^+(E, x_0) > 0 \Rightarrow \underline{d}^+(E \cap F, x_0) > 0 \right).$$
(C)

Proof.

According to (3), there exist $\alpha \in (1, \infty)$ and $n_1 \in \mathbb{N}$ such that $\frac{a_n - b_{n+1}}{b_{n+1} - x_0} < \alpha$ for $n \geq n_1$. Choose any measurable set $E \subset I$ satisfying $\underline{d}^+(E, x_0) > 0$. Let $\beta \in (0, \underline{d}^+(E, x_0))$. Then we can find $\delta > 0$ such that $\frac{|E \cap [x_0, x]|}{x - x_0} > \beta$ for each $x \in (x_0, x_0 + \delta)$. Choose any $n_2 \in \mathbb{N}$ for which $b_{n_2} < x_0 + \delta$. By (2), there exists $n_3 \in \mathbb{N}$ such that $b_n - a_n > \frac{2(1 + \frac{\beta}{2})(1 + \alpha)}{\beta}(a_n - x_0)$ for $n \geq n_3$. In particular, $b_n - a_n > \frac{2}{\beta}(a_n - x_0)$ for $n \geq \mathbb{N}$. Let $c_n = a_n + \frac{2}{\beta}(a_n - x_0)$ for $n \geq n_3$. Then, $c_n \in [a_n, b_n]$. Finally, let $n_0 = \max\{n_1, n_2, n_3\}$.

Fix any $x \in (x_0, a_{n_0})$. There exists $k > n_0$ such that $x \in [b_{k+1}, b_k]$. If $x \in [c_k, b_k]$, then

$$|E \cap F \cap [x_0, x]| \ge |E \cap [a_k, x]|$$

$$\ge |E \cap [x_0, x]| - (a_k - x_0)$$

$$\ge \beta(x - x_0) - (a_k - x_0).$$
(4)

Moreover, $x - x_0 \ge c_k - x_0 = (\frac{2}{\beta} + 1)(a_k - x_0)$. Hence, $a_k - x_0 \le \frac{\beta}{2}(x - x_0)$. Therefore,

$$|E \cap F \cap [x_0, x]| \ge \beta(x - x_0) - \frac{\beta}{2}(x - x_0) = \frac{\beta}{2}(x - x_0).$$
 (5)

If $x \in [b_{k+1}, c_k]$, then

$$\left|E \cap F \cap [x_0, x]\right| \ge \left|E \cap [a_{k+1}, b_{k+1}]\right| \ge \left|E \cap [x_0, b_{k+1}]\right| - (a_{k+1} - x_0) \tag{6}$$

Moreover, $x - x_0 \ge b_{k+1} - x_0$,

$$\begin{aligned} x - x_0 &\leq c_k - x_0 = \left(1 + \frac{2}{\beta}\right) (a_k - x_0) \\ &\leq \left(1 + \frac{2}{\beta}\right) (b_{k+1} - x_0 + a_k - b_{k+1}) \\ &\leq \left(1 + \frac{2}{\beta}\right) (b_{k+1} - x_0 + \alpha (b_{k+1} - x_0)) \\ &= \left(1 + \frac{2}{\beta}\right) (1 + \alpha) (b_{k+1} - x_0) \end{aligned}$$

and

$$a_{k+1} - x_0 \le \frac{2}{\beta}(b_{k+1} - a_{k+1}).$$

Thus,

$$\frac{|E \cap F \cap [x_0, x]|}{x - x_0} \\
\geq \frac{1}{(1 + \frac{2}{\beta})(1 + \alpha)} \cdot \frac{|E \cap [x_0, b_{k+1}]|}{b_{k+1} - x_0} - \frac{\frac{\beta}{2(1 + \frac{\beta}{2})(1 + \alpha)}(b_{k+1} - a_{k+1})}{b_{k+1} - x_0} \\
\geq \frac{1}{(1 + \frac{2}{\beta})(1 + \alpha)} \left(\frac{|E \cap [x_0, b_{k+1}]|}{b_{k+1} - x_0} - \frac{\beta(b_{k+1} - x_0)}{2(b_{k+1} - x_0)}\right) \\
\geq \frac{1}{(1 + \frac{2}{\beta})(1 + \alpha)} \left(\beta - \frac{\beta}{2}\right) \\
= \frac{\beta}{2(1 + \frac{2}{\beta})(1 + \alpha)}.$$
(7)

By (5) and (7), we have

$$\frac{E \cap F \cap [x_0, x]|}{x - x_0} \ge \frac{\beta}{2(1 + \frac{2}{\beta})(1 + \alpha)} \quad \text{for every } x \in (x_0, a_{n_0}).$$

Therefore,

$$\underline{d}^+(E \cap F, x_0) \ge \frac{\beta}{2(1+\frac{2}{\beta})(1+\alpha)} > 0.$$

Theorem 3.4. $\mathcal{A} \subsetneq \mathcal{M}_a(\mathcal{C}_{[0]}) \subsetneq \mathcal{C}_{T^*}$.

