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A NOTE

ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Stanis�law Kowalczyk — Katarzyna Nowakowska

ABSTRACT. We present some properties of [0]-lower continuous functions.

We give an equivalent condition of [0]-lower continuity and find maximal addi-
tive family and maximal multiplicative family for the class of [0]-lower continuous
functions.

1. Preliminaries

In the paper, we apply standard symbols and notations. By R we denote
the set of all real numbers, by N we denote the set of all positive integers.
By L we denote the family of measurable in sense of Lebesgue subsets of real
line. The symbol | · | stands for the Lebesgue measure on R. Throughout the pa-
per, I = (a, b) denotes an open interval (not necessarily bounded) and f is
a real-valued function defined on I. By A we denote the class of approximately
continuous functions.

Let E be a measurable subset of R and let x ∈ R. According to [2],
the numbers

d+(E, x) = lim inf
t→0+

|E ∩ [x, x+ t]|
t

and d
+
(E, x) = lim sup

t→0+

|E ∩ [x, x+ t]|
t

are called the right lower density of E at x and right upper density of E at x,
respectively. The left lower and upper densities of E at x are defined analogously.
If

d+(E, x) = d
+
(E, x)

(
d−(E, x) = d

−
(E, x)

)
,
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then we call these numbers the right density (left density) of E at x and denote
them by d+(E, x) (d−(E, x)). The numbers

d(E, x) = lim sup
t→0+

k→0+

|E ∩ [x− t, x+ k]|
k + t

and d(E, x) = lim inf
t→0+

k→0+

|E ∩ [x− t, x+ k]|
k + t

are called the upper and lower density of E at x, respectively. It is clear that

d(E, x) = max
{
d
+
(E, x), d

−
(E, x)

}
and d(E, x) = min

{
d+(E, x), d−(E, x)

}
.

If d(E, x) = d(E, x), we call this number the density of E at x and denote it
by d(E, x).

Let us recall the definition of [λ, �]-continuous function.

���������� 1.1 ([7])� Let E ∈ L, x ∈ R and 0 < λ ≤ � ≤ 1, λ < 1. We say
that x is a point of [λ, �]-type density of E, if

d(E, x) > λ and d(E, x) > � when λ < 1 and � < 1

or

d(E, x) > λ and d(E, x) = � when λ < 1 and � = 1.

���������� 1.2 ([7])� A real-valued function f defined on an open interval I is
called [λ, �]-continuous at x ∈ I provided that there is a measurable set E ⊂ I
such that x is a point of [λ, �]-density of E, x ∈ E and f |E is continuous at x. If f
is [λ, �]-continuous at every point of I, we simply say that f is [λ, �]-continuous.

We will denote the class of [λ, �]-continuous functions by C[λ,�].
In [7], an equivalent condition of C[λ,�]-continuity was proved.

	
����� 1.1 ([7])� Let 0 < λ ≤ � < 1, x0 ∈ I and let f : I → R be a measurable
function. Then f is [λ, �]-continuous at x0 if and only if

lim
ε→0+

d
({

x ∈ I : |f(x)− f(x0)| < ε
}
, x0

)
> λ

and

lim
ε→0+

d
({

x ∈ I : |f(x)− f(x0)| < ε
}
, x0

)
> �.

We will need the following technical lemma from [6].

���� 1.1 ([6, Lemma 2.3])� Let F be a measurable set and let x ∈ R. There
exists a sequence of closed intervals

{
In = [an, bn] : x < · · · < bn+1 < an < · · ·}

such that

d
+

(
F \

∞⋃
n=1

In, x

)
= d

+

( ∞⋃
n=1

In \ F, x
)
= 0.

Now, we will give a basic definition of the present paper.
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���������� 1.3� A real-valued function f : I → R is called [0]-lower continuous
at x ∈ I if there exists λx > 0 such that f is [λx, λx]-continuous at x. If f
is [0]-lower continuous at every point of I, we simply say that f is [0]-lower
continuous.

We will denote the class of [0]-lower continuous functions by C[0].
	
����� 1.2� Let f : I → R be a measurable function and let x0 ∈ I.
The following conditions are equivalent:

i) function f is [0]-lower continuous at x0,

ii) there exists measurable set E ⊂ I such that x0 ∈ E, f |E is continuous
at x0 and d(E, x0) > 0,

iii) limε→0+ d
({x ∈ I : |f(x)− f(x0)| < ε}, x0

)
> 0.

P r o o f. Assume that f is [0]-lower continuous at x0. There exists λ > 0 such
that function f is [λ, λ]-continuous at x0. So, we can find a measurable set E ⊂ I
such that x0 ∈ E, f |E is continuous at x0 and d(E, x0) > λ > 0.

