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A NOTE
ON THE [0]-LOWER CONTINUOUS FUNCTIONS

STANISEAW KOWALCZYK — KATARZYNA NOWAKOWSKA

ABSTRACT. We present some properties of [0]-lower continuous functions.
We give an equivalent condition of [0]-lower continuity and find maximal addi-
tive family and maximal multiplicative family for the class of [0]-lower continuous
functions.

1. Preliminaries

In the paper, we apply standard symbols and notations. By R we denote
the set of all real numbers, by N we denote the set of all positive integers.
By £ we denote the family of measurable in sense of Lebesgue subsets of real
line. The symbol | - | stands for the Lebesgue measure on R. Throughout the pa-
per, I = (a,b) denotes an open interval (not necessarily bounded) and f is
a real-valued function defined on I. By A we denote the class of approximately
continuous functions.

Let E be a measurable subset of R and let z € R. According to [2],
the numbers

EN t - EN t
d"(E,z) = liminf BNzt and d+(E, x) = lim sup BNzt
t—0t t t—0+ t
are called the right lower density of F at x and right upper density of FE at z,

respectively. The left lower and upper densities of E' at x are defined analogously.
It

d*(B,x)=d (E,x) (& (B,2)=d (BE,z)),
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then we call these numbers the right density (left density) of E at x and denote
them by d*(E,z) (d~(E,x)). The numbers

d(E,r) = lim sup [ENfe—t.z+ k| and d(FE,x) = liminf B[z —t 2+ K
t=0% k+t t—0t k+t

k—0t k—0t

are called the upper and lower density of E at x, respectively. It is clear that

d(E,z) = max{3+(E,3:),Ei(E,m)} and d(F,z) = min{d" (E,z),d” (E,z)}.

If d(E,z) = d(E, ), we call this number the density of F at x and denote it
by d(E, ).
Let us recall the definition of [\, g]-continuous function.

DEFINITION 1.1 ([7]). Let E € £,z € Rand 0 < A < p <1, A < 1. We say
that x is a point of [\, p]-type density of E, if

d(E,z) > X and d(E,r)>p when A<1 and p<1

or
d(E,z) >\ and d(E,r)=p¢ when A<1 and p=1.

DEFINITION 1.2 ([7]). A real-valued function f defined on an open interval I is
called [\, g]-continuous at x € I provided that there is a measurable set E C I
such that x is a point of [\, g]-density of E, x € E and f|E is continuous at z. If f
is [\, o]-continuous at every point of I, we simply say that f is [\, g]-continuous.

We will denote the class of [\, g]-continuous functions by Ciy 4.
In [7], an equivalent condition of Cpy ,j-continuity was proved.

THEOREM 1.1 ([7]). LetO < A< o<1,z €I andlet f: I — R be a measurable
function. Then f is [\, g]-continuous at xo if and only if

slir(r)hd({:c el:|f(x)— flzo)] < 5},x0> > A

and
613&3({:5 el:|f(x)— flxo)| < s},xo) > 0.

We will need the following technical lemma from [6].

LeEMMA 1.1 ([6, Lemma 2.3]). Let F' be a measurable set and let x € R. There
erists a sequence of closed intervals {In = [an,bp]:x < - <bpy1 < ap < }

such that
E+<F\ U In,:c> _E+<U In\F,:U> =0.
n=1 n=1

Now, we will give a basic definition of the present paper.
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DEFINITION 1.3. A real-valued function f: I — R is called [0]-lower continuous
at © € [ if there exists A\, > 0 such that f is [\, \;]-continuous at z. If f
is [0]-lower continuous at every point of I, we simply say that f is [0]-lower
continuous.

We will denote the class of [0]-lower continuous functions by Cig.

THEOREM 1.2. Let f: I — R be a measurable function and let xo € I.
The following conditions are equivalent:
i) function f is [0]-lower continuous at x,

ii) there exists measurable set E C I such that xo € E, f|E is continuous
at zg and d(E, x¢) > 0,

iii) lim.,+ d({z € I: |f(z) — f(z0)| < €}, 20) > 0.

