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A NOTE ON THE SET

OF DISCONTINUITY POINTS

OF MULTIFUNCTIONS OF TWO VARIABLES

Grażyna Kwiecińska

ABSTRACT. In this paper, we consider some problem connected with separate
properties of a multifunction of two variables which ensure that the set of its joint
discontinuity points is a meager set.

1. Introduction

There is a function f : R2 → R, whose all x-sections fx(y) = f(x, y) and
y-sections fy(x) = f(x, y) are continuous, and whose set of discontinuity points
is of the positive Lebesgue measure [11]. However, such a function has always
a set of discontinuity points of the first Baire category [17]. On the other hand,
if the family {fx}x∈R is equicontinuous at a point y0 and y0-section of f is

continuous at a point x0, then f is continuous at the point (x0, y0). The problem
of finding separate properties of functions such that they have at least one point
of joint continuity was widely considered in literature ( [1], [4], [6], [8], [9], [16]).
However, much less is known about the multivalued case. We will discuss some
separate properties of a multifunction of two variables which ensure that the
set of its joint discontinuity points is small in a sense of category. Some results
of this type connected with quasi-continuity are given by M. M a t e j d e s [15].

2. Preliminaries

We begin with a conventional notation. The sets of positive integers and real
numbers will be denoted by N and R, respectively.
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Let S and Z be nonempty sets and let Φ: S � Z be a multifunction, i.e.,

∅ �= Φ(s) ⊂ Z for s ∈ S.
If G ⊂ Z, then

Φ−(G) =
{
s ∈ S : Φ(s) ∩G �= ∅

}
and Φ+(G) =

{
s ∈ S : Φ(s) ⊂ G

}
.

Since Φ+(G) ⊂ Φ−(G) always, Φ+(G) and Φ−(G) are often called small and big
inverse images of the set G, respectively.

Let
(
S, T (S)

)
be a topological space. Then, B(S) will denote a σ-field of Borel

subsets of S, B(s) a filterbase of open neighbourhoods of s ∈ S, Cl(A), the closure
of A ⊂ S and Int(A), an interior of A, P0(Z) a family of all nonempty subsets
of S, and C(Z) its subfamily of nonempty compact subsets of S.

Various notions of continuity of multifunctions, not equivalent, are known.
They all reduce to the usual continuity if a single valued function is considered.
We state two different definitions of continuity of multifunctions which we shall
use throughout the paper.

Let
(
Z, T (Z)

)
be a topological space.

A multifunction Φ: S � Z is called lower (resp. upper) semicontinuous
at a point s ∈ S, if, for every G ∈ T (Z) with s ∈ Φ−(G) (s ∈ Φ+(G)), there
is U (s) ∈ B(s) such that U (s) ⊂ Φ−(G) (U (s) ⊂ Φ+(G)). A multifunction Φ is
called lower (resp. upper) semicontinuous, if it is lower (resp. upper) semicon-
tinuous at each point s ∈ S; Φ is called continuous if it is both lower and upper
semicontinuous.

It is easy to see that

(1) Φ is lower (resp. upper) semicontinuous if and only if Φ−(G) ∈ T (S)
(resp. Φ+(G) ∈ T (S)) for each G ∈ T (Z).

If Φ: S � Z is a multifunction, then Dl(Φ) and Du(Φ) will denote the sets
of lower discontinuity points and upper discontinuity points of Φ, respectively.
Then, D(Φ) = Dl(Φ) ∪Du(Φ) is the set of discontinuity points of Φ.

Now, let {Φi}i∈I be a collection of multifunctions Φi : S � Z, i ∈ I, where
I denotes a set of indexes. A collection of multifunctions {Φi}i∈I is called topo-
logically lower (resp. upper) equicontinuous at a point s ∈ S if, for for every
G ∈ T (Z), there exists U (s) ∈ B(s) such that U (s) ⊂ Φ−

i (G) (U (s) ⊂ Φ+
i (G))

whenever s ∈ Φ−
i (G) (s ∈ Φ+

i (G)), i ∈ I. A multifunction Φ is called topologi-
cally lower (resp. upper) equicontinuous, if it is topologically lower (resp. upper)
equicontinuous at each point s ∈ S; {Φi}i∈I is called topologically eqicontinuous
if it is both topologically lower and upper equicontinuous.