Assume that there exists a measurable set E ⊂ I such that x0 ∈ E, f |E is
continuous at x0 and d(E, x0) > 0. Then, for every ε > 0, there exists δ > 0
such that [x0 − δ, x0 + δ] ∩ E ⊂ {x : |f(x)− f(x0)| < ε

}
. Hence,

d
({

x ∈ I : |f(x)− f(x0)| < ε
}
, x0

)
≥

d
({

x ∈ E : |f(x)− f(x0)| < ε
}
, x0

)
= d(E, x0) for every ε > 0.

Therefore,

lim
ε→0+

d
({

x ∈ I : |f(x)− f(x0)| < ε
}
, x0

)
≥ d(E, x0)> 0.

Now, suppose that

lim
ε→0+

d
({x ∈ I : |f(x)− f(x0)| < ε}, x0

)
> 0.

There exists λ > 0 such that

lim
ε→0+

d
({x ∈ I : |f(x)− f(x0)| < ε}, x0

)
> λ.

From Theorem 1.1, we conclude that f is [λ, λ]-continuous at x0. Hence f is
[0]-lower continuous at x0. �

Example 1.1. We shall show that there exists f ∈ C[0] \
⋃

0<λ≤�≤1,λ<1 C[λ,�].
Let {xn}n≥1 be a sequence of points from I such that limn→∞ xn = b and

xn+1 > xn for every n ≥ 1. We can find a sequence
{
Jn = [pn, qn]

}
n≥1

⊂ (a, b)

of pairwise disjoint closed intervals, for which xn ∈ (pn, qn).
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For each n ∈ N there exists a sequence of closed intervals
{
[anm, bnm]

}
m≥1

such that xn < bnm+1 < anm < bnm and
[
anm, bnm

] ⊂ Jn for every m ≥ 1 and

d+

( ∞⋃
m=1

[
anm, bnm

]
, xn

)
=

1

n
.

For each n ≥ 1 there exists a sequence of pairwise disjoint closed intervals{
[cnm, dnm]

}
m≥1

such that
[
cnm, dnm

] ⊂ Jn and
[
anm, bnm

] ⊂ (
cnm, dnm

)
for every

m ≥ 1 and

d
+

( ∞⋃
m=1

(
[cnm, dnm] \ [anm, bnm

])
, xn

)
= 0.

Let Inm = [anm, bnm] and Kn
m = [cnm, dnm] for every m ≥ 1.

Finally, for every n ∈ N take any yn ∈ (pn, xn).

Define f : (a, b) → R by

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 for x ∈ ⋃∞

n=1

(
[yn, xn] ∪

⋃∞
m=1 I

n
m

)
,

1 for x ∈ ((a, b) \⋃∞
n=1 Jn

) ∪ (⋃∞
n=1

(
(xn, d

n
1 ] \

⋃∞
m=1K

n
m

))
,

linear on the intervals
[
cnm, anm

]
,
[
bnm, dnm

]
,
[
pn, yn

]
,
[
dn1 , qn

]
, n,m ≥ 1.

Then, f is continuous at every point except at x1, x2, . . . and constant on every
set

En =

(
[yn, xn] ∪

∞⋃
m=1

Inm

)
.

Since d(En, xn) =
1
n > 0, f is C[0]-continuous at x1, x2, . . . Hence, f ∈ C[0].

Let λ, � be any real numbers such that 0 < λ ≤ � ≤ 1 and λ < 1.
There exists n0 such that 1

n0
< λ. Then

d
({

x ∈ Jn0
: |f(x)− f(xn0

)| < 1
}
, xn0

)
≤ d+

( ∞⋃
m=1

Kn0
m , xn0

)
≤

d+

( ∞⋃
m=1

In0
m , xn0

)
+ d

+

( ∞⋃
m=1

(Kn0
m \ In0

m ) , xn0

)
= 1

n0
+ 0 < λ.

Hence f 	∈ C[λ,�] and f 	∈ ⋃0<λ≤�≤1,λ<1 C[λ,�].
��������� 1.1� C[0] �

⋃
0<λ≤�<1 C[λ,�].

Remark 1.1� It seems that, in the same way as in [1, Theorem 4], one can
prove that the set

⋃
0<λ≤�<1 C[λ,�] is even nowhere dense in C[0].
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2. Basic results

	
����� 2.1� If f ∈ C[0], then f is measurable.

P r o o f. Let f : I → R, f ∈ C[0] and suppose that f is not measurable. There

exists a number a ∈ R for which at least one of the sets
{
x ∈ I : f(x) < a

}
,{

x ∈ I : f(x) > a
}
is non-measurable. We may assume that the

{
x∈I : f(x)<a

}
is non-measurable. Let A =

{
x ∈ I : f(x) < a

}
and B =

{
x ∈ I : f(x) ≥ a

}
.