Proof. We only have to prove that $\mathcal{M}_a(\mathcal{C}_{[0]}) \setminus \mathcal{A} \neq \emptyset$ and $\mathcal{C}_{T^*} \setminus \mathcal{M}_a(\mathcal{C}_{[0]}) \neq \emptyset$. Let $x_n = \frac{1}{n!}, y_n = \frac{x_n + x_{n+1}}{2}, u_n = \frac{x_n + y_n}{2}$ (we may assume that $[0, 1] \subset I$). Obviously, $\lim_{n \to \infty} \frac{x_n - x_{n+1}}{x_{n+1}} = \lim_{n \to \infty} \frac{y_n - x_{n+1}}{x_{n+1}} = \infty$. Define $f: I \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{for } x \in (a, 0] \cup \{x_1, x_2, \ldots\} \cup [x_1, b), \\ 1 & \text{for } x \in \bigcup_{n=1}^{\infty} [y_n, u_n], \\ \text{linear on every interval } [x_{n+1}, y_n], [u_n, x_n], n = 1, 2, \ldots \end{cases}$$

The function f is continuous at every point except at 0. Take $\varepsilon \in (0, 1)$. Then

$$\left\{x \in I : |f(x) - f(0)| < \varepsilon\right\} =$$

$$(a, 0] \cup \bigcup_{n=1}^{\infty} \left[x_{n+1}, x_{n+1} + \varepsilon(y_n - x_{n+1})\right] \cup \bigcup_{n=1}^{\infty} \left[u_n + (1 - \varepsilon)(x_n - u_n), x_n\right] \cup \left[x_1, b\right)$$

Notice that the set ∞

$$\bigcup_{n=1} \left[x_{n+1}, x_{n+1} + \varepsilon (y_n - x_{n+1}) \right]$$

fulfills conditions (2) and (3) from Lemma 3.1. Indeed, if

$$a_n = x_{n+1}$$
 and $b_n = x_{n+1} + \varepsilon(y_n - x_{n+1}),$

then

$$\lim_{n \to \infty} \frac{b_n - a_n}{a_n} = \lim_{n \to \infty} \frac{x_{n+1} + \varepsilon(y_n - x_{n+1}) - x_{n+1}}{x_{n+1}} = \lim_{n \to \infty} \frac{\varepsilon(y_n - x_{n+1})}{x_{n+1}} = \infty$$

and

$$\frac{a_n - b_{n+1}}{b_{n+1}} = \frac{x_{n+1} - x_{n+2} - \varepsilon(y_{n+1} - x_{n+2})}{x_{n+2} + \varepsilon(y_{n+1} - x_{n+2})}$$
$$\leq \frac{(2 - \varepsilon)(y_{n+1} - x_{n+2})}{\varepsilon(y_{n+1} - x_{n+2})}$$
$$= \frac{2 - \varepsilon}{\varepsilon}.$$

Hence,

$$\limsup_{n \to \infty} \frac{a_n - b_{n+1}}{b_{n+1}} < \infty.$$

By Lemma 3.1 and Theorem 3.3, f is T^* -continuous at 0 and $f \in \mathcal{C}_{T^*}$. Notice that

$$\left\{x \in \mathbb{R} \colon |f(x) - f(0)| < \varepsilon\right\} \cap \bigcup_{n=1}^{\infty} \left[x_{n+1} + \varepsilon \frac{x_n - x_{n+1}}{2}, u_n\right] = \emptyset.$$

