DOI: 10.2478/tmmp-2014-0010
Tatra Mt. Math. Publ. 58 (2014), 111-128

A NOTE
 ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Stanis£aw Kowalczyk - Katarzyna Nowakowska

Abstract

We present some properties of [0]-lower continuous functions. We give an equivalent condition of [0]-lower continuity and find maximal additive family and maximal multiplicative family for the class of [0]-lower continuous functions.

1. Preliminaries

In the paper, we apply standard symbols and notations. By \mathbb{R} we denote the set of all real numbers, by \mathbb{N} we denote the set of all positive integers. By \mathcal{L} we denote the family of measurable in sense of Lebesgue subsets of real line. The symbol $|\cdot|$ stands for the Lebesgue measure on \mathbb{R}. Throughout the paper, $I=(a, b)$ denotes an open interval (not necessarily bounded) and f is a real-valued function defined on I. By \mathcal{A} we denote the class of approximately continuous functions.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. According to [2, the numbers

$$
\underline{d}^{+}(E, x)=\liminf _{t \rightarrow 0^{+}} \frac{|E \cap[x, x+t]|}{t} \quad \text { and } \quad \bar{d}^{+}(E, x)=\limsup _{t \rightarrow 0^{+}} \frac{|E \cap[x, x+t]|}{t}
$$

are called the right lower density of E at x and right upper density of E at x, respectively. The left lower and upper densities of E at x are defined analogously. If

$$
\underline{d}^{+}(E, x)=\bar{d}^{+}(E, x) \quad\left(\underline{d}^{-}(E, x)=\bar{d}^{-}(E, x)\right)
$$

[^0]then we call these numbers the right density (left density) of E at x and denote them by $d^{+}(E, x)\left(d^{-}(E, x)\right)$. The numbers
$$
\bar{d}(E, x)=\limsup _{\substack{t \rightarrow 0^{+} \\ k \rightarrow 0^{+}}} \frac{|E \cap[x-t, x+k]|}{k+t} \text { and } \underline{d}(E, x)=\liminf _{\substack{t \rightarrow 0^{+} \\ k \rightarrow 0^{+}}} \frac{|E \cap[x-t, x+k]|}{k+t}
$$
are called the upper and lower density of E at x, respectively. It is clear that $\bar{d}(E, x)=\max \left\{\bar{d}^{+}(E, x), \bar{d}^{-}(E, x)\right\}$ and $\underline{d}(E, x)=\min \left\{\underline{d}^{+}(E, x), \underline{d}^{-}(E, x)\right\}$.

If $\bar{d}(E, x)=\underline{d}(E, x)$, we call this number the density of E at x and denote it by $d(E, x)$.

Let us recall the definition of $[\lambda, \varrho]$-continuous function.
Definition 1.1 ([7]). Let $E \in \mathcal{L}, x \in \mathbb{R}$ and $0<\lambda \leq \varrho \leq 1, \lambda<1$. We say that x is a point of $[\lambda, \varrho]$-type density of E, if

$$
\underline{d}(E, x)>\lambda \quad \text { and } \quad \bar{d}(E, x)>\varrho \quad \text { when } \quad \lambda<1 \quad \text { and } \quad \varrho<1
$$

or

$$
\underline{d}(E, x)>\lambda \quad \text { and } \quad \bar{d}(E, x)=\varrho \quad \text { when } \quad \lambda<1 \quad \text { and } \quad \varrho=1 .
$$

Definition 1.2 (7). A real-valued function f defined on an open interval I is called $[\lambda, \varrho]$-continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of $[\lambda, \varrho]$-density of $E, x \in E$ and $f \mid E$ is continuous at x. If f is $[\lambda, \varrho]$-continuous at every point of I, we simply say that f is $[\lambda, \varrho]$-continuous.

We will denote the class of $[\lambda, \varrho]$-continuous functions by $\mathcal{C}_{[\lambda, \varrho]}$.
In [7], an equivalent condition of $\mathcal{C}_{[\lambda, \rho]}$-continuity was proved.
Theorem 1.1 ([7). Let $0<\lambda \leq \varrho<1, x_{0} \in I$ and let $f: I \rightarrow \mathbb{R}$ be a measurable function. Then f is $[\lambda, \varrho]$-continuous at x_{0} if and only if

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>\lambda
$$

and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>\varrho .
$$

We will need the following technical lemma from [6].
Lemma 1.1 ([6, Lemma 2.3]). Let F be a measurable set and let $x \in \mathbb{R}$. There exists a sequence of closed intervals $\left\{I_{n}=\left[a_{n}, b_{n}\right]: x<\cdots<b_{n+1}<a_{n}<\cdots\right\}$ such that

$$
\bar{d}^{+}\left(F \backslash \bigcup_{n=1}^{\infty} I_{n}, x\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n} \backslash F, x\right)=0
$$

Now, we will give a basic definition of the present paper.

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Definition 1.3. A real-valued function $f: I \rightarrow \mathbb{R}$ is called [0]-lower continuous at $x \in I$ if there exists $\lambda_{x}>0$ such that f is $\left[\lambda_{x}, \lambda_{x}\right]$-continuous at x. If f is [0]-lower continuous at every point of I, we simply say that f is [0]-lower continuous.

We will denote the class of [0]-lower continuous functions by $\mathcal{C}_{[0]}$.
Theorem 1.2. Let $f: I \rightarrow \mathbb{R}$ be a measurable function and let $x_{0} \in I$. The following conditions are equivalent:
i) function f is $[0]$-lower continuous at x_{0},
ii) there exists measurable set $E \subset I$ such that $x_{0} \in E, f \mid E$ is continuous at x_{0} and $\underline{d}\left(E, x_{0}\right)>0$,
iii) $\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0$.

Proof. Assume that f is [0]-lower continuous at x_{0}. There exists $\lambda>0$ such that function f is $[\lambda, \lambda]$-continuous at x_{0}. So, we can find a measurable set $E \subset I$ such that $x_{0} \in E, f \mid E$ is continuous at x_{0} and $\underline{d}\left(E, x_{0}\right)>\lambda>0$.

Assume that there exists a measurable set $E \subset I$ such that $x_{0} \in E, f \mid E$ is continuous at x_{0} and $\underline{d}\left(E, x_{0}\right)>0$. Then, for every $\varepsilon>0$, there exists $\delta>0$ such that $\left[x_{0}-\delta, x_{0}+\delta\right] \cap E \subset\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}$. Hence,

$$
\begin{aligned}
& \underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \\
& \quad \underline{d}\left(\left\{x \in E:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=\underline{d}\left(E, x_{0}\right) \quad \text { for every } \varepsilon>0
\end{aligned}
$$

Therefore,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \underline{d}\left(E, x_{0}\right)>0 .
$$

Now, suppose that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0 .
$$

There exists $\lambda>0$ such that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>\lambda .
$$

From Theorem 1.1, we conclude that f is $[\lambda, \lambda]$-continuous at x_{0}. Hence f is [0]-lower continuous at x_{0}.