Then B = I \ A is also non-measurable. There exist measurable sets A1 ⊂ A,
B1 ⊂ B such that A\A1 and B\B1 do not contain any measurable set of positive
measure. Therefore A \A1 and B \B1 are non-measurable. Moreover,

F = (A \A1) ∪ (B \B1) = I \ (A1 ∪B1)

is measurable.Let L(F ) be a set of all density points of a setF. Since|F\L(F )|=0,
there exists x0 ∈ (A \A1) ∩ L(F ).

It follows that there exists a measurable set E ⊂ I such that x0 ∈ E,
d(E, x0)>0 and f |E is continuous at x0, because f is 0-lower continuous at x0.
As x0 ∈ A, we have f(x0) < a. Therefore it is possible to find δ > 0 such that
E ∩ (x0 − δ, x0 + δ) ⊂ A. Let E′ = E ∩ (x0 − δ, x0 + δ). Hence x0 ∈ E′, f |E′ is
continuous at x0, E

′ ⊂ A and

d(E′, x0) = d(E, x0) > 0. (R)

We have
E′ = (E′ ∩ A1) ∪

(
E′ ∩ (A \A1)

)
.

Since E′ and E′ ∩ A1 are measurable, E′ ∩ (A \ A1) is also measurable. Hence,
|E′ ∩ (A \A1)| = 0. Moreover,

d(E′ ∩ A1, x0) = 1− d
(
I \ (E′ ∩ A1), x0

) ≤ 1− d(F, x0) = 1− 1 = 0.

Therefore,

d(E′, x0) = d
((
E′ ∩A) ∪ (E′ ∩ (A \A1), x0

))
≤ d(E′ ∩ A, x0) + d

(
E′ ∩ (A \A1), x0

)
= 0 + 0 = 0,

contradicting to (R). �

Applying Proposition 7 from [1], we see that C[0] is not closed under the
uniform limit.

	
����� 2.2� Let a sequence {fn}n≥1 of measurable functions fn : I → R

be uniformly convergent to f, f : I → R and let x0 ∈ I. Then f is [0]-lower
continuous at x0 if and only if

inf
δ>0

lim inf
k→∞

d
({

x ∈ I : |fk(x)− fk(x0)| < δ
}
, x0

)
> 0. (1)
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P r o o f. Let
α = inf

δ>0
lim inf
k→∞

d
({

x ∈ I : |fk(x)− fk(x0)| < δ
}
, x0

)
> 0.

Take any ε > 0. There exists n0 ≥ 1 such that for every k > n0 and every x ∈ I,
the inequality

|fk(x)− f(x)| < ε

3
holds. In particular,

|fk(x0)− f(x0)| < ε

3

for n ≥ n1. By (1), we can find n > n0 such that

d
({

x ∈ I : |fn(x)− fn(x0)| < ε

3

}
, x0

)
>

α

2
.

Notice that

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)| < ε

for x ∈
{
t ∈ I : |fn(t)− fn(x0)| < ε

3

}
.

Therefore,{
x ∈ I : |fn(x)− fn(x0)| < ε

3

}
⊂ {x ∈ I : |f(x)− f(x0)| < ε

}
.

Hence,

d
({

x ∈ I : |f(x)− f(x0)| < ε
}
, x0

)
≥ d

({
x ∈ I : |fn(x)− fn(x0)| < ε

3

}
, x0

)
>

α

2
.

Since ε > 0 was taken arbitrarily,

lim
ε→0+

d
({

x : |f(x)− f(x0)| < ε
}
, x0

)
≥ α

2
> 0.

It follows that f is [0]-lower continuous at x0.

Now, suppose that f is [0]-lower continuous at x0. Let

β = lim
ε→0+

d
({

x ∈ I : |f(x)− f(x0)| < ε
}
, x0

)
> 0.

Then, d
({x ∈ I : |f(x) − f(x0)| < ε}, x0

) ≥ β for ε > 0. Fix any δ > 0.
There exists n0 ≥ 1 such that for every k > n0 and every x ∈ I the inequality

|fk(x)− f(x)| < δ

3
holds. Similarly as earlier, we can easily check that{

x ∈ I : |f(x)− f(x0)| < δ

3

}
⊂ {x ∈ I : |fn(x)− fn(x0)| < δ

}
for n > n0.

Therefore,
d
({x ∈ I : |fk(x)− fk(x0)| < δ}, x0

) ≥ β for n ≥ n0
and

lim inf
k→∞

d
({

x ∈ I : |fk(x)− fk(x0)| < δ
}
, x0

)
≥ β.
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Since δ > 0 was taken arbitrarily,

inf
δ>0

lim inf
k→∞

d
({

x ∈ I : |fk(x)− fk(x0)| < δ
}
, x0

)
≥ β > 0,

and (1) holds. �

��������� 2.1� Assume that every function fn : I → R is measurable and
there exists λ > 0 such that every fn is [λ, λ]-continuous at some x0 ∈ I.
If the sequence {fn}n≥1 is uniformly convergent to f, f : I → R, then f is
also [0]-lower continuous at x0.