On the other hand,

$$\left| \left[x_{n+1} + \varepsilon \frac{x_n - x_{n+1}}{2}, u_n \right] \right| = \left| \left[x_{n+1} + \varepsilon \frac{x_n - x_{n+1}}{2}, x_{n+1} + \frac{3}{4} (x_n - x_{n+1}) \right] \right|$$
$$= \frac{3}{4} (x_n - x_{n+1}) - \frac{\varepsilon}{2} (x_n - x_{n+1})$$
$$= \frac{3 - 2\varepsilon}{4} (x_n - x_{n+1})$$

and

$$\overline{d}^+ \Big(I \setminus \big\{ x \in I \colon |f(x) - f(0)| < \varepsilon \big\}, 0 \Big) \ge \limsup_{n \to \infty} \frac{\frac{3 - 2\varepsilon}{4} (x_n - x_{n+1})}{u_n}.$$

Hence,

$$\overline{d}^{+}\left(I \setminus \left\{x \in I : |f(x) - f(0)| < \varepsilon\right\}, 0\right) \geq \lim_{n \to \infty} \sup \frac{|[0, u_n] \cap (I \setminus \{x \in I : |f(x) - f(0)| < \varepsilon\})|}{u_n} \geq \lim_{n \to \infty} \frac{\frac{3-2\varepsilon}{4}(x_n - x_{n+1})}{x_{n+1} + \frac{3}{4}(x_n - x_{n+1})} = \limsup_{n \to \infty} \frac{\frac{1}{\frac{4}{3-2\varepsilon}} \frac{x_{n+1}}{x_n - x_{n+1}} + \frac{3}{3-2\varepsilon}}{\frac{4}{3-2\varepsilon}}$$

Therefore,

$$\frac{1}{d^+} \left(I \setminus \left\{ x \in I : |f(x) - f(0)| < \varepsilon \right\}, 0 \right) \ge \frac{3 - 2\varepsilon}{3} = 1 - \frac{2}{3}\varepsilon$$

and

$$\underline{d}^+\Big(\big\{x\in\mathbb{R}\colon |f(x)-f(0)|<\varepsilon\big\},0\Big)\leq 1-\left(1-\frac{2}{3}\varepsilon\right)=\frac{2}{3}\varepsilon.$$

Hence,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \left(\left\{ x \in I \colon |f(x) - f(0)| < \varepsilon \right\}, 0 \right) = 0.$$

Finally,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \left(E \cap \left\{ x \in I \colon |f(x) - f(0)| < \varepsilon \right\}, 0 \right) = 0$$

and $f \notin \mathcal{M}_a(\mathcal{C}_{[0]})$. Thus $f \in \mathcal{C}_{T^*} \setminus \mathcal{M}_a(\mathcal{C}_{[0]})$.

Next, define $g: I \to \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & \text{for } x \in (a, 0] \cup \bigcup_{n=1}^{\infty} [x_{n+1}, y_n] \cup [x_1, b), \\ 1 & \text{for } x \in \{u_1, u_2, \ldots\}, \\ \text{linear on every interval } [y_n, u_n], [u_n, x_n], n = 1, 2, \ldots \end{cases}$$

Obviously, g is continuous at every point except at 0 and g is not approximately continuous at 0. It is easy to see that $\{[x_{n+1}, y_n]\}_{n \in \mathbb{N}}$ satisfy conditions (2) and (3) from Lemma 3.1. Since g restricted to $(a, 0] \cup \bigcup_{n=1}^{\infty} [x_{n+1}, y_n]$ is constant, g satisfies condition (A). Hence, $g \in \mathcal{M}_a(\mathcal{C}_{[0]}) \setminus \mathcal{A}$.

4. Maximal multiplicative class

DEFINITION 4.1. Let \mathcal{F} be any family of real valued functions defined on I. The set $\mathcal{M}_m(\mathcal{F}) = \{g : \forall_{f \in \mathcal{F}} f \cdot g \in \mathcal{F}\}$

is called a maximal multiplicative family for \mathcal{F} .

Remark 4.1. Let f be a constant function, f(x) = 1 for each x. If $f \in \mathcal{F}$, then $\mathcal{M}_a(\mathcal{F}) \subset \mathcal{F}$.

LEMMA 4.1. Let $f: I \to \mathbb{R}$ be a function from $\mathcal{C}_{[0]}$. If there exists $x_0 \in I$ such that f does not fulfill condition (A) at x_0 and $f(x_0) \neq 0$, then there exists $g: I \to \mathbb{R}$ such that $g \in \mathcal{C}_{[0]}$ and $f \cdot g \notin \mathcal{C}_{[0]}$. Proof.