Proof. Assume that f is [0]-lower continuous at xy. There exists A > 0 such
that function f is [\, A\]-continuous at . So, we can find a measurable set £ C I
such that 2o € E, f|E is continuous at xg and d(F,xo) > A > 0.

Assume that there exists a measurable set F C I such that zy € F, f|FE is
continuous at zy and d(E,zg) > 0. Then, for every ¢ > 0, there exists § > 0
such that [zg — 6,0 + 6] N E C {z: |f(z) — f(z0)| < £}. Hence,

d({l’ el: |f(l') — f(:l?o)l < g}’mo) >
d({x € E:|f(x) = flzo)l < 8},330) =d(F,x¢) for every £ > 0.
Therefore,

lim d({x eI |f(x) — fzo)| < s},:co) > d(E, x0) > 0.

e—0t

Now, suppose that
lim d({z € I:|f(z)— f(zo)| < e}, o) > 0.

e—0t

There exists A > 0 such that
lim d({z € I: |f(z)— f(zo)| <&}, m0)> A
e—0t

From Theorem [T, we conclude that f is [A, A]-continuous at xo. Hence f is
[0]-lower continuous at xg. O

EXAMPLE 1.1. We shall show that there exists f € Cjo) \ Upcr<,<1.0<1 Cing)-

Let {x,}n>1 be a sequence of points from I such that lim,_, z, = b and
Tpi1 > Ty for every n > 1. We can find a sequence {Jn = [p"’q”]}n>1 C (a,b)
of pairwise disjoint closed intervals, for which xz,, € (pn, qn)- B
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For each n € N there exists a sequence of closed intervals {[afn,bﬁl]}le

such that z, <by, ., <ay, <by, and [a;z, b;ﬁ] C Jy, for every m > 1 and

oo 1
+ l | n o jpn _ -
C_Z ( [am’bm]v'xn) - 'I’L'

m=1

For each n > 1 there exists a sequence of pairwise disjoint closed intervals
{lem,dp]}, -, such that [ep,dn] C J, and [an,, by C (cp,,dn) for every

m? m m? m

m > 1 and

a+< U (e i\ [, bg]),xn> 0.
m=1
Let I} = [a},, bl ] and K, = [, dr] for every m > 1.

Finally, for every n € N take any y,, € (ppn, Tn)-
Define f: (a,b) = R by

0 forze Uy (yn, za] UUn_  I2),

f@) =41 forze ((a,b)\ Uy Jn) U (Uzozl((l“m AP\ Upm— K:Z)>7

linear on the intervals [C;LT, afn], [b?n, d;z], [pn,yn], [d?, qn],n, m > 1.

Then, f is continuous at every point except at x1, xs, ... and constant on every
set
oo
E, = <[yn,xn] U U I,Z)
m=1
Since d(E,,, ) = % > 0, fis Cjg-continuous at z1, w2, ... Hence, f € Cjq.

Let A, o be any real numbers such that 0 < A < p < 1 and X < 1.
There exists ng such that nl—o < A. Then

d({x € Jng: |f(x) = fzn,)| < 1},xn0) < d+< D K:f{]w”ﬂno> <
m=1

¢+<U IT’,LLO,:U”(]) +E+< U & \I,’};l),xm) == 4+0<A

m=1 m=1
Hence f & Cpy o and [ ¢ Uo<,\§g§1,,\<1 Cixol-
COROLLARY 1.1. C[O] ;_) U0<)\§g<1 C[/\7g]~

Remark 1.1. It seems that, in the same way as in [I, Theorem 4], one can
prove that the set U0<>\<Q<1 Cx,g) 1s even nowhere dense in Cjg).
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2. Basic results

THEOREM 2.1. If f € C(g}, then f is measurable.