3. Maximal additive class

���������� 3.1� Let F be any family of real valued functions defined on I.
The set Ma(F) = {g : ∀f∈F f + g ∈ F}
is called the maximal additive family for F.
Remark 3.1� Let f be a constant function, f(x) = 0 for each x. If f ∈ F , then
Ma(F) ⊂ F.

Now, we will find a maximal additive family for the family of [0]-lower con-
tinuous functions.

	
����� 3.1� A measurable function f : I → R belongs to Ma

(C[0]) if and
only if at every x0 ∈ I the following condition

∀E∈L,
E⊂I

(
d(E, x0) > 0 ⇒ lim

ε→0+
d
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
> 0

)
(A)

is fulfilled.

P r o o f. Assume that a measurable function f fulfills condition (A). Let x0 ∈ I
and let g be a lower [0]-continuous at x0. There exists a measurable set E such
that x0 ∈ E, g|E is continuous at x0 and d(E, x0) > 0. Hence, for every ε > 0
there exists δ > 0 such that

E ∩ (x0 − δ, x0 + δ) ⊂
{
x : |g(x)− g(x0)| < ε

2

}
.

Therefore,{
x ∈ I : |(f + g)(x)− (f + g)(x0)| < ε

} ⊃{
x ∈ E ∩ (x0 − δ, x0 + δ) : |f(x)− f(x0)| < ε

2

}
.

Hence,
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d
({

x ∈ I : |(f + g)(x)− (f + g)(x0)| < ε
}
, x0

)
≥

d
({

x ∈ E : |f(x)− f(x0)| < ε

2

}
, x0

)
and

lim
ε→0+

d
({

x ∈ I : |(f + g)(x)− (f + g)(x0)| < ε
}
, x0

)
≥

lim
ε→0+

d
({

x ∈ E : |f(x)− f(x0)| < ε

2

}
, x0

)
=

lim
ε→0+

d
(
E ∩ {x ∈ I : |f(x)− f(x0)| < ε

}
, x0

)
> 0.

By Theorem 1.2, f + g is [0]-lower continuous at x0.

Let f ∈ Ma

(C[0]). Suppose that there exists x0 ∈ I at which condition (A)
is not fulfilled. Then, there exists a measurable set E ⊂ I such that d(E, x0) > 0
and

lim
ε→0+

d
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
=0.

Hence,

lim
ε→0+

d+
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
=0

or

lim
ε→0−

d−
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
=0.

We may assume that

lim
ε→0+

d+
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
=0.

By Lemma 1.1, there exists a sequence of closed intervals
{
[an, bn]

}
n≥1

such that x0 < bn+1 < an < bn for n ≥ 1 and

d
+

(
E \

∞⋃
n=1

[an, bn], x0

)
= d

+

( ∞⋃
n=1

[an, bn] \ E, x0

)
= 0.

Let
{
[cn, dn]

}
n∈N

be a sequence of pairwise disjoint closed intervals such that

[an, bn] ⊂ (cn, dn) and d
+(⋃∞

n=1 ([cn, dn] \ [an, bn]) , x0

)
= 0. Let In = [an, bn]

and Jn = [cn, dn] for every n ≥ 1. Define a function g : (a, b) → R by

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ∈ (a, x0] ∪
⋃∞

n=1 In,

f(x0)− f(x) + 1 if x ∈ (x0, b) \
⋃∞

n=1 intJn,

linear on every interval [cn, an], [bn, dn], n ∈ N.
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Clearly, g is [0]-lower continuous at every point except at x0. Since

d

(
(a, x0] ∪

∞⋃
n=1

In, x0

)
= d+(E, x0) > 0

and g restricted to (a, x0] ∪
⋃∞

n=1 In is constant, we conclude that g ∈ C[0].
Take any ε ∈ (0, 1).

If x ∈ (x0, b) \
⋃∞

n=1 Jn, then (f + g)(x)− (f + g)(x0) = 1. Hence,

d+
({

x ∈ I : |(f + g)(x)− (f + g)(x0)| < ε
}
, x0

)
=

d+

({
x ∈

∞⋃
n=1

In : |f(x)− f(x0)| < ε

}
, x0

)
=

d+
({

x ∈ E : |f(x)− f(x0)| < ε
}
, x0

)
.

By assumption,

lim
ε→0+

d+
(
E ∩ {x : |f(x)− f(x0)| < ε}, x0

)
= 0.

Hence,

lim
ε→0+

d+
({

x ∈ I : |(f + g)(x)− (f + g)(x0)| < ε
}
, x0

)
= 0.