Example 1.1. We shall show that there exists $f \in \mathcal{C}_{[0]} \backslash \bigcup_{0<\lambda \leq \varrho \leq 1, \lambda<1} \mathcal{C}_{[\lambda, \varrho]}$.
Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence of points from I such that $\lim _{n \rightarrow \infty} x_{n}=b$ and $x_{n+1}>x_{n}$ for every $n \geq 1$. We can find a sequence $\left\{J_{n}=\left[p_{n}, q_{n}\right]\right\}_{n \geq 1} \subset(a, b)$ of pairwise disjoint closed intervals, for which $x_{n} \in\left(p_{n}, q_{n}\right)$.

For each $n \in \mathbb{N}$ there exists a sequence of closed intervals $\left\{\left[a_{m}^{n}, b_{m}^{n}\right]\right\}_{m \geq 1}$ such that $x_{n}<b_{m+1}^{n}<a_{m}^{n}<b_{m}^{n}$ and $\left[a_{m}^{n}, b_{m}^{n}\right] \subset J_{n}$ for every $m \geq 1$ and

$$
\underline{d}^{+}\left(\bigcup_{m=1}^{\infty}\left[a_{m}^{n}, b_{m}^{n}\right], x_{n}\right)=\frac{1}{n} .
$$

For each $n \geq 1$ there exists a sequence of pairwise disjoint closed intervals $\left\{\left[c_{m}^{n}, d_{m}^{n}\right]\right\}_{m \geq 1}$ such that $\left[c_{m}^{n}, d_{m}^{n}\right] \subset J_{n}$ and $\left[a_{m}^{n}, b_{m}^{n}\right] \subset\left(c_{m}^{n}, d_{m}^{n}\right)$ for every $m \geq 1$ and

$$
\bar{d}^{+}\left(\bigcup_{m=1}^{\infty}\left(\left[c_{m}^{n}, d_{m}^{n}\right] \backslash\left[a_{m}^{n}, b_{m}^{n}\right]\right), x_{n}\right)=0
$$

Let $I_{m}^{n}=\left[a_{m}^{n}, b_{m}^{n}\right]$ and $K_{m}^{n}=\left[c_{m}^{n}, d_{m}^{n}\right]$ for every $m \geq 1$.
Finally, for every $n \in \mathbb{N}$ take any $y_{n} \in\left(p_{n}, x_{n}\right)$.
Define $f:(a, b) \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{l}
0 \quad \text { for } x \in \bigcup_{n=1}^{\infty}\left(\left[y_{n}, x_{n}\right] \cup \bigcup_{m=1}^{\infty} I_{m}^{n}\right) \\
1 \quad \text { for } x \in\left((a, b) \backslash \bigcup_{n=1}^{\infty} J_{n}\right) \cup\left(\bigcup_{n=1}^{\infty}\left(\left(x_{n}, d_{1}^{n}\right] \backslash \bigcup_{m=1}^{\infty} K_{m}^{n}\right)\right) \\
\text { linear on the intervals }\left[c_{m}^{n}, a_{m}^{n}\right],\left[b_{m}^{n}, d_{m}^{n}\right],\left[p_{n}, y_{n}\right],\left[d_{1}^{n}, q_{n}\right], n, m \geq 1
\end{array}\right.
$$

Then, f is continuous at every point except at x_{1}, x_{2}, \ldots and constant on every set

$$
E_{n}=\left(\left[y_{n}, x_{n}\right] \cup \bigcup_{m=1}^{\infty} I_{m}^{n}\right)
$$

Since $\underline{d}\left(E_{n}, x_{n}\right)=\frac{1}{n}>0, f$ is $C_{[0]}$-continuous at x_{1}, x_{2}, \ldots Hence, $f \in C_{[0]}$.
Let λ, ϱ be any real numbers such that $0<\lambda \leq \varrho \leq 1$ and $\lambda<1$. There exists n_{0} such that $\frac{1}{n_{0}}<\lambda$. Then

$$
\begin{aligned}
& \underline{d}\left(\left\{x \in J_{n_{0}}:\left|f(x)-f\left(x_{n_{0}}\right)\right|<1\right\}, x_{n_{0}}\right) \leq \underline{d}^{+}\left(\bigcup_{m=1}^{\infty} K_{m}^{n_{0}}, x_{n_{0}}\right) \leq \\
& \underline{d}^{+}\left(\bigcup_{m=1}^{\infty} I_{m}^{n_{0}}, x_{n_{0}}\right)+\bar{d}^{+}\left(\bigcup_{m=1}^{\infty}\left(K_{m}^{n_{0}} \backslash I_{m}^{n_{0}}\right), x_{n_{0}}\right)=\frac{1}{n_{0}}+0<\lambda .
\end{aligned}
$$

Hence $f \notin \mathcal{C}_{[\lambda, \varrho]}$ and $f \notin \bigcup_{0<\lambda \leq \varrho \leq 1, \lambda<1} \mathcal{C}_{[\lambda, \varrho]}$.
Corollary 1.1. $\mathcal{C}_{[0]} \supsetneq \bigcup_{0<\lambda \leq \varrho<1} \mathcal{C}_{[\lambda, \varrho]}$.
Remark 1.1. It seems that, in the same way as in [1, Theorem 4], one can prove that the set $\bigcup_{0<\lambda \leq \varrho<1} \mathcal{C}_{[\lambda, \varrho]}$ is even nowhere dense in $\mathcal{C}_{[0]}$.

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

2. Basic results

Theorem 2.1. If $f \in \mathcal{C}_{[0]}$, then f is measurable.
Proof. Let $f: I \rightarrow \mathbb{R}, f \in \mathcal{C}_{[0]}$ and suppose that f is not measurable. There exists a number $a \in \mathbb{R}$ for which at least one of the sets $\{x \in I: f(x)<a\}$, $\{x \in I: f(x)>a\}$ is non-measurable. We may assume that the $\{x \in I: f(x)<a\}$ is non-measurable. Let $A=\{x \in I: f(x)<a\}$ and $B=\{x \in I: f(x) \geq a\}$. Then $B=I \backslash A$ is also non-measurable. There exist measurable sets $A_{1} \subset A$, $B_{1} \subset B$ such that $A \backslash A_{1}$ and $B \backslash B_{1}$ do not contain any measurable set of positive measure. Therefore $A \backslash A_{1}$ and $B \backslash B_{1}$ are non-measurable. Moreover,

$$
F=\left(A \backslash A_{1}\right) \cup\left(B \backslash B_{1}\right)=I \backslash\left(A_{1} \cup B_{1}\right)
$$

is measurable. Let $L(F)$ be a set of all density points of a set F. Since $|F \backslash L(F)|=0$, there exists $x_{0} \in\left(A \backslash A_{1}\right) \cap L(F)$.