Proof. Let f: I — R, f € Cj and suppose that f is not measurable. There
exists a number a € R for which at least one of the sets {:c el f(x) < a},
{z € I: f(z) > a} is non-measurable. We may assume that the {z€1: f(z)<a}
is non-measurable. Let A = {z € I: f(z) < a} and B = {z € I: f(z) > a}.
Then B = I\ A is also non-measurable. There exist measurable sets A; C A,
B; C B such that A\ A; and B\ B; do not contain any measurable set of positive
measure. Therefore A\ A; and B\ By are non-measurable. Moreover,

F=(A\A)U(B\B1)=T\(A1UBy)
is measurable.Let L(F') be a set of all density points of a set F. Since| F\ L(F')|=0,
there exists g € (A\ A1) N L(F).

It follows that there exists a measurable set £ C [ such that xy € F,
d(E,2z0)>0 and f|F is continuous at xq, because f is 0-lower continuous at .
As 29 € A, we have f(xg) < a. Therefore it is possible to find § > 0 such that
En(xg—0,20+9d) C A. Let E' = EN (zg — d,x0 + 0). Hence g € E', f|E' is
continuous at xg, £’ C A and

d(E, z0) = d(E.z0) > 0. (R)

We have

E' =(E'NA)U(E'N(A\A)).
Since £’ and E’ N A; are measurable, E' N (A \ A;) is also measurable. Hence,
|E' N (A\ Aq)| = 0. Moreover,
d(E, mAl,LUo) =1 —E(I\ (E, ﬂAl),LUo) S 1 —E(F,LUQ) =1-1=0.
Therefore,

d(E,7 550)

Q((E’ NA)U(E' N (A\ Al),xo))

<d(E'NA zo) +d(E' N (A\ A1), z0)

0+0=0,

contradicting to (R)). O

Applying Proposition 7 from [I], we see that Cjo is not closed under the
uniform limit.

THEOREM 2.2. Let a sequence {f,}n>1 of measurable functions f,: I — R
be uniformly convergent to f, f: I — R and let xo € I. Then f is [0]-lower
continuous at xq if and only if

inf liminfd<{:c e It |fulz) — fulzo)] < 5},x0) > 0. (1)

>0 k—oo
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Proof. Let o
a= ér;%hkrggfd({x eI:|fi(x) — fr(zo)| < 6},3:0) > 0.

Take any € > 0. There exists ng > 1 such that for every k > ng and every x € I,
the inequality

fula) = f@)| < 2

holds. In particular,

|fe(w0) — f(z0)] < %

for n > ny. By (@), we can find n > ng such that

Notice that d<{x € I: [fu(x) = falzo)| < %},330) > %

|f(z) = fzo)] < [f(z) = fa(@)| + [fulz) — falzo)| + | fr(20) — flz0)| <€
for z € {t € 1: | fult) — fulwo)| < %} .

Therefore,

{z el 1fule) = fulwo)l < S} € fo € I 1f(@) = F(0)| < ).

Hence,

Q({x e I:|f(z) — flzo)| < 5},:60) > Q({x € It |ful@) — fulao)| < g}x()) > %

Since € > 0 was taken arbitrarily,
@
I d( : - <, )>—>0.
lim d({z: |f () = f(z0)] < e} a0) > 5

It follows that f is [0]-lower continuous at xg.
Now, suppose that f is [0]-lower continuous at zq. Let

— 1 d( el . <el, )>0.