Therefore, f + g 	∈ C[0]. �

We will show connections between Ma

(C[0]) and the so-called T ∗-continuity.
To this end, we need the notion and some properties of sparse sets and definition
of T ∗ continuous functions. Details of this notion can be found in [4], [8]. We will
need only the following

���������� 3.2 ([4])� We say that a measurable set E ⊂ R is sparse at x0 ∈ R
if for every measurable set F ⊂ R, if d(F, x0) < 1 then d(E ∪F, x0) < 1. We say
that E is sparse if E is sparse at every x0 ∈ R.
���������� 3.3 ( [4])� We say that a function f : I → R is T ∗ continuous
at x0 ∈ I if for each ε > 0 the complement of the set

{
x ∈ I : |f(x)−f(x0)| < ε

}
is sparse at x0. A function f : I → R is T ∗ continuous if and only if it is T ∗

continuous at each point of I.

(Actually, these definitions are equivalent conditions of original definitions
of sparsity and T ∗ continuity.)

	
����� 3.2 ( [4])� A complement of a measurable set E is sparse at x if
and only if for each measurable set F ⊂ R such that d(F, x) > 0 the inequality
d(E ∩ F, x) > 0 holds.
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Applying Definition 3.3 and Theorem 3.2, we have

	
����� 3.3� A function f : I → R is T ∗ continuous at x0 ∈ I if and only if

∀E∈L,
E⊂I

(
d(E, x0) > 0 ⇒ ∀ε>0d

(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
> 0

)
. (B)

��������� 3.1� A ⊂ Ma

(C[0]) ⊂ CT∗ .

���� 3.1� Let x0 ∈ R and F =
⋃∞

n=1[an, bn], where x0 < bn+1 < an < bn for
every n ≥ 1, limn→∞ an = x0. If

lim
n→∞

bn − an
an − x0

= ∞ (2)

and
lim sup
n→∞

an − bn+1

bn+1 − x0
< ∞, (3)

then
∀E∈L,
E⊂I

(
d+(E, x0) > 0 ⇒ d+(E ∩ F, x0) > 0

)
. (C)

P r o o f.

According to (3), there exist α ∈ (1,∞) and n1 ∈ N such that an−bn+1

bn+1−x0
<α

for n ≥ n1. Choose any measurable set E ⊂ I satisfying d+(E, x0) > 0.

Let β ∈ (
0, d+(E, x0)

)
. Then we can find δ > 0 such that |E∩[x0,x]|

x−x0
> β

for each x ∈ (x0, x0 + δ). Choose any n2 ∈ N for which bn2
< x0 + δ. By (2),

there exists n3 ∈ N such that bn − an >
2(1+ β

2 )(1+α)

β (an − x0) for n ≥ n3.

In particular, bn − an > 2
β (an − x0) for n ≥ N. Let cn = an + 2

β (an − x0)

for n ≥ n3. Then, cn ∈ [an, bn]. Finally, let n0 = max{n1, n2, n3}.
Fix any x ∈ (x0, an0

). There exists k > n0 such that x ∈ [bk+1, bk].

If x ∈ [ck, bk], then∣∣E ∩ F ∩ [x0, x]
∣∣ ≥ ∣∣E ∩ [ak, x]

∣∣
≥ ∣∣E ∩ [x0, x]

∣∣− (ak − x0)

≥ β(x− x0)− (ak − x0). (4)

Moreover, x − x0 ≥ ck − x0 =
(
2
β + 1

)
(ak − x0). Hence, ak − x0 ≤ β

2 (x − x0).

Therefore, ∣∣E ∩ F ∩ [x0, x]
∣∣ ≥ β(x− x0)− β

2
(x− x0) =

β

2
(x− x0). (5)

If x ∈ [bk+1, ck], then∣∣E ∩ F ∩ [x0, x]
∣∣ ≥ |E ∩ [ak+1, bk+1]| ≥

∣∣E ∩ [x0, bk+1]
∣∣− (ak+1 − x0) (6)
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Moreover, x− x0 ≥ bk+1 − x0,

x− x0 ≤ ck − x0 =
(
1 + 2

β

)
(ak − x0)

≤
(
1 + 2

β

)
(bk+1 − x0 + ak − bk+1)

≤
(
1 + 2

β

) (
bk+1 − x0 + α(bk+1 − x0)

)
=
(
1 + 2

β

)
(1 + α)(bk+1 − x0)

and
ak+1 − x0 ≤ 2

β (bk+1 − ak+1).

Thus,

|E ∩ F ∩ [x0, x]|
x− x0

≥ 1

(1 + 2
β )(1 + α)

· |E ∩ [x0, bk+1]|
bk+1 − x0

−
β

2(1+ β
2 )(1+α)

(bk+1 − ak+1)

bk+1 − x0

≥ 1

(1 + 2
β )(1 + α)

( |E ∩ [x0, bk+1]|
bk+1 − x0

− β(bk+1 − x0)

2(bk+1 − x0)

)

≥ 1

(1 + 2
β )(1 + α)

(
β − β

2

)

=
β

2(1 + 2
β )(1 + α)

. (7)

By (5) and (7), we have

|E ∩ F ∩ [x0, x]|
x− x0

≥ β

2(1 + 2
β )(1 + α)

for every x ∈ (x0, an0
).