It follows that there exists a measurable set $E \subset I$ such that $x_{0} \in E$, $\underline{d}\left(E, x_{0}\right)>0$ and $f \mid E$ is continuous at x_{0}, because f is 0 -lower continuous at x_{0}. As $x_{0} \in A$, we have $f\left(x_{0}\right)<a$. Therefore it is possible to find $\delta>0$ such that $E \cap\left(x_{0}-\delta, x_{0}+\delta\right) \subset A$. Let $E^{\prime}=E \cap\left(x_{0}-\delta, x_{0}+\delta\right)$. Hence $x_{0} \in E^{\prime}, f \mid E^{\prime}$ is continuous at $x_{0}, E^{\prime} \subset A$ and

$$
\begin{equation*}
\underline{d}\left(E^{\prime}, x_{0}\right)=\underline{d}\left(E, x_{0}\right)>0 . \tag{R}
\end{equation*}
$$

We have

$$
E^{\prime}=\left(E^{\prime} \cap A_{1}\right) \cup\left(E^{\prime} \cap\left(A \backslash A_{1}\right)\right) .
$$

Since E^{\prime} and $E^{\prime} \cap A_{1}$ are measurable, $E^{\prime} \cap\left(A \backslash A_{1}\right)$ is also measurable. Hence, $\left|E^{\prime} \cap\left(A \backslash A_{1}\right)\right|=0$. Moreover,

$$
\underline{d}\left(E^{\prime} \cap A_{1}, x_{0}\right)=1-\bar{d}\left(I \backslash\left(E^{\prime} \cap A_{1}\right), x_{0}\right) \leq 1-\bar{d}\left(F, x_{0}\right)=1-1=0 .
$$

Therefore,

$$
\begin{aligned}
\underline{d}\left(E^{\prime}, x_{0}\right) & =\underline{d}\left(\left(E^{\prime} \cap A\right) \cup\left(E^{\prime} \cap\left(A \backslash A_{1}\right), x_{0}\right)\right) \\
& \leq \underline{d}\left(E^{\prime} \cap A, x_{0}\right)+\bar{d}\left(E^{\prime} \cap\left(A \backslash A_{1}\right), x_{0}\right) \\
& =0+0=0,
\end{aligned}
$$

contradicting to (R).
Applying Proposition 7 from [1], we see that $C_{[0]}$ is not closed under the uniform limit.

Theorem 2.2. Let a sequence $\left\{f_{n}\right\}_{n \geq 1}$ of measurable functions $f_{n}: I \rightarrow \mathbb{R}$ be uniformly convergent to $f, f: I \rightarrow \mathbb{R}$ and let $x_{0} \in I$. Then f is $[0]$-lower continuous at x_{0} if and only if

$$
\begin{equation*}
\inf _{\delta>0} \liminf _{k \rightarrow \infty} \underline{d}\left(\left\{x \in I:\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|<\delta\right\}, x_{0}\right)>0 \tag{1}
\end{equation*}
$$

Proof. Let

$$
\alpha=\inf _{\delta>0} \liminf _{k \rightarrow \infty} \underline{d}\left(\left\{x \in I:\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|<\delta\right\}, x_{0}\right)>0
$$

Take any $\varepsilon>0$. There exists $n_{0} \geq 1$ such that for every $k>n_{0}$ and every $x \in I$, the inequality
holds. In particular,

$$
\left|f_{k}(x)-f(x)\right|<\frac{\varepsilon}{3}
$$

$$
\left|f_{k}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{3}
$$

for $n \geq n_{1}$. By (1), we can find $n>n_{0}$ such that

Notice that

$$
\underline{d}\left(\left\{x \in I:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\}, x_{0}\right)>\frac{\alpha}{2} .
$$

$$
\begin{array}{r}
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\varepsilon \\
\text { for } x \in\left\{t \in I:\left|f_{n}(t)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\} .
\end{array}
$$

Therefore,

$$
\left\{x \in I:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\} \subset\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\} .
$$

Hence,
$\underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \underline{d}\left(\left\{x \in I:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\}, x_{0}\right)>\frac{\alpha}{2}$.
Since $\varepsilon>0$ was taken arbitrarily,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \frac{\alpha}{2}>0 .
$$

It follows that f is $[0]$-lower continuous at x_{0}.
Now, suppose that f is $[0]$-lower continuous at x_{0}. Let

$$
\beta=\lim _{\varepsilon \rightarrow 0^{+}} \frac{d}{}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0
$$

Then, $\underline{d}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \beta$ for $\varepsilon>0$. Fix any $\delta>0$. There exists $n_{0} \geq 1$ such that for every $k>n_{0}$ and every $x \in I$ the inequality

$$
\left|f_{k}(x)-f(x)\right|<\frac{\delta}{3}
$$

holds. Similarly as earlier, we can easily check that

$$
\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\frac{\delta}{3}\right\} \subset\left\{x \in I:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\delta\right\} \quad \text { for } n>n_{0}
$$

Therefore,

$$
\underline{d}\left(\left\{x \in I:\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|<\delta\right\}, x_{0}\right) \geq \beta \quad \text { for } n \geq n_{0}
$$

and

$$
\liminf _{k \rightarrow \infty} \underline{d}\left(\left\{x \in I:\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|<\delta\right\}, x_{0}\right) \geq \beta
$$

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Since $\delta>0$ was taken arbitrarily,

$$
\inf _{\delta>0} \liminf _{k \rightarrow \infty} \underline{d}\left(\left\{x \in I:\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|<\delta\right\}, x_{0}\right) \geq \beta>0
$$

and (11) holds.
Corollary 2.1. Assume that every function $f_{n}: I \rightarrow \mathbb{R}$ is measurable and there exists $\lambda>0$ such that every f_{n} is $[\lambda, \lambda]$-continuous at some $x_{0} \in I$. If the sequence $\left\{f_{n}\right\}_{n \geq 1}$ is uniformly convergent to f, $f: I \rightarrow \mathbb{R}$, then f is also [0]-lower continuous at x_{0}.

3. Maximal additive class

Definition 3.1. Let \mathcal{F} be any family of real valued functions defined on I. The set

$$
\mathcal{M}_{a}(\mathcal{F})=\left\{g: \forall_{f \in \mathcal{F}} f+g \in \mathcal{F}\right\}
$$

is called the maximal additive family for \mathcal{F}.
Remark 3.1. Let f be a constant function, $f(x)=0$ for each x. If $f \in \mathcal{F}$, then $\mathcal{M}_{a}(\mathcal{F}) \subset \mathcal{F}$.

Now, we will find a maximal additive family for the family of [0]-lower continuous functions.