By assumptions, there exists a measurable set $E \subset I$ such that $\underline{d}(E,x_0) > 0$ and

$$\lim_{\varepsilon \to 0^+} \underline{d} \left(E \cap \left\{ x \colon |f(x) - f(x_0)| < \varepsilon \right\}, x_0 \right) = 0$$

Again, we may assume that

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \Big(E \cap \big\{ x \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) = 0.$$

There exists a sequence of pairwise disjoint closed intervals $\{[a_n, b_n]\}_{n \ge 1}$ such that $x_0 < b_{n+1} < a_n < b_n$ for every $n \ge 1$ and

$$\overline{d}^+\left(E\setminus\bigcup_{n=1}^\infty [a_n,b_n],x_0\right) = \overline{d}^+\left(\bigcup_{n=1}^\infty [a_n,b_n]\setminus E,x_0\right) = 0.$$

Let $\{[c_n, d_n]\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint closed intervals such that $[a_n, b_n] \subset (c_n, d_n)$ and

$$\overline{d}^+\left(\bigcup_{n=1}^{\infty}\left([c_n,d_n]\setminus[a_n,b_n]\right),x_0\right)=0.$$

Let $I_n = [a_n, b_n]$ and $J_n = [c_n, d_n]$ for every $n \ge 1$. Define $g \colon (a, b) \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1 & \text{if } x \in (a, x_0] \cup \bigcup_{n=1}^{\infty} I_n, \\ 0 & \text{if } x \in (x_0, b) \setminus \bigcup_{n=1}^{\infty} \text{int} J_n, \\ \text{linear on every interval } [c_n, a_n], [b_n, d_n], n \in \mathbb{N}. \end{cases}$$

Obviously, g is continuous at every point except of x_0 . Since

$$\underline{d}^+\left(\bigcup_{n=1}^{\infty}I_n, x_0\right) = \underline{d}^+(E, x_0) > 0$$

and g restricted to $\{x_0\} \cup \bigcup_{n=1}^{\infty} I_n$ is constant, we have $g \in \mathcal{C}_{[0]}$. If

$$x \in (x_0, b) \setminus \bigcup_{n=1}^{\infty} J_n$$
,

then $(fg)(x) - (fg)(x_0) = -f(x_0).$

Since

$$\overline{d}^+\left(\bigcup_{n=1}^{\infty} (J_n \setminus I_n), x_0\right) = 0,$$

we have

$$\underline{d}^{+}\left(\left\{x \in I : \left|(fg)(x) - (fg)(x_{0})\right| < \varepsilon\right\}, x_{0}\right) = \\ \underline{d}^{+}\left(\left\{x \in \bigcup_{n=1}^{\infty} I_{n} : \left|f(x) - f(x_{0})\right| < \varepsilon\right\}, x_{0}\right) = \\ \underline{d}^{+}\left(\left\{x \in E : \left|f(x) - f(x_{0})\right| < \varepsilon\right\}, x_{0}\right) = \\ \underline{d}^{+}\left(E \cap \left\{x \in I : \left|f(x) - f(x_{0})\right| < \varepsilon\right\}, x_{0}\right) \text{ for all } \varepsilon \in \left(0, \left|f(x_{0})\right|\right).$$

By assumption,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \left(E \cap \left\{ x \colon |f(x) - f(x_0)| < \varepsilon \right\}, x_0 \right) = 0.$$

Hence,

$$\lim_{\varepsilon \to 0^+} \underline{d}^+ \Big(\big\{ x \in I \colon |(fg)(x) - (fg)(x_0)| < \varepsilon \big\}, x_0 \Big) = 0.$$

Therefore, $fg \notin C_{[0]}$.

DEFINITION 4.2. Let $\mathcal{W}_{[0]}$ be a set of all measurable functions $f: I \to \mathbb{R}$ such that at every $x_0 \in I$ at which f does not fulfill condition (A), the following two conditions hold

(W1) $f(x_0) = 0$,

(W2) for each measurable
$$E \subset I$$
 such that

$$\underline{d}(E, x_0) > 0 \quad \text{and} \quad E \supset \left\{ x \in I \colon f(x) = 0 \right\},\$$

we have

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(E \cap \big\{ x \in I \colon |f(x) - f(x_0)| < \varepsilon \big\}, x_0 \Big) > 0.$$

Theorem 4.1. $\mathcal{M}_m(\mathcal{C}_{[0]}) = \mathcal{W}_{[0]}$.

Proof. Assume that $f: I \to \mathbb{R}$ satisfies conditions (W1) and (W2). If f fulfills condition (A) at $x_0 \in I$, then, repeating arguments from the proof of Theorem 3.1, we can easily prove that $f \cdot g$ is [0]-lower continuous at x_0 for every $g \in C_{[0]}$.