Therefore,

d+(E ∩ F, x0) ≥ β

2(1 + 2
β )(1 + α)

> 0. �

	
����� 3.4� A �Ma

(C[0]) � CT∗ .

P r o o f. We only have to prove that Ma

(C[0]) \ A 	= ∅ and CT∗ \Ma

(C[0]) 	= ∅.
Let xn = 1

n! , yn = xn+xn+1

2 , un = xn+yn

2 (we may assume that [0, 1] ⊂ I).

Obviously, limn→∞
xn−xn+1

xn+1
= limn→∞

yn−xn+1

xn+1
= ∞. Define f : I → R by

f(x) =

⎧⎪⎨
⎪⎩
0 for x ∈ (a, 0] ∪ {x1, x2, . . .} ∪ [x1, b),

1 for x ∈ ⋃∞
n=1[yn, un],

linear on every interval [xn+1, yn], [un, xn], n = 1, 2, . . .

121



STANIS�LAW KOWALCZYK — KATARZYNA NOWAKOWSKA

The function f is continuous at every point except at 0. Take ε ∈ (0, 1). Then{
x ∈ I : |f(x)− f(0)| < ε

}
=

(a, 0]∪
∞⋃
n=1

[
xn+1, xn+1+ε(yn−xn+1)

]∪ ∞⋃
n=1

[
un+(1−ε)(xn−un), xn

]∪ [x1, b)

Notice that the set ∞⋃
n=1

[
xn+1, xn+1 + ε(yn − xn+1)

]
fulfills conditions (2) and (3) from Lemma 3.1. Indeed, if

an = xn+1 and bn = xn+1 + ε(yn − xn+1),

then

lim
n→∞

bn − an
an

= lim
n→∞

xn+1 + ε(yn − xn+1)− xn+1

xn+1
= lim

n→∞
ε(yn − xn+1)

xn+1
= ∞

and
an − bn+1

bn+1
=

xn+1 − xn+2 − ε(yn+1 − xn+2)

xn+2 + ε(yn+1 − xn+2)

≤ (2− ε)(yn+1 − xn+2)

ε(yn+1 − xn+2)

=
2− ε

ε
.

Hence,

lim sup
n→∞

an − bn+1

bn+1
< ∞.

By Lemma 3.1 and Theorem 3.3, f is T ∗-continuous at 0 and f ∈ CT∗ . Notice
that {

x ∈ R : |f(x)− f(0)| < ε
} ∩ ∞⋃

n=1

[
xn+1 + ε

xn − xn+1

2
, un

]
= ∅.

On the other hand,∣∣∣∣
[
xn+1 + ε

xn − xn+1

2
, un

]∣∣∣∣ =
∣∣∣∣
[
xn+1 + ε

xn − xn+1

2
, xn+1 +

3

4
(xn − xn+1

]∣∣∣∣
=

3

4
(xn − xn+1)− ε

2
(xn − xn+1)

=
3− 2ε

4
(xn − xn+1)

and

d
+
(
I \ {x ∈ I : |f(x)− f(0)| < ε

}
, 0
)
≥ lim sup

n→∞

3−2ε
4 (xn − xn+1)

un
.
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Hence,

d
+
(
I \ {x ∈ I : |f(x)− f(0)| < ε

}
, 0
)
≥

lim sup
n→∞

|[0, un] ∩ (I \ {x ∈ I : |f(x)− f(0)| < ε})|
un

≥

lim sup
n→∞

3−2ε
4 (xn − xn+1)

xn+1 +
3
4 (xn − xn+1)

= lim sup
n→∞

1
4

3−2ε
xn+1

xn−xn+1
+ 3

3−2ε

.

Therefore,

d
+
(
I \ {x ∈ I : |f(x)− f(0)| < ε

}
, 0
)
≥ 3− 2ε

3
= 1− 2

3
ε

and

d+
({

x ∈ R : |f(x)− f(0)| < ε
}
, 0
)
≤ 1−

(
1− 2

3
ε

)
=

2

3
ε.

Hence,

lim
ε→0+

d+
({

x ∈ I : |f(x)− f(0)| < ε
}
, 0
)
= 0.

Finally,

lim
ε→0+

d+
(
E ∩ {x ∈ I : |f(x)− f(0)| < ε

}
, 0
)
= 0

and f 	∈ Ma

(C[0]). Thus f ∈ CT∗ \Ma

(C[0]).
Next, define g : I → R by

g(x) =

⎧⎪⎨
⎪⎩
0 for x ∈ (a, 0] ∪⋃∞

n=1[xn+1, yn] ∪ [x1, b),

1 for x ∈ {u1, u2, . . .},
linear on every interval [yn, un], [un, xn], n = 1, 2, . . .