Theorem 3.1. A measurable function $f: I \rightarrow \mathbb{R}$ belongs to $\mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right)$ if and only if at every $x_{0} \in I$ the following condition

$$
\begin{equation*}
\underset{\substack{E \in \mathcal{L} \\ E \subset I}}{\forall}\left(\underline{d}\left(E, x_{0}\right)>0 \Rightarrow \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0\right) \tag{A}
\end{equation*}
$$

is fulfilled.
Proof. Assume that a measurable function f fulfills condition (A). Let $x_{0} \in I$ and let g be a lower [0]-continuous at x_{0}. There exists a measurable set E such that $x_{0} \in E, g \mid E$ is continuous at x_{0} and $\underline{d}\left(E, x_{0}\right)>0$. Hence, for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
E \cap\left(x_{0}-\delta, x_{0}+\delta\right) \subset\left\{x:\left|g(x)-g\left(x_{0}\right)\right|<\frac{\varepsilon}{2}\right\} .
$$

Therefore,

$$
\begin{aligned}
& \left\{x \in I:\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|<\varepsilon\right\} \supset \\
& \qquad\left\{x \in E \cap\left(x_{0}-\delta, x_{0}+\delta\right):\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\underline{d}\left(\left\{x \in I:\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|<\varepsilon\right\}\right. & \left., x_{0}\right) \geq \\
& \underline{d}\left(\left\{x \in E:\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}\right\}, x_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in I:\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \\
& \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left\{x \in E:\left|f(x)-f\left(x_{0}\right)\right|<\frac{\varepsilon}{2}\right\}, x_{0}\right)= \\
& \lim _{\varepsilon \rightarrow 0^{+}}\left(E \cap\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0 .
\end{aligned}
$$

By Theorem [1.2, $f+g$ is [0]-lower continuous at x_{0}.
Let $f \in \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right)$. Suppose that there exists $x_{0} \in I$ at which condition (A) is not fulfilled. Then, there exists a measurable set $E \subset I$ such that $\underline{d}\left(E, x_{0}\right)>0$ and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0
$$

or

$$
\lim _{\varepsilon \rightarrow 0^{-}} \underline{d}^{-}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0 .
$$

We may assume that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0 .
$$

By Lemma 1.1, there exists a sequence of closed intervals $\left\{\left[a_{n}, b_{n}\right]\right\}_{n \geq 1}$ such that $x_{0}<b_{n+1}<a_{n}<b_{n}$ for $n \geq 1$ and

$$
\bar{d}^{+}\left(E \backslash \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], x_{0}\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \backslash E, x_{0}\right)=0
$$

Let $\left\{\left[c_{n}, d_{n}\right]\right\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint closed intervals such that $\left[a_{n}, b_{n}\right] \subset\left(c_{n}, d_{n}\right)$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(\left[c_{n}, d_{n}\right] \backslash\left[a_{n}, b_{n}\right]\right), x_{0}\right)=0$. Let $I_{n}=\left[a_{n}, b_{n}\right]$ and $J_{n}=\left[c_{n}, d_{n}\right]$ for every $n \geq 1$. Define a function $g:(a, b) \rightarrow \mathbb{R}$ by

$$
g(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in\left(a, x_{0}\right] \cup \bigcup_{n=1}^{\infty} I_{n} \\
f\left(x_{0}\right)-f(x)+1 & \text { if } x \in\left(x_{0}, b\right) \backslash \bigcup_{n=1}^{\infty} \operatorname{int} J_{n} \\
\text { linear on every interval }\left[c_{n}, a_{n}\right],\left[b_{n}, d_{n}\right], n \in \mathbb{N}
\end{array}\right.
$$

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Clearly, g is [0]-lower continuous at every point except at x_{0}. Since

$$
\underline{d}\left(\left(a, x_{0}\right] \cup \bigcup_{n=1}^{\infty} I_{n}, x_{0}\right)=\underline{d}^{+}\left(E, x_{0}\right)>0
$$

and g restricted to $\left(a, x_{0}\right] \cup \bigcup_{n=1}^{\infty} I_{n}$ is constant, we conclude that $g \in \mathcal{C}_{[0]}$. Take any $\varepsilon \in(0,1)$.

If $x \in\left(x_{0}, b\right) \backslash \bigcup_{n=1}^{\infty} J_{n}$, then $(f+g)(x)-(f+g)\left(x_{0}\right)=1$. Hence,

$$
\begin{aligned}
& \underline{d}^{+}\left(\left\{x \in I:\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \underline{d}^{+}\left(\left\{x \in \bigcup_{n=1}^{\infty} I_{n}:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \underline{d}^{+}\left(\left\{x \in E:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) .
\end{aligned}
$$

By assumption,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(\left\{x \in I:\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0 .
$$

Therefore, $f+g \notin \mathcal{C}_{[0]}$.
We will show connections between $\mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right)$ and the so-called T^{*}-continuity. To this end, we need the notion and some properties of sparse sets and definition of T^{*} continuous functions. Details of this notion can be found in [4], 8]. We will need only the following

Definition 3.2 ([4). We say that a measurable set $E \subset \mathbb{R}$ is sparse at $x_{0} \in \mathbb{R}$ if for every measurable set $F \subset \mathbb{R}$, if $\bar{d}\left(F, x_{0}\right)<1$ then $\bar{d}\left(E \cup F, x_{0}\right)<1$. We say that E is sparse if E is sparse at every $x_{0} \in \mathbb{R}$.

Definition 3.3 ([4]). We say that a function $f: I \rightarrow \mathbb{R}$ is T^{*} continuous at $x_{0} \in I$ if for each $\varepsilon>0$ the complement of the set $\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}$ is sparse at x_{0}. A function $f: I \rightarrow \mathbb{R}$ is T^{*} continuous if and only if it is T^{*} continuous at each point of I.
(Actually, these definitions are equivalent conditions of original definitions of sparsity and T^{*} continuity.)

Theorem 3.2 ([4]). A complement of a measurable set E is sparse at x if and only if for each measurable set $F \subset \mathbb{R}$ such that $\underline{d}(F, x)>0$ the inequality $\underline{d}(E \cap F, x)>0$ holds.

Applying Definition 3.3 and Theorem 3.2, we have
Theorem 3.3. A function $f: I \rightarrow \mathbb{R}$ is T^{*} continuous at $x_{0} \in I$ if and only if

$$
\begin{equation*}
\underset{E \subset I}{\forall_{E \in \mathcal{L},}}\left(\underline{d}\left(E, x_{0}\right)>0 \Rightarrow \forall_{\varepsilon>0} \underline{d}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0\right) . \tag{B}
\end{equation*}
$$

Corollary 3.1. $\mathcal{A} \subset \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right) \subset \mathcal{C}_{T^{*}}$.
Lemma 3.1. Let $x_{0} \in \mathbb{R}$ and $F=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$, where $x_{0}<b_{n+1}<a_{n}<b_{n}$ for every $n \geq 1, \lim _{n \rightarrow \infty} a_{n}=x_{0}$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n}-a_{n}}{a_{n}-x_{0}}=\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n}-b_{n+1}}{b_{n+1}-x_{0}}<\infty \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\underset{E \subset I}{\forall \in \mathcal{L},}\left(\underline{d}^{+}\left(E, x_{0}\right)>0 \Rightarrow \underline{d}^{+}\left(E \cap F, x_{0}\right)>0\right) . \tag{C}
\end{equation*}
$$

Proof.