Assume that f does not satisfy condition (A) at x_0 . By (W1), we have $f(x_0) = 0$. Let $N_f = \{x \in I : f(x) = 0\}$. Take any $g \in C_{[0]}$. There exists a measurable set $E \subset I$ such that $x_0 \in E$, $g_{|E}$ is continuous at x_0 and $\underline{d}(E, x_0) = \lambda > 0$.

For every $\varepsilon > 0$ there exists $\delta > 0$ for which $E \cap (x_0 - \delta, x_0 + \delta) \subset \{x \in I : |g(x)| < \varepsilon\}$. Therefore,

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(\Big\{ x \in I \colon |(f \cdot g)(x)| < \varepsilon \Big\}, x_0 \Big) \ge \\ \lim_{\varepsilon \to 0^+} \underline{d} \Big((E \cup N_f) \cap \big\{ x \in I \colon |f(x)| < \varepsilon \big\}, x_0 \Big) > 0,$$

by condition (W2). Hence $f \cdot g$ is [0]-continuous at x_0 . Since x_0 was arbitrary, $f \cdot g \in C_{[0]}$.

Let $f \in \mathcal{M}_m(C_{[0]})$ and assume that f does not fulfill condition (A) at x_0 . By Lemma 4.1, $f(x_0) = 0$. Choose any measurable set $E \subset I$ such that $N_f \subset E$ and $\underline{d}(E, x_0) > 0$. We can find four sequences $(I_n = [a_n, b_n])_{n \in \mathbb{N}}$, $(J_n = [c_n, d_n])_{n \in \mathbb{N}}$, $(I'_n = [a'_n, b'_n])_{n \in \mathbb{N}}$ and $(J'_n = [c'_n, d'_n])_{n \in \mathbb{N}}$ of pairwise disjoint closed intervals such that

$$c'_n < a'_n < b'_n < d'_n < c_{n+1}$$
, $d_{n+1} < c_n < a_n < b_n < d_n$,
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a'_n = x_0,$$

$$\overline{d}^{-}\left(E \setminus \bigcup_{n=1}^{\infty} I_{n}', x_{0}\right) = \overline{d}^{-}\left(\bigcup_{n=1}^{\infty} I_{n}' \setminus E, x_{0}\right) = 0,$$

$$\overline{d}^{+}\left(E \setminus \bigcup_{n=1}^{\infty} I_{n}, x_{0}\right) = \overline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n} \setminus E, x_{0}\right) = 0,$$

and

$$\overline{d}^{-}\left(\bigcup_{n=1}^{\infty} (J'_n \setminus I'_n), x_0\right) = \overline{d}^{+}\left(\bigcup_{n=1}^{\infty} (J_n \setminus I_n), x_0\right) = 0.$$

Fix $n \in \mathbb{N}$. Since

$$\lim_{\alpha \to \infty} \left| \left\{ x \in [d_{n+1}, c_n] \setminus N_f \colon |\alpha \cdot f(x)| < 1 \right\} \right| = 0,$$

there exists $\alpha_n \in \mathbb{R}$ such that

$$|\{x \in [d_{n+1}, c_n] \setminus N_f : |\alpha_n \cdot f(x)| < 1\}| < \frac{|[a_{n+1}, b_{n+1}]|}{n}.$$

It follows that

$$\overline{d}^+ \left(\bigcup_{n=1}^{\infty} \left\{ x \in [d_{n+1}, c_n] \setminus N_f \colon |\alpha_n \cdot f(x)| < 1 \right\}, x_0 \right) = 0.$$

Similarly, for each $n \in \mathbb{N}$ there exists $\beta_n \in \mathbb{R}$ such that

$$\overline{d}^{-}\left(\bigcup_{n=1}^{\infty}\left\{x\in[d'_{n},c'_{n+1}]\setminus N_{f}\colon|\beta_{n}\cdot f(x)|<1\right\},x_{0}\right)=0.$$

Define $g: I \to \mathbb{R}$ by

$$g(x) = \begin{cases} 1 & \text{for } x \in \{x_0\} \cup \bigcup_{n=1}^{\infty} (I_n \cup I'_n) \cup (a, c'_1] \cup [d_1, b), \\ \alpha_n & \text{for } x \in [d_{n+1}, c_n], \quad n = 1, 2, \dots, \\ \beta_n & \text{for } x \in [d'_n, c'_{n+1}], \quad n = 1, 2, \dots, \\ & \text{linear on every interval} \quad [c_n, a_n], [b_n, d_n], [c'_n, a'_n], [b'_n, d'_n], n \ge 1. \end{cases}$$