B =lim d({z € I:|f(z) = f(zo)| <2} o

Then, d({z € I:|f(z) — f(z0)| < e},x0) > B for £ > 0. Fix any § > 0.
There exists ng > 1 such that for every k > ng and every x € I the inequality

(o) ~ @)l < 3

holds. Similarly as earlier, we can easily check that

{:UGI: f(z) — f(zo)] < g} C{z eIt |fulx) — fulwo)| <8} for n>ng,

Therefore,

. d({z € I: |fu(z) — fe(zo)| < 8},20) = B for n>ng
an.

hkrgiogfd({x e I: |fulz) — fulzo)| < 5},x0) > 8.
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Since § > 0 was taken arbitrarily,

ggnkrgicgfd({x e I: |ful(z) — fulzo)| < 5},950) >8>0,

and (1)) holds. O

COROLLARY 2.1. Assume that every function f,: I — R is measurable and
there exists A > 0 such that every f, is [\, A]-continuous at some zo € I.
If the sequence {fn}n>1 is uniformly convergent to f, f: I — R, then f is
also [0]-lower continuous at xg.

3. Maximal additive class

DEFINITION 3.1. Let F be any family of real valued functions defined on I.

The set
Mo (F) ={g: Vier f+9 € F}
is called the maximal additive family for F.

Remark 3.1. Let f be a constant function, f(x) = 0 for each x. If f € F, then
M (F)C F

Now, we will find a maximal additive family for the family of [0]-lower con-
tinuous functions.

THEOREM 3.1. A measurable function f: I — R belongs to M, (C[O]) if and
only if at every xo € I the following condition

Veer, <¢(E,x0) >0 = lim c_Z(Eﬂ {z:|f(x) — f(z0)| < 6},x0) > 0) (A)

ECI e—0t

1s fulfilled.

Proof. Assume that a measurable function f fulfills condition (A). Let xzo € I
and let g be a lower [0]-continuous at zp. There exists a measurable set E such
that zo € E, g|FE is continuous at xo and d(F,xg) > 0. Hence, for every € > 0
there exists § > 0 such that

EN (z0— 8,20 +8) C {x: l9(z) — glz0)| < %}

Therefore,

{zel:|(f+9)(@) = (f +9)(wo)| <} D
{x € EN(xo— 0,20+ 0): |f(x) — f(zo)| < %}
Hence,
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d({x € I: [(f + 9)@) - (F + 9)w0)| < e},20) =
d({z € B: |f(@) = fla)| < 3 }.x0)

and
tim d({x € I |(F +9)(a) — (F +9)wo)] <}, 0) >
6grg+d({x € E: |f(z) = f(zo)| < g}ﬁﬂo) _

lim d(E N{zeT: |f(z) - f(wo)| < 5},:60) > 0.

e—0t

By Theorem [[L2 f + g is [0]-lower continuous at x.

Let f € M, (C[O]). Suppose that there exists xg € I at which condition (A)
is not fulfilled. Then, there exists a measurable set E C I such that d(F, ) > 0
and

lim Q(Eﬂ {z:|f(z) = f(z0)| < s},xo) =0.

e—0Tt
Hence,
: + . _ —
lim d(E0 {2 f(2) - flao)] < },20) =0
or

lim d—(Em {z: |f(z) - f(wo)| < a},xo) —0.

e—0— "

We may assume that

lim Q+<Eﬂ {z:|f(z) = f(zo0)| < 5},:60) =0.

e—0t

By Lemma [l there exists a sequence of closed intervals {[an, b”]}n>1
such that z¢ < b, 1 < a, < b, for n > 1 and B

ar (E\ U [an,bn],x0> =d (U [ b ] \E,x0> = 0.
n=1 n=1
Let {[cn, dy] }n N be a sequence of pairwise disjoint closed intervals such that

(@, bn] C (Cn,dy) and d' (U2, ([en, dn) \ [an, ba]) , 20) = 0. Let T, = [an, by

n=1

and J,, = [cp, dy,] for every n > 1. Define a function ¢: (a,b) — R by
0 if z € (a,z0] UU,—{ In,
9(x) = f(zo) — flx) +1 if z € (w0,b) \ U, intJ,,

linear on every interval [¢,,, a,], [by, d,],n € N.
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Clearly, g is [0]-lower continuous at every point except at zg. Since

(a xo) U In,m0> T(E,z0) >0

and g restricted to (a, 0] U J,_; In is constant, we conclude that g € C
Take any ¢ € (0,1).