According to (3), there exist $\alpha \in(1, \infty)$ and $n_{1} \in \mathbb{N}$ such that $\frac{a_{n}-b_{n+1}}{b_{n+1}-x_{0}}<\alpha$ for $n \geq n_{1}$. Choose any measurable set $E \subset I$ satisfying $\underline{d}^{+}\left(E, x_{0}\right)>0$. Let $\beta \in\left(0, \underline{d}^{+}\left(E, x_{0}\right)\right)$. Then we can find $\delta>0$ such that $\frac{\left|E \cap\left[x_{0}, x\right]\right|}{x-x_{0}}>\beta$ for each $x \in\left(x_{0}, x_{0}+\delta\right)$. Choose any $n_{2} \in \mathbb{N}$ for which $b_{n_{2}}<x_{0}+\delta$. By (2), there exists $n_{3} \in \mathbb{N}$ such that $b_{n}-a_{n}>\frac{2\left(1+\frac{\beta}{2}\right)(1+\alpha)}{\beta}\left(a_{n}-x_{0}\right)$ for $n \geq n_{3}$. In particular, $b_{n}-a_{n}>\frac{2}{\beta}\left(a_{n}-x_{0}\right)$ for $n \geq \mathbb{N}$. Let $c_{n}=a_{n}+\frac{2}{\beta}\left(a_{n}-x_{0}\right)$ for $n \geq n_{3}$. Then, $c_{n} \in\left[a_{n}, b_{n}\right]$. Finally, let $n_{0}=\max \left\{n_{1}, n_{2}, n_{3}\right\}$.

Fix any $x \in\left(x_{0}, a_{n_{0}}\right)$. There exists $k>n_{0}$ such that $x \in\left[b_{k+1}, b_{k}\right]$.
If $x \in\left[c_{k}, b_{k}\right]$, then

$$
\begin{align*}
\left|E \cap F \cap\left[x_{0}, x\right]\right| & \geq\left|E \cap\left[a_{k}, x\right]\right| \\
& \geq\left|E \cap\left[x_{0}, x\right]\right|-\left(a_{k}-x_{0}\right) \\
& \geq \beta\left(x-x_{0}\right)-\left(a_{k}-x_{0}\right) . \tag{4}
\end{align*}
$$

Moreover, $x-x_{0} \geq c_{k}-x_{0}=\left(\frac{2}{\beta}+1\right)\left(a_{k}-x_{0}\right)$. Hence, $a_{k}-x_{0} \leq \frac{\beta}{2}\left(x-x_{0}\right)$. Therefore,

$$
\begin{equation*}
\left|E \cap F \cap\left[x_{0}, x\right]\right| \geq \beta\left(x-x_{0}\right)-\frac{\beta}{2}\left(x-x_{0}\right)=\frac{\beta}{2}\left(x-x_{0}\right) . \tag{5}
\end{equation*}
$$

If $x \in\left[b_{k+1}, c_{k}\right]$, then

$$
\begin{equation*}
\left|E \cap F \cap\left[x_{0}, x\right]\right| \geq\left|E \cap\left[a_{k+1}, b_{k+1}\right]\right| \geq\left|E \cap\left[x_{0}, b_{k+1}\right]\right|-\left(a_{k+1}-x_{0}\right) \tag{6}
\end{equation*}
$$

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Moreover, $x-x_{0} \geq b_{k+1}-x_{0}$,

$$
\begin{aligned}
x-x_{0} \leq c_{k}-x_{0} & =\left(1+\frac{2}{\beta}\right)\left(a_{k}-x_{0}\right) \\
& \leq\left(1+\frac{2}{\beta}\right)\left(b_{k+1}-x_{0}+a_{k}-b_{k+1}\right) \\
& \leq\left(1+\frac{2}{\beta}\right)\left(b_{k+1}-x_{0}+\alpha\left(b_{k+1}-x_{0}\right)\right) \\
& =\left(1+\frac{2}{\beta}\right)(1+\alpha)\left(b_{k+1}-x_{0}\right)
\end{aligned}
$$

and

$$
a_{k+1}-x_{0} \leq \frac{2}{\beta}\left(b_{k+1}-a_{k+1}\right) .
$$

Thus,

$$
\begin{align*}
& \frac{\left|E \cap F \cap\left[x_{0}, x\right]\right|}{x-x_{0}} \\
& \geq \frac{1}{\left(1+\frac{2}{\beta}\right)(1+\alpha)} \cdot \frac{\left|E \cap\left[x_{0}, b_{k+1}\right]\right|}{b_{k+1}-x_{0}}-\frac{\frac{\beta}{2\left(1+\frac{\beta}{2}\right)(1+\alpha)}\left(b_{k+1}-a_{k+1}\right)}{b_{k+1}-x_{0}} \\
& \geq \frac{1}{\left(1+\frac{2}{\beta}\right)(1+\alpha)}\left(\frac{\left|E \cap\left[x_{0}, b_{k+1}\right]\right|}{b_{k+1}-x_{0}}-\frac{\beta\left(b_{k+1}-x_{0}\right)}{2\left(b_{k+1}-x_{0}\right)}\right) \\
& \geq \frac{1}{\left(1+\frac{2}{\beta}\right)(1+\alpha)}\left(\beta-\frac{\beta}{2}\right) \\
& =\frac{\beta}{2\left(1+\frac{2}{\beta}\right)(1+\alpha)} . \tag{7}
\end{align*}
$$

By (5) and (7), we have

$$
\frac{\left|E \cap F \cap\left[x_{0}, x\right]\right|}{x-x_{0}} \geq \frac{\beta}{2\left(1+\frac{2}{\beta}\right)(1+\alpha)} \quad \text { for every } x \in\left(x_{0}, a_{n_{0}}\right)
$$

Therefore,

$$
\underline{d}^{+}\left(E \cap F, x_{0}\right) \geq \frac{\beta}{2\left(1+\frac{2}{\beta}\right)(1+\alpha)}>0
$$

Theorem 3.4. $\mathcal{A} \nsubseteq \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right) \nsubseteq \mathcal{C}_{T^{*}}$.
Proof. We only have to prove that $\mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right) \backslash \mathcal{A} \neq \emptyset$ and $\mathcal{C}_{T^{*}} \backslash \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right) \neq \emptyset$.
Let $x_{n}=\frac{1}{n!}, y_{n}=\frac{x_{n}+x_{n+1}}{2}, u_{n}=\frac{x_{n}+y_{n}}{2}($ we may assume that $[0,1] \subset I)$.
Obviously, $\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n+1}}{x_{n+1}}=\lim _{n \rightarrow \infty} \frac{y_{n}-x_{n+1}}{x_{n+1}}=\infty$. Define $f: I \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { for } x \in(a, 0] \cup\left\{x_{1}, x_{2}, \ldots\right\} \cup\left[x_{1}, b\right), \\ 1 & \text { for } x \in \bigcup_{n=1}^{\infty}\left[y_{n}, u_{n}\right] \\ \text { linear on every interval }\left[x_{n+1}, y_{n}\right],\left[u_{n}, x_{n}\right], n=1,2, \ldots\end{cases}
$$