In the case when values of a multifunction are subsets of a metric space,
we can consider its semicontinuity based on hemimetrics (i.e., pseudometrics
which fail to be symmetric) generated by the metric.

Let (Z, d) be a metric space. Let hu and hl denote, respectively, the upper
and the lower hemimetric in P0(Z) generated by the metric d, i.e.,
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(2) hu(A,B) = sup
{
d(x,A) : x ∈ B

}
and hl(A,B) = sup

{
d(x,B) : x ∈ A

}
.

Note that hl(A,B) = hu(B,A).

A function h on the product P0(Z)× P0(Z) given by

h(A,B) = max
{
hu(A,B), hl(A,B)

}

is a pseudometric on P0(Z). Obviously, the space
(
C(Z), h

)
is a metric space.

If (T, δ) is a hemimetric space, then an open ball will be denoted in the same
way as in the case of a metric or a pseudometric. If interior points and open sets
are defined in the usual way for hemimetric space (T, δ), then the family of all
open sets is a topology on the space T.

In particular, hemimetrics hl and hu generate the lower and the upper hemi-
metric topology, respectively, on the space P0(Z).

As usual, B(z, ε) will denote an open ball of radius ε > 0 centred at z ∈ Z.
Moreover, if A ⊂ Z, then

B(A, ε) =
⋃
z∈A

B(z, ε).

A multifunction Φ: S � Z is called h-lower (resp. h-upper) semicontinuo-
us at a point s0 ∈ S if for each ε > 0 there exists U (s0) ∈ B(s0) such that
Φ(s0) ⊂ B

(
Φ(s), ε

)
(Φ(s) ⊂ B(Φ(s0), ε)) for each s ∈ U (s0).

A multifunction Φ is called h-lower (resp. h-upper) semicontinuous, if it is
h-lower (resp. h-upper) semicontinuous at each point s ∈ S; Φ is called h-con-
tinuous if it is both h-lower and h-upper semicontinuous.

If Φ: S � Z is a multifunction with values in a metric space, then Dh−l(Φ)
and Dh−u(Φ) will denote the sets of h-lower discontinuity points and h-upper
discontinuity points of Φ, respectively.

In general, if the values of a multifunction Φ are subsets of a metric space,
then Dl(Φ) ⊂ Dh−l(Φ) and Dh−u(Φ) ⊂ Du(Φ).

It is well-known that if Φ is compact valued, then the upper (resp. lower)
semicontinuity of Φ and h-upper (resp. h-lower) semicontinuity of Φ are equiv-
alent [12]. So, in this case, Dl(Φ) = Dh−l(Φ) and Dh−u(Φ) = Du(Φ).

Now, let {Φi}i∈I be a collection of multifunctions Φi : S � Z, i ∈ I, where
I denotes a set of indexes. A collection of multifunctions {Φi}i∈I is called
h-lower (resp. h-upper) equicontinuous at s0 ∈ S if, for each ε > 0, there
exists U (s0) ∈ B(s0) such that s ∈ U (s0) implies Φi(s0) ⊂ B

(
Φi(s), ε

)
(resp. Φi(s) ⊂ B(Φi(s0), ε)) for each i ∈ I. {Φi}i∈I is called h-lower
(resp. h-upper) equicontinuous if it is h-lower (resp. h-upper) equicontinuous
at each point s ∈ S; {Φi}i∈I is called h-equicontinuous if it is both h-lower and
h-upper equicontinuous.