Obviously, g is continuous at every point except at 0 and g is not approximately
continuous at 0. It is easy to see that {[xn+1, yn]}n∈N satisfy conditions (2) and
(3) from Lemma 3.1. Since g restricted to (a, 0] ∪ ⋃∞

n=1[xn+1, yn] is constant,

g satisfies condition (A). Hence, g ∈ Ma

(C[0]) \ A. �

4. Maximal multiplicative class

���������� 4.1� Let F be any family of real valued functions defined on I.
The set Mm(F) = {g : ∀f∈F f · g ∈ F}
is called a maximal multiplicative family for F.
Remark 4.1� Let f be a constant function, f(x) = 1 for each x. If f ∈ F , then
Ma(F) ⊂ F.
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���� 4.1� Let f : I → R be a function from C[0]. If there exists x0 ∈ I such
that f does not fulfill condition (A) at x0 and f(x0) 	= 0, then there exists
g : I → R such that g ∈ C[0] and f · g 	∈ C[0].
P r o o f.

By assumptions, there exists a measurable set E ⊂ I such that d(E, x0) > 0
and

lim
ε→0+

d
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
=0.

Again, we may assume that

lim
ε→0+

d+
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
=0.

There exists a sequence of pairwise disjoint closed intervals {[an, bn]}n≥1

such that x0 < bn+1 < an < bn for every n ≥ 1 and

d
+

(
E \

∞⋃
n=1

[an, bn], x0

)
= d

+

( ∞⋃
n=1

[an, bn] \ E, x0

)
= 0.

Let
{
[cn, dn]

}
n∈N

be a sequence of pairwise disjoint closed intervals such that

[an, bn] ⊂ (cn, dn) and

d
+

( ∞⋃
n=1

(
[cn, dn] \ [an, bn]

)
, x0

)
= 0.

Let In = [an, bn] and Jn = [cn, dn] for every n ≥ 1. Define g : (a, b) → R by

g(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 if x ∈ (a, x0] ∪

⋃∞
n=1 In,

0 if x ∈ (x0, b) \
⋃∞

n=1 intJn,

linear on every interval [cn, an], [bn, dn], n ∈ N.

Obviously, g is continuous at every point except of x0. Since

d+

( ∞⋃
n=1

In, x0

)
= d+(E, x0) > 0

and g restricted to {x0} ∪
⋃∞

n=1 In is constant, we have g ∈ C[0]. If

x ∈ (x0, b) \
∞⋃

n=1

Jn ,

then (fg)(x)− (fg)(x0) = −f(x0).
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Since

d
+

( ∞⋃
n=1

(Jn \ In), x0

)
= 0,

we have

d+
({

x ∈ I : |(fg)(x)− (fg)(x0)| < ε
}
, x0

)
=

d+

({
x ∈

∞⋃
n=1

In : |f(x)− f(x0)| < ε

}
, x0

)
=

d+
({

x ∈ E : |f(x)− f(x0)| < ε
}
, x0

)
=

d+
(
E ∩ {x ∈ I : |f(x)− f(x0)| < ε

}
, x0

)
for all ε ∈ (0, |f(x0)|

)
.

By assumption,

lim
ε→0+

d+
(
E ∩ {x : |f(x)− f(x0)| < ε

}
, x0

)
= 0.

Hence,

lim
ε→0+

d+
({

x ∈ I : |(fg)(x)− (fg)(x0)| < ε
}
, x0

)
= 0.

Therefore, fg 	∈ C[0]. �
���������� 4.2� Let W[0] be a set of all measurable functions f : I → R such
that at every x0 ∈ I at which f does not fulfill condition (A), the following two
conditions hold

(W1) f(x0) = 0,

(W2) for each measurable E ⊂ I such that

d(E, x0)>0 and E⊃{x∈I : f(x)=0
}
,

we have

lim
ε→0+

d
(
E ∩ {x ∈ I : |f(x)− f(x0)| < ε

}
, x0

)
> 0.

	
����� 4.1� Mm

(C[0]) = W[0].

P r o o f. Assume that f : I → R satisfies conditions (W1) and (W2). If f fulfills
condition (A) at x0 ∈ I, then, repeating arguments from the proof of Theo-
rem 3.1, we can easily prove that f · g is [0]-lower continuous at x0 for every
g ∈ C[0].