The function f is continuous at every point except at 0 . Take $\varepsilon \in(0,1)$. Then $\{x \in I:|f(x)-f(0)|<\varepsilon\}=$
$(a, 0] \cup \bigcup_{n=1}^{\infty}\left[x_{n+1}, x_{n+1}+\varepsilon\left(y_{n}-x_{n+1}\right)\right] \cup \bigcup_{n=1}^{\infty}\left[u_{n}+(1-\varepsilon)\left(x_{n}-u_{n}\right), x_{n}\right] \cup\left[x_{1}, b\right)$
Notice that the set

$$
\bigcup_{n=1}^{\infty}\left[x_{n+1}, x_{n+1}+\varepsilon\left(y_{n}-x_{n+1}\right)\right]
$$

fulfills conditions (21) and (3) from Lemma 3.1. Indeed, if

$$
a_{n}=x_{n+1} \quad \text { and } \quad b_{n}=x_{n+1}+\varepsilon\left(y_{n}-x_{n+1}\right),
$$

then

$$
\lim _{n \rightarrow \infty} \frac{b_{n}-a_{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{x_{n+1}+\varepsilon\left(y_{n}-x_{n+1}\right)-x_{n+1}}{x_{n+1}}=\lim _{n \rightarrow \infty} \frac{\varepsilon\left(y_{n}-x_{n+1}\right)}{x_{n+1}}=\infty
$$

and

$$
\begin{aligned}
\frac{a_{n}-b_{n+1}}{b_{n+1}} & =\frac{x_{n+1}-x_{n+2}-\varepsilon\left(y_{n+1}-x_{n+2}\right)}{x_{n+2}+\varepsilon\left(y_{n+1}-x_{n+2}\right)} \\
& \leq \frac{(2-\varepsilon)\left(y_{n+1}-x_{n+2}\right)}{\varepsilon\left(y_{n+1}-x_{n+2}\right)} \\
& =\frac{2-\varepsilon}{\varepsilon} .
\end{aligned}
$$

Hence,

$$
\limsup _{n \rightarrow \infty} \frac{a_{n}-b_{n+1}}{b_{n+1}}<\infty
$$

By Lemma 3.1 and Theorem 3.3, f is T^{*}-continuous at 0 and $f \in \mathcal{C}_{T^{*}}$. Notice that

$$
\{x \in \mathbb{R}:|f(x)-f(0)|<\varepsilon\} \cap \bigcup_{n=1}^{\infty}\left[x_{n+1}+\varepsilon \frac{x_{n}-x_{n+1}}{2}, u_{n}\right]=\emptyset
$$

On the other hand,

$$
\begin{aligned}
\left|\left[x_{n+1}+\varepsilon \frac{x_{n}-x_{n+1}}{2}, u_{n}\right]\right| & =\left\lvert\,\left[x_{n+1}+\varepsilon \frac{x_{n}-x_{n+1}}{2}, \left.x_{n+1}+\frac{3}{4}\left(x_{n}-x_{n+1}\right] \right\rvert\,\right.\right. \\
& =\frac{3}{4}\left(x_{n}-x_{n+1}\right)-\frac{\varepsilon}{2}\left(x_{n}-x_{n+1}\right) \\
& =\frac{3-2 \varepsilon}{4}\left(x_{n}-x_{n+1}\right)
\end{aligned}
$$

and

$$
\bar{d}^{+}(I \backslash\{x \in I:|f(x)-f(0)|<\varepsilon\}, 0) \geq \limsup _{n \rightarrow \infty} \frac{\frac{3-2 \varepsilon}{4}\left(x_{n}-x_{n+1}\right)}{u_{n}}
$$

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Hence,

$$
\begin{aligned}
& \bar{d}^{+}(I \backslash\{x \in I:|f(x)-f(0)|<\varepsilon\}, 0) \geq \\
& \quad \limsup _{n \rightarrow \infty} \frac{\left|\left[0, u_{n}\right] \cap(I \backslash\{x \in I:|f(x)-f(0)|<\varepsilon\})\right|}{u_{n}} \geq \\
& \quad \limsup _{n \rightarrow \infty} \frac{\frac{3-2 \varepsilon}{4}\left(x_{n}-x_{n+1}\right)}{x_{n+1}+\frac{3}{4}\left(x_{n}-x_{n+1}\right)}=\limsup _{n \rightarrow \infty} \frac{1}{\frac{4}{3-2 \varepsilon} \frac{x_{n+1}}{x_{n}-x_{n+1}}+\frac{3}{3-2 \varepsilon}} .
\end{aligned}
$$

Therefore,

$$
\bar{d}^{+}(I \backslash\{x \in I:|f(x)-f(0)|<\varepsilon\}, 0) \geq \frac{3-2 \varepsilon}{3}=1-\frac{2}{3} \varepsilon
$$

and

$$
\underline{d}^{+}(\{x \in \mathbb{R}:|f(x)-f(0)|<\varepsilon\}, 0) \leq 1-\left(1-\frac{2}{3} \varepsilon\right)=\frac{2}{3} \varepsilon .
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}(\{x \in I:|f(x)-f(0)|<\varepsilon\}, 0)=0
$$

Finally,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}(E \cap\{x \in I:|f(x)-f(0)|<\varepsilon\}, 0)=0
$$

and $f \notin \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right)$. Thus $f \in \mathcal{C}_{T^{*}} \backslash \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right)$.
Next, define $g: I \rightarrow \mathbb{R}$ by

$$
g(x)=\left\{\begin{array}{l}
0 \quad \text { for } x \in(a, 0] \cup \bigcup_{n=1}^{\infty}\left[x_{n+1}, y_{n}\right] \cup\left[x_{1}, b\right) \\
1 \quad \text { for } x \in\left\{u_{1}, u_{2}, \ldots\right\} \\
\text { linear on every interval }\left[y_{n}, u_{n}\right],\left[u_{n}, x_{n}\right], n=1,2, \ldots
\end{array}\right.
$$

Obviously, g is continuous at every point except at 0 and g is not approximately continuous at 0 . It is easy to see that $\left\{\left[x_{n+1}, y_{n}\right]\right\}_{n \in \mathbb{N}}$ satisfy conditions (2) and (3) from Lemma 3.1. Since g restricted to $(a, 0] \cup \bigcup_{n=1}^{\infty}\left[x_{n+1}, y_{n}\right]$ is constant, g satisfies condition (A). Hence, $g \in \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right) \backslash \mathcal{A}$.

4. Maximal multiplicative class

Definition 4.1. Let \mathcal{F} be any family of real valued functions defined on I. The set

$$
\mathcal{M}_{m}(\mathcal{F})=\left\{g: \forall_{f \in \mathcal{F}} f \cdot g \in \mathcal{F}\right\}
$$

is called a maximal multiplicative family for \mathcal{F}.
Remark 4.1. Let f be a constant function, $f(x)=1$ for each x. If $f \in \mathcal{F}$, then $\mathcal{M}_{a}(\mathcal{F}) \subset \mathcal{F}$.