In [13], K. K u r a t o w s k i introduced Baire classification of multifunctions.
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As before, let
(
S, T (S)

)
be a topological space. Given any countable ordinal

number α, let Σα(S) and Πα(S) denote the additive and multiplicative class α,
respectively, in the Borel hierarchy of subsets of the space

(
S, T (S)

)
. Following

K. K u r a t o w s k i [13], we say that a multifunction Φ: S � Z is of the lower
(resp. upper) Baire class α if Φ−(G) ∈ Σα(S) (resp. Φ

+(G) ∈ Σα(S)) whenever
G ∈ T (Z).

The lower and upper Baire classes of multifunctions of one variable have
been extensively studied, among others, by R. B r i s a c [2], J. E w e r t [3]
R. W. H a n s e l [7] and K. M. G a r g [5], where many of the known results
on real functions and also on lower and upper semicontinuous multifunctions
have been extended to the general Baire classes of multifunctions.

We shall use LBα and UBα to denote a family of multifunctions of the lower
(resp. upper) Baire class α, respectively.

By (1), it follows that Φ ∈ LB0 (resp. Φ ∈ UB0) if and only if Φ is lower
(resp. upper) semicontinuous.

As regards the mutual relationship between the lower and upper Baire classes,
the following is known (see [5]):

(3) Let
(
Z, T (Z)

)
be a perfect topological space (i.e., every open set in Z is

an Fσ-set).
(i) If Φ: S � Z is closed valued and Φ ∈ UBα, then Φ ∈ LBα+1.
(ii) If, moreover,

(
Z, T (Z)

)
is normal, Φ is compact valued and Φ ∈ LBα,

then Φ ∈ UBα+1.

The following theorem is known (see [3]).

(4) Let
(
Z, T (Z)

)
be a second countable topological space.

(i) If Φ: S � Z is of the lower Baire class 1, then the set Dl(Φ) is of the
first category.

(ii) If Φ: S � Z is compact valued and of the upper Baire class 1,
then the set Du(Φ) is of the first category.

3. Main results

Now, we will consider the multifunctions of two variables. Obviously, each
multifunction of two variables x ∈ X and y ∈ Y may be treated as a multifunc-
tion of the single variable (x, y) ∈ X×Y. The essential difference is the possibility
of formulating hypotheses concerning the multifunction in terms of its section-
wise properties.

Let us put S = X × Y and (x0, y0) ∈ X × Y. Let F : X × Y � Z be a mul-
tifunction. Then, the multifunction Fx0

: Y � Z defined by Fx0
(y) = F (x0, y)
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is called x0-section of F, and the multifunction F y0 : X � Z defined by F y0(x) =
F (x, y0) is called y0-section of F.

S. K em p i s t y in [10] has shown that each real function of two real variables
upper semicontinuous in the first and lower semicontinuous in the second variable
is of the first Baire class. Some multivalued analogy of this theorem is known
(see [14, Theorems 1 and 3]).

������� 1� Let
(
X, T (X)

)
be a topological space,

(
Y, T (Y )

)
a metrizable space

and
(
Z, T (Z)

)
a perfectly normal topological space. If F : X × Y � Z is a com-

pact valued multifunction such that for each (x, y) ∈ X × Y, the section Fx is
upper semicontinuous and the section F y is lower semicontinuous, then F is
of the upper Baire class 1. If, moreover,

(
Z, T (Z)

)
is second countable, then F

is also of the lower Baire class 1.

As an immediate consequence of the above theorem and (4), we have

������� 2� Let
(
X, T (X)

)
be a topological space, let

(
Y, T (Y )

)
be a metrizable

space, and let
(
Z, T (Z)

)
be a perfectly normal and second countable topological

space. If F : X × Y � Z is a compact valued multifunction such that for each
(x, y) ∈ X × Y, Fx is upper semicontinuous and F y is lower semicontinuous,
then the sets Du(F ) and Dl(F ) are of the first category and so is the set D(F ).

In connection with Theorem 1, let us consider the following example.

Example 1. Decompose R into two disjoint sets A �∈ B(R) and B �∈ B(R).
Define a multifunction F : R2 � R putting

F (x, y) =

⎧⎪⎨
⎪⎩

[−3, 3] if x �= y,

[1, 2] if x = y ∈ A,

[−1, 0] if x = y ∈ B.