If x € (w0,b) \U,—; Jn, then (f + g)(z) — (f + g)(xo) = 1. Hence,

d* ({w e 1: |(f + 9)@) = (f +9)(a0)] < &}.0) =

+ ({x € U I,: |f(x) — f(zo)] < 6},x0> =

at ({x €E:|f(x)— f(zo)] < 6},3:0).
By assumption,

lim d*(En{z: |f(z)— f(z0)| < e}, w0) = 0.

e—0t
Hence,
lim d* ({a € 12 (£ +9)(@) = (f +9)(w0)] < e}m0) = 0.
Therefore, f + g & Cq)- O

We will show connections between M, (C[O]) and the so-called T™-continuity.
To this end, we need the notion and some properties of sparse sets and definition
of T* continuous functions. Details of this notion can be found in [, [§]. We will
need only the following

DEFINITION 3.2 ([]). We say that a measurable set E' C R is sparse at 79 € R
if for every measurable set F' C R, if d(F,zo) < 1 then d(EU F, () < 1. We say
that F is sparse if F is sparse at every xo € R.

DEFINITION 3.3 ([4]). We say that a function f: I — R is T continuous
at zg € I if for each £ > 0 the complement of the set {z € I': |f(z)— f(zo)| < £}
is sparse at xg. A function f: I — R is T continuous if and only if it is T
continuous at each point of I.

(Actually, these definitions are equivalent conditions of original definitions
of sparsity and T™* continuity.)

THEOREM 3.2 ([]). A complement of a measurable set E is sparse at x if
and only if for each measurable set F C R such that d(F,x) > 0 the inequality
d(ENF,z) >0 holds.
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Applying Definition and Theorem B2] we have

THEOREM 3.3. A function f: I — R is T continuous at xg € I if and only if
VEeer, <C_Z(E,5L“o) >0= Va>oc_i(E N{z: |f(z) = f(zo)| < 8}7550) > 0)- (B)
ECI
COROLLARY 3.1. A C M, (Cjg)) C Cr-.
LEMMA 3.1. Let g € R and F' = Uf;l[an, by], where xo < bp+1 < a, < by, for
everyn > 1, limy,_, o an = xg. If

bn_an

li = 2
g = (2)
and a —b
lim sup ——"+L < o, (3)
n—oo bn+1 — Zo
then
Veer, (d7(E,x0) > 0= d" (ENF,z0) > 0). (®)
BECT
Proof.
According to (@), there exist a € (1,00) and ny € N such that Z:;ibj;’; <«

for n > n;. Choose any measurable set £ C I satisfying d™(E,zo) > 0.
Let 3 € (0,d"(E,z0)). Then we can find § > 0 such that % > 3
for each x € (xg,xo + 0). Choose any ny € N for which b,, < zo + d. By @),
there exists ng € N such that b, — a,, > W(a
In particular, b, — a,, > %(an — xg) for n > N. Let ¢, = a, + %(an — o)
for n > ngs. Then, ¢, € [an, by]. Finally, let ng = max{ny,na, n3}.

n — o) for n > ns.

Fix any x € (2o, an,). There exists k > ng such that z € [by41, bg].
If = € [cg, bg], then
|ENF Nz, 2| >|EN [ak, ]|
> |E N [xo, ]| — (ar — x0)
> Bz — zo) — (ar — o). (4)
Moreover, x — xg > ¢ — Tg = (% + 1)(ak — x9). Hence, ap — zop < g(x — xp)-
Therefore,

|ENF Nz, ]| > Bz —x0) — é(x—xo) =

- (&~ o). )

|

If z € [bk+1,ck], then
‘Eﬂ Fn [iUO,iUH > |E N [aks1, bpsi]| > ‘Eﬂ [iankaH — (ag41 —z0)  (6)
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Moreover, x — xg > b1 — o,