Lemma 4.1. Let $f: I \rightarrow \mathbb{R}$ be a function from $\mathcal{C}_{[0]}$. If there exists $x_{0} \in I$ such that f does not fulfill condition (A) at x_{0} and $f\left(x_{0}\right) \neq 0$, then there exists $g: I \rightarrow \mathbb{R}$ such that $g \in \mathcal{C}_{[0]}$ and $f \cdot g \notin \mathcal{C}_{[0]}$.
Proof.
By assumptions, there exists a measurable set $E \subset I$ such that $\underline{d}\left(E, x_{0}\right)>0$ and

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0 .
$$

Again, we may assume that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0
$$

There exists a sequence of pairwise disjoint closed intervals $\left\{\left[a_{n}, b_{n}\right]\right\}_{n \geq 1}$ such that $x_{0}<b_{n+1}<a_{n}<b_{n}$ for every $n \geq 1$ and

$$
\bar{d}^{+}\left(E \backslash \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], x_{0}\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \backslash E, x_{0}\right)=0 .
$$

Let $\left\{\left[c_{n}, d_{n}\right]\right\}_{n \in \mathbb{N}}$ be a sequence of pairwise disjoint closed intervals such that $\left[a_{n}, b_{n}\right] \subset\left(c_{n}, d_{n}\right)$ and

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(\left[c_{n}, d_{n}\right] \backslash\left[a_{n}, b_{n}\right]\right), x_{0}\right)=0
$$

Let $I_{n}=\left[a_{n}, b_{n}\right]$ and $J_{n}=\left[c_{n}, d_{n}\right]$ for every $n \geq 1$. Define $g:(a, b) \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}1 \quad \text { if } x \in\left(a, x_{0}\right] \cup \bigcup_{n=1}^{\infty} I_{n} \\ 0 & \text { if } x \in\left(x_{0}, b\right) \backslash \bigcup_{n=1}^{\infty} \operatorname{int} J_{n} \\ \text { linear on every interval }\left[c_{n}, a_{n}\right],\left[b_{n}, d_{n}\right], n \in \mathbb{N}\end{cases}
$$

Obviously, g is continuous at every point except of x_{0}. Since

$$
\underline{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x_{0}\right)=\underline{d}^{+}\left(E, x_{0}\right)>0
$$

and g restricted to $\left\{x_{0}\right\} \cup \bigcup_{n=1}^{\infty} I_{n}$ is constant, we have $g \in \mathcal{C}_{[0]}$. If

$$
x \in\left(x_{0}, b\right) \backslash \bigcup_{n=1}^{\infty} J_{n}
$$

then $(f g)(x)-(f g)\left(x_{0}\right)=-f\left(x_{0}\right)$.

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Since

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(J_{n} \backslash I_{n}\right), x_{0}\right)=0
$$

we have

$$
\begin{aligned}
& \underline{d}^{+}\left(\left\{x \in I:\left|(f g)(x)-(f g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \underline{d}^{+}\left(\left\{x \in \bigcup_{n=1}^{\infty} I_{n}:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \underline{d}^{+}\left(\left\{x \in E:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \underline{d}^{+}\left(E \cap\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \text { for all } \varepsilon \in\left(0,\left|f\left(x_{0}\right)\right|\right) .
\end{aligned}
$$

By assumption,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(E \cap\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}^{+}\left(\left\{x \in I:\left|(f g)(x)-(f g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)=0 .
$$

Therefore, $f g \notin \mathcal{C}_{[0]}$.
Definition 4.2. Let $\mathcal{W}_{[0]}$ be a set of all measurable functions $f: I \rightarrow \mathbb{R}$ such that at every $x_{0} \in I$ at which f does not fulfill condition (A), the following two conditions hold
(W1) $f\left(x_{0}\right)=0$,
(W2) for each measurable $E \subset I$ such that

$$
\underline{d}\left(E, x_{0}\right)>0 \quad \text { and } \quad E \supset\{x \in I: f(x)=0\},
$$

we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(E \cap\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)>0 .
$$

Theorem 4.1. $\mathcal{M}_{m}\left(\mathcal{C}_{[0]}\right)=\mathcal{W}_{[0]}$.
Proof. Assume that $f: I \rightarrow \mathbb{R}$ satisfies conditions (W1) and (W2). If f fulfills condition (A) at $x_{0} \in I$, then, repeating arguments from the proof of Theorem 3.1, we can easily prove that $f \cdot g$ is [0]-lower continuous at x_{0} for every $g \in C_{[0]}$.

Assume that f does not satisfy condition (A) at x_{0}. By (W1), we have $f\left(x_{0}\right)=0$. Let $N_{f}=\{x \in I: f(x)=0\}$. Take any $g \in C_{[0]}$. There exists a measurable set $E \subset I$ such that $x_{0} \in E, g_{\mid E}$ is continuous at x_{0} and $\underline{d}\left(E, x_{0}\right)=\lambda>0$.

For every $\varepsilon>0$ there exists $\delta>0$ for which $E \cap\left(x_{0}-\delta, x_{0}+\delta\right) \subset\{x \in I:|g(x)|<\varepsilon\}$. Therefore,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\{x \in I:|(f \cdot g)(x)|<\varepsilon\}, x_{0}\right) \geq \\
& \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\left(E \cup N_{f}\right) \cap\{x \in I:|f(x)|<\varepsilon\}, x_{0}\right)>0
\end{aligned}
$$

by condition (W2). Hence $f \cdot g$ is [0]-continuous at x_{0}. Since x_{0} was arbitrary, $f \cdot g \in C_{[0]}$.

Let $f \in \mathcal{M}_{m}\left(C_{[0]}\right)$ and assume that f does not fulfill condition (A) at x_{0}. By Lemma4.1, $f\left(x_{0}\right)=0$. Choose any measurable set $E \subset I$ such that $N_{f} \subset E$ and $\underline{d}\left(E, x_{0}\right)>0$. We can find four sequences $\left(I_{n}=\left[a_{n}, b_{n}\right]\right)_{n \in \mathbb{N}},\left(J_{n}=\left[c_{n}, d_{n}\right]\right)_{n \in \mathbb{N}}$, $\left(I_{n}^{\prime}=\left[a_{n}^{\prime}, b_{n}^{\prime}\right]\right)_{n \in \mathbb{N}}$ and $\left(J_{n}^{\prime}=\left[c_{n}^{\prime}, d_{n}^{\prime}\right]\right)_{n \in \mathbb{N}}$ of pairwise disjoint closed intervals such that

$$
\begin{gathered}
c_{n}^{\prime}<a_{n}^{\prime}<b_{n}^{\prime}<d_{n}^{\prime}<c_{n+1}^{\prime}, \quad d_{n+1}<c_{n}<a_{n}<b_{n}<d_{n}, \\
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}^{\prime}=x_{0}, \\
\bar{d}^{-}\left(E \backslash \bigcup_{n=1}^{\infty} I_{n} \prime, x_{0}\right)=\bar{d}^{-}\left(\bigcup_{n=1}^{\infty} I_{n}^{\prime} \backslash E, x_{0}\right)=0, \\
\bar{d}^{+}\left(E \backslash \bigcup_{n=1}^{\infty} I_{n}, x_{0}\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n} \backslash E, x_{0}\right)=0,
\end{gathered}
$$

and

$$
\bar{d}^{-}\left(\bigcup_{n=1}^{\infty}\left(J_{n}^{\prime} \backslash I_{n}^{\prime}\right), x_{0}\right)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(J_{n} \backslash I_{n}\right), x_{0}\right)=0 .
$$