Then,

F+((0, 3)) =
{
(x, y) : F (x, y) ⊂ (0, 3)

}
=

{
(a, a) : a ∈ A

}
�∈ B

(
R2

)

and

F−((−2, 0)) =
{
(x, y) : F (x, y) ∩ (−2, 0) �= ∅

}
= R2 \

{
(a, a) : a ∈ A

}
�∈ B

(
R2

)
.

Moreover, for any open set G ⊂ R, the sets F−
x (G) and F y−(G) are open.

So, F is neither of any lower Baire class nor of any upper Baire class even if its
sections Fx and F y are lower semicontinuous for any (x, y) ∈ R2.

However, the following theorem is true.

���	�
����
 1� Let
(
X, T (X)

)
and

(
Y, T (Y )

)
be topological spaces and let

(Z, d) be a metric space. If a multifunction F : X×Y � Z is such that {Fx}x∈X

is h-lower equicontinuous and F y is h-lower semicontinuous for each y ∈ Y,
then F is h-lower semicontinuous.
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P r o o f. Fix (x0, y0) ∈ X × Y and ε > 0. Since F y0 is h-lower semicontinuous
at x0, there is U (x0) ∈ B(x0) such that

(5) F (x0, y0) ⊂ B
(
F ((x, y0),

ε
2 )
)
for all x ∈ U (x0).

By the h-lower equicontinuity of {Fx}x∈X at y0, there is V (y0) ∈ B(y0) such that

(6) F (x, y0) ⊂ B
(
F ((x, y), ε2 )

)
for all x ∈ X and y ∈ V (y0).

Let W (x0, y0) = U (x0)× V (y0). Then, by (5) and (6),

F (x0, y0) ⊂ B
(
F
(
(x, y), ε

))
for (x, y) ∈ W (x0, y0),

i.e., F is h-lower semicontinuous at (x0, y0). �

The next theorem is a consequence of Proposition 1 and theorems (3) (ii) and
(4) (ii).

������� 3� Let
(
X, T (X)

)
and

(
Y, T (Y )

)
be topological spaces and let (Z, d) be

a separable metric space. Let F : X×Y � Z be a compact valued multifunction.
If {Fx}x∈X is topologically lower equicontinuous and for every y ∈ Y the section
F y is lower semicontinuous, then the set Du(F ) is of the first category and so
is the set D(F ).

The following has an almost identical proof to that of Proposition 1.

���	�
����
 2� Let
(
X, T (X)

)
and

(
Y, T (Y )

)
be topological spaces and let

(Z, d) be a metric space. If a multifunction F : X×Y � Z is such that {Fx}x∈X

is h-upper equicontinuous and F y is h-upper semicontinuous for each y ∈ Y,
then F is h-upper semicontinuous.

Similarly, as a consequence of Proposition 2 and theorems (3) (i) and (4) (i),
we have

������� 4� Let
(
X, T (X)

)
and

(
Y, T (Y )

)
be topological spaces and let (Z, d) be

a separable metric space. Let F : X×Y � Z be a compact valued multifunction.
If {Fx}x∈X is topologically upper equicontinuous and for every y ∈ Y the section
F y is upper semicontinuous, then the set Dl(F ) is of the first category and so is
the set D(F ).

There is a possibility of some variation in Theorem 3 and Theorem 4.

������� 5� Let (X, �) be a separable metric space, (Y, ρ) a complete metric
space, and (Z, d) a metric space. If a multifunction F : X × Y � Z is such that
{Fx}x∈X is h-equicontinuous and, for each y ∈ Y, the set Dh−l(F

y) is nowhere
dense, then the set Dh−l(F ) is nowhere dense.
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P r o o f. To derive a contradiction, suppose that the set Dh−l(F ) is not nowhere
dense. Then, there is an open set W ⊂ X × Y such that Dh−l(F ) is dense in W.
Let U ⊂ X and V ⊂ Y be nonempty open sets such that U × V ⊂ W. By se-
parability of X, we choose a family {Bn}n∈N of all nonempty open subsets of X

such that Bn ⊂ U for any n ∈ N. Let (x1, y1) ∈ B1 × V be such that F is not
h-lower semicontinuous at (x1, y1). Then,

(7) there is ε > 0 such that for each W (x1, y1) ∈ B((x1, y1)) there is a point
(x, y) ∈ W (x1, y1) such that hl

(
F (x1, y1), F (x, y)

)
≥ ε

2 .