r—xg < cp— o = (1+%> (ar — o)
< (1 + %) (bk+1 — o + ag — br41)
< (1 + %) (bk+1 — o + (b1 — x0))
= (14 2) (1 + @) (Brs — 20)
and
ap+1 — To < %(bk—H — Qfy1)-
Thus,
|ENF Nz,
Tr — X9 4
> 1 ,|EVWMM%+HI_2u+%u+w(”+l_“”“)
T (1+3)(1+a) be+1 — o bi+1 — o
S 1 <|E N[zo, brta]l  Blbr+1 — xo))
T (1+3)(1+a) b1 — o 2(bg1 — o)
1 B
> 000 _ =z
T+ )0+ (ﬁ 2>
SRR ™

201+ 2)(1+a)
By @) and (@), we have

ENF
| NEr N [l“ovx” > 25 for every x € (x07an0)'
Therefore,
B
d*(ENF ) > > 0.
d™( 0) 201+ 2)(1+a) -

THEOREM 3.4. A G M,(Cjg) & Cr-.
Proof. We only have to prove that M, (Cjg)) \ A # 0 and Cr- \ M, (Cpoj) # 0.

Let z, = L.y, = L2520t g, = Zndin (we may assume that [0,1] C I).

Obviously, lim,,_, % = lim,— 00 % = 0o. Define f: I — R by
n n

0 forz € (a,0]U{xy,29,...} Ulz1,b),
fl@) =<1 forze o [yn, unl,

linear on every interval [z,41,Yn], [tn, zn],n =1,2,...
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The function f is continuous at every point except at 0. Take € € (0,1). Then
{zel:|f(x) - f(0) <} =

(CL,O]UU [xn-i-laxn-i-l +5(yn_$n+l)] U U [un+(1_5)(xn_un)7xn] U[xlvb)

n=1
Notice that the set 0
U [Tni1, o1 +€(Yn — Tng1)]
n=1

fulfills conditions ([2)) and [B]) from Lemma Bl Indeed, if

an = Tpt1 and by = Tpy1 +(Yn — Tnt1),

then
. b, —a . X 1+¢€ — X 1) — % 1 . e — T 1
lim = " — lim (U nt1) "l Jim Un ni1) = 00
n—00 Qp, n—00 Tn+t1 n—o00 Tn+t1
and
an —bnt1 _ Tngl — Ttz — E(Ynt1 — Tngo)
bnt1 Tpt2 + €(Ynt1 — Tnr2)
< (2 —€)(Ynt1 — Tnt2)
T e(Yng1 — Tng2)
2—¢
—
Hence,
) ap — bt
lim sup ———= - o
n—o0 bn+1

By Lemma 3] and Theorem B3] f is T*-continuous at 0 and f € Cp-. Notice
that

{x eR: |f(x) — f(0)] < E} N U |:$Un+1 —I—ewwn] = 0.
n=1
On the other hand,
n - 4n n - 4n 3
Tn+t1 +Ew7un = ||Tn+1 +€w,$ﬂn+1 + — (T — Tpt
2 2 4
3
== Z(xn - xn+1) - %(xn - xn+1)
3 —2¢
= 1 (Tn — Tnt1)
and
—t . 3_425 (xn - xn+1)
d (I\{xe]: |f(x)—f(0)|<s},0)2hmsup "
n—oo n
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Hence,
E+<I\{x€1': f(z) — f(0)] <e},0) >
[0, un] VI \{z € I [f(2) = FO)| < e} o

lim sup =
n—00 Un
3—25(
. —F Ty — xn+l) . 1
lim sup 4 3 = limsup —; Tl 3
n—oo  Lp41 + Z(xn - x’"«+1) n—oo  3T5¢ Tp—Tnt1 3—2¢

Therefore,

E+(I\{x61: |f(33)—f(0)|<6},0>23_26 2

:1——
3 3°

and
Ir({x eR:|f(z)— f(0)] < 5},0) <1- (1 — §s> = ;6'
Hence,
lim d+<{x e1: |f(z) - f(0)| < 5},0) —0.
Finally,

lim d+(Em{er: f(z) — f(0)] <e},0) =0

e—0t
and f & MG(C[O]). Thus f € Cp- \MG(C[O]).
Next, define g: I — R by
0 forz € (a,00UU 2 [@nt1,yn] U[z1,b),
g(x) =491 forz € {uy,us,...},
linear on every interval [y, up], [tun, zp],n =1,2,...