It is clear that g is continuous at every point except at x_0 . Moreover, $\underline{d}(\{x \in I : g(x) = g(x_0)\}, x_0) > 0$. Thus, $g \in C_{[0]}$. By assumptions about f, we have $f \cdot g \in C_{[0]}$. In particular, $f \cdot g$ is [0]-lower continuous at x_0 . Since $(f \cdot g)(x_0) = 0$, we have

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(\big\{ x \in I \colon |(f \cdot g)(x)| < \varepsilon \big\}, x_0 \Big) > 0.$$

On the other hand,

$$\lim_{\varepsilon \to 0^+} \underline{d} \Big(\Big\{ x \in I : |(f \cdot g)(x)| < \varepsilon \Big\}, x_0 \Big)$$

$$\leq \lim_{\varepsilon \to 0^+} \underline{d} \left(\bigcup_{n=1}^{\infty} (I_n \cup I'_n) \cap \big\{ x : |f(x)| < \varepsilon \big\}, x_0 \right)$$

$$+ \lim_{\varepsilon \to 0^+} \overline{d} \left(\bigcup_{n=1}^{\infty} \Big([d_{n+1}, c_n] \cap \big\{ x : |\alpha_n \cdot f(x)| < \varepsilon \big\} \Big)$$

$$\cup \Big([d'_n, c'_{n+1}] \cap \big\{ x : |\beta_n \cdot f(x)| < \varepsilon \big\} \Big) \setminus N_f, x_0 \Big)$$

$$+ \overline{d} \left(N_f \setminus \bigcup_{n=1}^{\infty} I_n, x_0 \right) + \overline{d} \left(\bigcup_{n=1}^{\infty} \big((J_n \setminus I_n) \cup (J'_n \setminus I'_n) \big), x_0 \right)$$

$$= \lim_{\varepsilon \to 0^+} \underline{d} \Big(E \cap \big\{ x : |f(x)| < \varepsilon \big\}, x_0 \Big).$$

Hence, condition (W2) holds.

COROLLARY 4.1. If $f: I \to \mathbb{R}$ is such that at every $x_0 \in I$ at which f does not fulfill condition (A), the following two conditions hold

(W1')
$$f(x_0) = 0,$$

(W2') $\underline{d}(\{x \in I : f(x) = 0\}, x_0) > 0,$
then

$$f \in \mathcal{M}_m\big(\mathcal{C}_{[0]}\big).$$

COROLLARY 4.2.

$$\mathcal{M}_m(\mathcal{C}_{[0]}) \subsetneq \mathcal{M}_a(\mathcal{C}_{[0]}).$$

127

STANISŁAW KOWALCZYK — KATARZYNA NOWAKOWSKA

REFERENCES

- BORSÍK, J.: Some classes of strongly quasicontinuous functions, Real Anal. Exchange 30 (2004–2005) 689-702.
- [2] BRUCKNER, A. M.: Differentiation of Real Functions, in: Lecture Notes in Math., Vol. 659, Springer-Verlag, New York, 1978.
- [3] BRUCKNER, A. M.—O'MALLEY, R. J.—THOMSON, B. S.: Path Derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97–125.
- [4] FILIPCZAK, T.: On some abstract density topologies, Real Anal. Exchange 14 (1988– 1989) 140–166.
- KOWALCZYK, S.—NOWAKOWSKA, K.: A note on ρ-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153–158.
- [6] KOWALCZYK, S.—NOWAKOWSKA, K.: Maximal classes for the family of [λ, ρ]-continuous functions, Real Anal. Exchange 36 (2010/2011), 307–324.
- [7] NOWAKOWSKA, K.: On a family of [λ, ρ]-continuous functions, Tatra Mt. Math. Publ. 44 (2009), 129–138.
- [8] SHARKEL, D. N.—DE, A. K.: The proximally continuous integrals, J. Aust. Math. Soc. 31 (1981), 26–45.

Received December 2, 2013

S. Kowalczyk K. Nowakowska Institute of Mathematics Pomeranian Academy ul. Arciszewskiego 22b PL-76-200 Słupsk POLAND E-mail: stkowalcz@onet.eu nowakowska_k@go2.pl