By h-equicontinuity of {Fx}x∈X at y1,

(8) for a given ε, there is an open neighbourhood V (y1) ∈ B(y1) such that
Cl
(
V (y1)

)
⊂ V, and, for any x ∈ X and any y ∈ V (y1), we have h

(
F (x, y1),

F (x, y)
)
< ε

8 .

Then, hl

(
F (x, y1), F (x, y)

)
< ε

8 for any x ∈ X and any y ∈ V (y1), and in par-
ticular, for x = x1,

(9) hl

(
F (x1, y1), F (x1, y)

)
< ε

8 for each y ∈ V (y1),

and for x = an,

(10) hl

(
F (an, y1), F (an, y)

)
< ε

8
for each n ∈ N and y ∈ V (y1).

Moreover, bn ∈ V (y1) for n ∈ N, therefore,

(11) hl

(
F (an, y1), F (an, bn)

)
< ε

8 for each n ∈ N.

From (8), it also follows that hl

(
F (x, y), F (x, y1)

)
< ε

8 for any x ∈ X and
any y ∈ V (y1). In particular, for x = an, we have

(12) hl

(
F (an, y), F (an, y1)

)
< ε

8 for each n ∈ N and y ∈ V (y1).

By (7), we can choose a sequence (an, bn)n∈N such that

(13) limn→∞(an, bn) = (x1, y1), an ∈ B1, bn ∈ V (y1) and

hl

(
F (x1, y1), F (an, bn)

)
≥ ε

2
for each n ∈ N.

Since

hl

(
F (an, y), F (an, bn)

)
≤ hl

(
F (an, y), F (an, y1)

)
+ hl

(
F (an, y1), F (an, bn)

)
,

by (12) and (11), we have

(14) hl

(
F (an, y), F (an, bn)

)
≤ ε

4 for each n ∈ N and y ∈ V (y1).

Since, moreover,

hl

(
F (x1, y), F (an, bn)

)
≥ hl

(
F (x1, y1), F (an, bn)

)
− hl

(
F (x1, y1), F (x1, y)

)
,

from (13) and (9) it follows that

(15) hl

(
F (x1, y), F (an, bn)

)
≥ 3

8 ε for each n ∈ N and y ∈ V (y1).
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Finally,

hl

(
F (x1, y), F (an, y)

)
≥ hl

(
F (x1, y), F (an, bn)

)
− hl

(
F (an, y), F (an, bn)

)
,

and by (15) and (14), we have

hl

(
F (x1, y), F (an, y)

)
≥ ε

8
for each n ∈ N and y ∈ V (y1).

Since limn→∞ an = x1,

(16) F is not h-lower semicontinuous at (x1, y) for each y ∈ V (y1).

Now, let us suppose that (x2, y2) ∈ B2 × V (y1) and F is not h-lower semi-
continuous at (x2, y2). Similarly as in (16), we can select V (y2) ∈ B(y2) such
that Cl

(
V (y2)

)
⊂ V (y1) and F is not h-lower semicontinuous at (x2, y) for each

y ∈ V (y2). Thus, by induction, taking a point (xn, yn) ∈ Bn × V (yn−1) such
that F is not h-lower semicontinuous at (xn, yn), we can select V (yn) ∈ B(yn)
such that

(17) (i) Cl
(
V (yn)

)
⊂ V (yn−1) for each n ∈ N and

(ii) F is not h-lower semicontinuous at (xn, y) for each y ∈ V (yn).