Obviously, g is continuous at every point except at 0 and g is not approximately
continuous at 0. It is easy to see that {[x,+1,Yn]}nen satisfy conditions () and
@) from Lemma Bl Since g restricted to (a,0] U, _;[#n+1,yn] Is constant,
g satisfies condition (A). Hence, g € My (Cj)) \ A. O

4. Maximal multiplicative class

DEFINITION 4.1. Let F be any family of real valued functions defined on I.
The set

M (F) ={9:Vyer [-g € F}
is called a maximal multiplicative family for F.

Remark 4.1. Let f be a constant function, f(z) = 1 for each z. If f € F, then
M (F)C F
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LEMMA 4.1. Let f: I — R be a function from Ciy. If there exists xg € I such
that f does not fulfill condition (A) at xo and f(xg) # 0, then there exists
g: I — R such that g € Cjg) and f - g & Cq).-

Proof.

By assumptions, there exists a measurable set E C I such that d(E,zg) > 0
and

El_i)r(r)1+d(Eﬂ {z:|f(2) = flzo)| < 6},x0>:0.

Again, we may assume that

lim d+(Eﬂ {@: |f(z) - f(wo)| < a},xo):().

e—0*t

There exists a sequence of pairwise disjoint closed intervals {[an,bn]}n>1
such that zg < bpy1 < an < by, for every n > 1 and

d <E\ fj [an,bn],x()) —d" <D [, b \E,x0> —0.

n=1

Let {[cn, dy] }n N be a sequence of pairwise disjoint closed intervals such that
[an,bn] C (cn,d,) and

ar (U ([ens dn] \ [an, bn]),x()) =0.

n=1

Let I, = [an, by] and J,, = [cy, d,] for every n > 1. Define g: (a,b) — R by

1 ifz e (a,z0] UUpey In,
g(x) =40 ifze (x,b)\ U, —,intJ,,

linear on every interval [c,, ay], [bn, dy],n € N.

Obviously, ¢ is continuous at every point except of xy. Since

d+<U In7x0> :d+(E,£U0) >0

n=1

and g restricted to {0} UJ,—; I, is constant, we have g € Cjg). If
x € (z9,b) \ U In
n=1

then (fg)(x) — (fg)(xo) = = f (o).
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+(U (Ja \ In), >_0,
n=1
we have

d*({z & I: |9 @) = (f9) o) < e},xo) -

({ U x0>|<5} 0)_

d+<{x € E:|f(z) - fzo)| < g},xo) _

d* (E N{zel: |f(x)— flzo)| < 6},3:0) for all & € (0,]f(z0)]).

By assumption,

Since

lim d+(Eﬂ{m f(z) — f(:co)|<5},xo> — 0.

e—0t
Hence,
: + . _ —
Jim & ({a € I |(F9)(@) - (F9)(a0)] < eh) = 0.
Therefore, fg & Ciq)- ]

DEFINITION 4.2. Let Wg) be a set of all measurable functions f: I — R such
that at every z¢ € I at which f does not fulfill condition (A), the following two
conditions hold

(W1) f(zo) =0,
(W2) for each measurable E C I such that
d(E,x9)>0 and ED{zel: f(z)=0},
we have
lim d(Em {zel:|f(z)— flao)| < 5},:1;0) > 0.