Fix $n \in \mathbb{N}$. Since

$$
\lim _{\alpha \rightarrow \infty}\left|\left\{x \in\left[d_{n+1}, c_{n}\right] \backslash N_{f}:|\alpha \cdot f(x)|<1\right\}\right|=0
$$

there exists $\alpha_{n} \in \mathbb{R}$ such that

$$
\left|\left\{x \in\left[d_{n+1}, c_{n}\right] \backslash N_{f}:\left|\alpha_{n} \cdot f(x)\right|<1\right\}\right|<\frac{\left|\left[a_{n+1}, b_{n+1}\right]\right|}{n} .
$$

It follows that

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left\{x \in\left[d_{n+1}, c_{n}\right] \backslash N_{f}:\left|\alpha_{n} \cdot f(x)\right|<1\right\}, x_{0}\right)=0
$$

Similarly, for each $n \in \mathbb{N}$ there exists $\beta_{n} \in \mathbb{R}$ such that

$$
\bar{d}^{-}\left(\bigcup_{n=1}^{\infty}\left\{x \in\left[d_{n}^{\prime}, c_{n+1}^{\prime}\right] \backslash N_{f}:\left|\beta_{n} \cdot f(x)\right|<1\right\}, x_{0}\right)=0
$$

A NOTE ON THE [0]-LOWER CONTINUOUS FUNCTIONS

Define $g: I \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}1 & \text { for } \quad x \in\left\{x_{0}\right\} \cup \bigcup_{n=1}^{\infty}\left(I_{n} \cup I_{n}^{\prime}\right) \cup\left(a, c_{1}^{\prime}\right] \cup\left[d_{1}, b\right) \\ \alpha_{n} & \text { for } \quad x \in\left[d_{n+1}, c_{n}\right], \quad n=1,2, \ldots \\ \beta_{n} & \text { for } x \in\left[d_{n}^{\prime}, c_{n+1}^{\prime}\right], \quad n=1,2, \ldots, \\ & \text { linear on every interval }\left[c_{n}, a_{n}\right],\left[b_{n}, d_{n}\right],\left[c_{n}^{\prime}, a_{n}^{\prime}\right],\left[b_{n}^{\prime}, d_{n}^{\prime}\right], n \geq 1 .\end{cases}
$$

It is clear that g is continuous at every point except at x_{0}. Moreover, $\underline{d}\left(\left\{x \in I: g(x)=g\left(x_{0}\right)\right\}, x_{0}\right)>0$. Thus, $g \in C_{[0]}$. By assumptions about f, we have $f \cdot g \in C_{[0]}$. In particular, $f \cdot g$ is [0]-lower continuous at x_{0}. Since $(f \cdot g)\left(x_{0}\right)=0$, we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\{x \in I:|(f \cdot g)(x)|<\varepsilon\}, x_{0}\right)>0
$$

On the other hand,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\{x \in I:|(f \cdot g)(x)|<\varepsilon\}, x_{0}\right) \\
& \leq \lim _{\varepsilon \rightarrow 0^{+}} \underline{d}\left(\bigcup_{n=1}^{\infty}\left(I_{n} \cup I_{n}^{\prime}\right) \cap\{x:|f(x)|<\varepsilon\}, x_{0}\right) \\
& \quad+\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}\left(\bigcup_{n=1}^{\infty}\left(\left[d_{n+1}, c_{n}\right] \cap\left\{x:\left|\alpha_{n} \cdot f(x)\right|<\varepsilon\right\}\right)\right. \\
& \left.\quad \cup\left(\left[d_{n}^{\prime}, c_{n+1}^{\prime}\right] \cap\left\{x:\left|\beta_{n} \cdot f(x)\right|<\varepsilon\right\}\right) \backslash N_{f}, x_{0}\right) \\
& \quad+\bar{d}\left(N_{f} \backslash \bigcup_{n=1}^{\infty} I_{n}, x_{0}\right)+\bar{d}\left(\bigcup_{n=1}^{\infty}\left(\left(J_{n} \backslash I_{n}\right) \cup\left(J_{n}^{\prime} \backslash I_{n}^{\prime}\right)\right), x_{0}\right) \\
& =\lim _{\varepsilon \rightarrow 0^{+}}\left(E \cap\{x:|f(x)|<\varepsilon\}, x_{0}\right) .
\end{aligned}
$$

Hence, condition (W2) holds.
Corollary 4.1. If $f: I \rightarrow \mathbb{R}$ is such that at every $x_{0} \in I$ at which f does not fulfill condition (A), the following two conditions hold
$\left(\mathrm{W} 1^{\prime}\right) f\left(x_{0}\right)=0$,
$\left(\mathrm{W} 2^{\prime}\right) \underline{d}\left(\{x \in I: f(x)=0\}, x_{0}\right)>0$,
then

$$
f \in \mathcal{M}_{m}\left(\mathcal{C}_{[0]}\right)
$$

Corollary 4.2.

$$
\mathcal{M}_{m}\left(\mathcal{C}_{[0]}\right) \varsubsetneqq \mathcal{M}_{a}\left(\mathcal{C}_{[0]}\right)
$$

STANISŁAW KOWALCZYK — KATARZYNA NOWAKOWSKA

REFERENCES

[1] BORSÍK, J.: Some classes of strongly quasicontinuous functions, Real Anal. Exchange 30 (2004-2005) 689-702.
[2] BRUCKNER, A. M.: Differentiation of Real Functions, in: Lecture Notes in Math., Vol. 659, Springer-Verlag, New York, 1978.
[3] BRUCKNER, A. M.-O'MALLEY, R. J.-THOMSON, B. S.: Path Derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97-125.
[4] FILIPCZAK, T.: On some abstract density topologies, Real Anal. Exchange 14 (19881989) 140-166.
[5] KOWALCZYK, S.-NOWAKOWSKA, K.: A note on @-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153-158.
[6] KOWALCZYK, S.-NOWAKOWSKA, K.: Maximal classes for the family of $[\lambda, \varrho]$-continuous functions, Real Anal. Exchange 36 (2010/2011), 307-324.
[7] NOWAKOWSKA, K.: On a family of $[\lambda, \varrho]$-continuous functions, Tatra Mt. Math. Publ. 44 (2009), 129-138.
[8] SHARKEL, D. N.-DE, A. K.: The proximally continuous integrals, J. Aust. Math. Soc. 31 (1981), 26-45.

Received December 2, 2013
S. Kowalczyk
K. Nowakowska

Institute of Mathematics
Pomeranian Academy
ul. Arciszewskiego 22b
PL-76-200 Stupsk
POLAND
E-mail: stkowalcz@onet.eu
nowakowska_k@go2.pl

[^0]: © 2014 Mathematical Institute, Slovak Academy of Sciences. 2010 Mathematics Subject Classification: 26A15, 54C30.
 Keywords: density of a set at a point, continuous functions, path continuity, $[\lambda, \varrho]$-continuity, [0]-lower continuity, sparse set, T^{*}-continuity.