Let y0 ∈
⋂

n∈NClV (yn). Then, by (17), F y0 is not h-lower semicontinuous

at xn for each n ∈ N. The set {xn}n∈N is dense in U and it is a subset

of Dh−l(F
y0). Now, we have the required contradiction because, by assumption,

the set Dh−l(F
y0) is nowhere dense. �

A similar proof works when we replace “h-lower” with “h-upper” in Theo-
rem 5, and we have a dual result.

������� 6� Let (X, �) be a separable metric space, (Y, ρ) a complete metric
space and (Z, d) a metric space. If a multifunction F : X × Y � Z is such that
{Fx}x∈X is h-equicontinuous and for each y ∈ Y the set Dh−u(F

y) is nowhere
dense, then the set Dh−u(F ) is nowhere dense.

It is easy to show the following property.

���	�
����
 3� Let
(
X, T (X)

)
,
(
Y, T (Y )

)
and

(
Z, T (Z)

)
be topological spaces.

Let F : X × Y � Z be a multifunction such that {Fx}x∈X is topologically lower
equicontinuous. Then, F is lower semicontinuous at a point (x0, y0) ∈ X × Y if
and only if the section F y0 is lower semicontinuos at the point x0.

������� 7� Let
(
X, T (X)

)
be a second countable topological space,

(
Y, T (Y )

)
a topological space and

(
Z, T (Z)

)
a second countable topological space. Let

F : X × Y � Z be a multifunction such that {Fx}x∈X is topologically lower
equicontinuous and for each y ∈ Y the set Dl(F

y) is of the first category.
If for each G ∈ T (Z) the set F−(G) has the Baire property, then the set Dl(F )
is of the first category.
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P r o o f. Note that, by the definition, F is not lower semicontinuous at a point
(x0, y0) if and only if (x0, y0) ∈ F−(G) and (x0, y0) �∈ Int

(
F−(G)

)
for some

G ∈ T (Z). Let B = {Bn}n∈N be a base of Z. Then

Dl(F ) =
⋃

n∈N

(
F−(Bn) \ Int

(
F−(Bn)

))
.

Therefore the setDl(F ) has the Baire property and from Proposition 3, it follows
that it is of the first category. �

Like in the case of Proposition 3, it is easy to show the dual proposition.

���	�
����
 4� Let
(
X, T (X)

)
,
(
Y, T (Y )

)
and

(
Z, T (Z)

)
be topological spaces.

Let F : X × Y � Z be a multifunction such that {Fx}x∈X is topologically upper
equicontinuous. Then, F is upper semicontinuous at a point (x0, y0) ∈ X × Y if
and only if the section F y0 is upper semicontinuos at the point x0.

In a similar fashion to that of Theorem 7, we prove a dual result.

������� 8� Let
(
X, T (X)

)
be a second countable topological space,

(
Y, T (Y )

)
a topological space, and

(
Z, T (Z)

)
a second countable topological space. Let

F : X × Y � Z be a compact valued multifunction such that {Fx}x∈X is topo-
logically upper equicontinuous and, for each y ∈ Y, the set Du(F

y) is of the
first category. If for each G ∈ T (Z) the set F+(G) has the Baire property,
then the set Du(F ) is of the first category.

P r o o f. According to the definition, F is not upper semicontinuous at a point
(x0, y0) if and only if (x0, y0) ∈ F+(G) and (x0, y0) �∈ Int

(
F+(G)

)
for some

G ∈ T (Z). Let B be a countable base of Z. Since F (x0, y0) ⊂ G, by compactness,
the set F (x0, y0) is a subset of a finite union of sets from B.

Let G be a family of all finite unions of elements from B. Then G is also
countable. We can enumerate G by {G1, G2, . . . , Gn, . . . }. Then,

Du(F ) =
⋃

k∈N

(
F+(Gk) \ Int

(
F+(Gk)

))
.

Therefore the setDu(F ) has the Baire property and from Proposition 4, it follows
that it is of the first category. �
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