e—0t

THEOREM 4.1. M., (Cjg)) = Wg)-

Proof. Assume that f: I — R satisfies conditions (W1) and (W2). If f fulfills
condition (A) at xg € I, then, repeating arguments from the proof of Theo-
rem Bl we can easily prove that f - ¢ is [0]-lower continuous at xo for every
g < C[O]

Assume that f does not satisfy condition (A) at zy. By (W1), we have
f(z0) =0.Let Ny ={z €1: f(x) =0}. Take any g € Cjoj. There exists a mea-
surable set E' C I such that zg € E, g|g is continuous at z and d(E,xz9) = A > 0.
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For every & >0 there exists § >0 for which EN(zo—0,z0+6) C {zel: |g(x)|<e}.
Therefore,

tim d({e € 1 (7 g)@)] < <) 2

lim d((EUNf)ﬂ {zel:|f(z)| < 5},:60) >0,

e—07t
by condition (W2). Hence f - ¢ is [0]-continuous at xg. Since xy was arbitrary,
f-g€ C[O]-

Let f € M,,(Clo) and assume that f does not fulfill condition (A) at .
By Lemmaldd] f(z)=0. Choose any measurable set E'C I such that Ny C E and
d(E,xz9)>0. We can find four sequences (In = [an, b”])neN’ (Jn = [Cn’dn])nGN’
(I}, = lan,, b,]),, oy and (Jh, = [en,dn]),, oy Of pairwise disjoint closed intervals
such that

o <a, <t <d <cpi1l, dpir <cp <ap <b, <dp,

. . /
lim a, = lim a, = %o,

E(E\ DIn/,x()) =d (D I,Q\E,x0> =0,
T(E\ GIn,x()) - T(Cj In\E,x()) =0,

n=1

and

d (U (J)\ I;),x0> = T(U (T \ In),:c()) = 0.
n=1
Fix n € N. Since
algr;@‘{m € [dnt1,¢n) \ Nyt - f(z)] < 1}‘ =0,
there exists «,, € R such that

{2 € nsr,ea] \ Ny - F(a)] < 1] < Lot bl

It follows that

a" (U {z € [dns1,ea] \ Nyt |y, - flz)| < 1},3:0> =0.

n=1

Similarly, for each n € N there exists 3, € R such that

d (U {z €ld, ca] \ Ny: [Bn - f(2)] < 1},9:0) =0.
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Define g: I — R by

1 for ze{x}UlUr (I, UI) U (a,cy]U[dy,b),

an for x€[dpi1,cn], n=1,2,...,

g(x) = .
Bn for xeld, ], n=12,...,

linear on every interval (¢, anl, [bn, dy], [c),al], [b),,dL],n > 1.

It is clear that g is continuous at every point except at xg. Moreover,
d({z € I: g(z) = g(z0)},0) > 0. Thus, g € Clo)- By assumptions about f,
we have f-g € Cj. In particular, f - g is [0]-lower continuous at xq. Since
(f-g)(xp) =0, we have

ali%“+d<{”’ el |(f 9)(2)|< s},xo) > 0.
On the other hand,

tim d(fe € 1: (£ 9)(@)| < £} o)

e—0t+

< lim d (U(InUIL)ﬂ {z:|f(z)| < E}7$0>

n=1

+ lim E(U ([dm_l,cn] N{z: |an - f(z)| < 8})

e—0t

U (s ] N {18 - ()] < €}) \waO)

+d (Nf\ U In,xo> +d (U ((Jn\ln)U(JjL\I;)),xo>

n=1 n=1

= lim d(Eﬂ{x: |f(z)] <5}7ﬂc0).

e—0t
Hence, condition (W2) holds. O
COROLLARY 4.1. If f: I — R is such that at every xg € I at which f does not
fulfill condition (A), the following two conditions hold
(W1) f(zo) =0,
(W2) d({x € I: f(x) =0},20) >0,

then
f S Mm (C[o] ) .

COROLLARY 4.2.
Mo (Clp) & Ma(Cpay)-
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