Assume that f does not satisfy condition (A) at x0. By (W1), we have
f(x0) = 0. Let Nf =

{
x ∈ I : f(x) = 0

}
. Take any g ∈ C[0]. There exists a mea-

surable set E ⊂ I such that x0 ∈ E, g|E is continuous at x0 and d(E, x0) = λ > 0.
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For every ε>0 there exists δ>0 for which E∩(x0−δ, x0+δ) ⊂ {x∈I : |g(x)|<ε
}
.

Therefore,

lim
ε→0+

d
({

x ∈ I : |(f · g)(x)| < ε
}
, x0

)
≥

lim
ε→0+

d
(
(E ∪Nf ) ∩

{
x ∈ I : |f(x)| < ε

}
, x0

)
> 0,

by condition (W2). Hence f · g is [0]-continuous at x0. Since x0 was arbitrary,
f · g ∈ C[0].

Let f ∈ Mm

(
C[0]

)
and assume that f does not fulfill condition (A) at x0.

By Lemma 4.1, f(x0)=0. Choose any measurable set E⊂I such thatNf ⊂E and
d(E, x0)>0. We can find four sequences

(
In = [an, bn]

)
n∈N

,
(
Jn = [cn, dn]

)
n∈N

,(
I ′n = [a′n, b

′
n]
)
n∈N

and
(
J ′
n = [c′n, d

′
n]
)
n∈N

of pairwise disjoint closed intervals
such that

c′n < a′n < b′n < d′n < cn+1′, dn+1 < cn < an < bn < dn,

lim
n→∞

an = lim
n→∞

a′n = x0,

d
−
(
E \

∞⋃
n=1

In′, x0

)
= d

−
( ∞⋃

n=1

I ′n \ E, x0

)
= 0,

d
+

(
E \

∞⋃
n=1

In, x0

)
= d

+

( ∞⋃
n=1

In \ E, x0

)
= 0,

and

d
−
( ∞⋃

n=1

(J ′
n \ I ′n), x0

)
= d

+

( ∞⋃
n=1

(Jn \ In), x0

)
= 0.

Fix n ∈ N. Since
lim

α→∞
∣∣{x ∈ [dn+1, cn] \Nf : |α · f(x)| < 1

}∣∣ = 0,

there exists αn ∈ R such that∣∣{x ∈ [dn+1, cn] \Nf : |αn · f(x)| < 1
}∣∣< |[an+1, bn+1]|

n
.

It follows that

d
+

( ∞⋃
n=1

{
x ∈ [dn+1, cn] \Nf : |αn · f(x)| < 1

}
, x0

)
= 0.

Similarly, for each n ∈ N there exists βn ∈ R such that

d
−
( ∞⋃

n=1

{
x ∈ [d′n, c

′
n+1] \Nf : |βn · f(x)| < 1

}
, x0

)
= 0.
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Define g : I → R by

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for x ∈ {x0} ∪
⋃∞

n=1(In ∪ I ′n) ∪ (a, c′1] ∪ [d1, b),

αn for x ∈ [dn+1, cn], n = 1, 2, . . . ,

βn for x ∈ [d′n, c
′
n+1], n = 1, 2, . . . ,

linear on every interval [cn, an], [bn, dn], [c
′
n, a

′
n], [b

′
n, d

′
n], n ≥ 1.

It is clear that g is continuous at every point except at x0. Moreover,
d
({x ∈ I : g(x) = g(x0)}, x0

)
> 0. Thus, g ∈ C[0]. By assumptions about f,

we have f · g ∈ C[0]. In particular, f · g is [0]-lower continuous at x0. Since
(f · g)(x0) = 0, we have

lim
ε→0+

d
({

x ∈ I : |(f · g)(x)|< ε
}
, x0

)
> 0.

On the other hand,

lim
ε→0+

d
({

x ∈ I : |(f · g)(x)| < ε
}
, x0

)

≤ lim
ε→0+

d

( ∞⋃
n=1

(In ∪ I ′n) ∩
{
x : |f(x)| < ε

}
, x0

)

+ lim
ε→0+

d

( ∞⋃
n=1

(
[dn+1, cn] ∩

{
x : |αn · f(x)| < ε

})

∪
(
[d′n, c

′
n+1] ∩

{
x : |βn · f(x)| < ε

}) \Nf , x0

)

+ d

(
Nf \

∞⋃
n=1

In, x0

)
+ d

( ∞⋃
n=1

(
(Jn \ In) ∪ (J ′

n \ I ′n)
)
, x0

)

= lim
ε→0+

d
(
E ∩ {x : |f(x)| < ε

}
, x0

)
.

Hence, condition (W2) holds. �

��������� 4.1� If f : I → R is such that at every x0 ∈ I at which f does not
fulfill condition (A), the following two conditions hold

(W1′) f(x0) = 0,

(W2′) d
({x ∈ I : f(x) = 0}, x0

)
> 0,

then
f ∈ Mm

(C[0]).
��������� 4.2�

Mm

(C[0]) �Ma

(C[0]).
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