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CERONE’S GENERALIZATIONS

OF STEFFENSEN’S INEQUALITY

Josip Pečarić — Anamarija Perušić — Ksenija Smoljak

ABSTRACT. In this paper, generalizations of Steffensen’s inequality with bo-
unds involving any two subintervals motivated by Cerone’s generalizations are
given. Furthermore, weaker conditions for Cerone’s generalization as well as
for new generalizations obtained in this paper are given. Moreover, functionals
defined as the difference between the left-hand and the right-hand side of these

generalizations are studied and new Stolarsky type means related to them are
obtained.

1. Introduction

Since its appearance in 1918, Steffensen’s inequality has been applied to a wide
range of topics across mathematics and statistics. Well-known S t e f f e n s e n’ s
inequality reads (see [10]):

������� 1.1� Suppose that f is nonincreasing and g is integrable on [a, b] with

0 ≤ g ≤ 1 and λ =
∫ b
a
g(t) dt. Then, we have

b∫
b−λ
f(t) dt ≤

b∫
a

f(t)g(t) dt ≤
a+λ∫
a

f(t) dt. (1.1)

The inequalities are reversed for f nondecreasing.

Over the years, Steffensen’s inequality has been generalized in many ways.
Some of these generalizations were given by C e r o n e, M e r c e r, P e č a r i ć ,
W u and S r i v a s t a v a (see [1], [3], [6], [11], respectively). Extensive overviews
of generalizations of Steffensen’s inequality can be found in [5] and [9].
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First, let us recall Cerone’s generalization of Steffensen’s inequality which
allows bounds involving any two subintervals instead of restricting them to in-
clude the end points. Cerone’s generalization is given in the following theorem
(see [1]).

������� 1.2� Let f, g : [a, b] → R be integrable functions on [a, b], and let f

be nonincreasing. Further, let 0 ≤ g ≤ 1 and λ =
∫ b
a
g(t) dt = di − ci, where

[ci, di] ⊆ [a, b] for i = 1, 2 and d1 ≤ d2. Then
d2∫
c2

f(t) dt− r(c2, d2) ≤
b∫
a

f(t)g(t) dt ≤
d1∫
c1

f(t) dt+R(c1, d1) (1.2)

holds, where

r(c2, d2) =

b∫
d2

(
f(c2)− f(t)

)
g(t) dt ≥ 0

and

R(c1, d1) =

c1∫
a

(
f(t)− f(d1)

)
g(t) dt ≥ 0.

As noted by C e r o n e in [1], if in Theorem 1.2 we take

c1 = a and so d1 = a+ λ, then R(a, a+ λ) = 0.

Further, taking

d2 = b and so c2 = b− λ, then r(b − λ, b) = 0.

Thus, we obtain Steffensen’s inequality.

Since

λ =

b∫
a

g(t) dt and 0 ≤ g ≤ 1,

then

c2 = b− λ ≥ a and d1 = a+ λ ≤ b giving [ci, di] ⊆ [a, b].

Hence, Theorem 1.2 is a generalization of Steffensen’s inequality for two equal
length subintervals that are not necessarily at the ends of [a, b].

The aim of this paper is to give generalizations of Steffensen’s inequality with
bounds involving any two subintervals motivated by generalizations given in [8].
Moreover, the aim is also to give weaker conditions for Cerone’s generalization
as well as for new generalizations obtained in this paper.

First, let us recall some notions; log denotes the natural logarithm function,
id is the identity function on the actual set, and by dx we denote the Lebesgue
measure on R.
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2. Main results

To generalize Cerone’s result for the function f/k, we need the following lemma.

����	 2.1� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b]→ R be integrable functions on [a, b]. Further, let [c, d] ⊆ [a, b] with∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, and let z ∈ [a, b]. Then, the following identity

holds
d∫
c

f(t)h(t)dt −
b∫
a

f(t)g(t) dt =

c∫
a

(
f(z)

k(z)
− f(t)

k(t)

)
g(t)k(t) dt

+

d∫
c

(
f(t)

k(t)
− f(z)

k(z)

)
k(t)

[
h(t)− g(t)

]
dt

+

b∫
d

(
f(z)

k(z)
− f(t)

k(t)

)
g(t)k(t) dt. (2.1)

P r o o f. We have
d∫
c

f(t)h(t) dt−
b∫
a

f(t)g(t) dt

=

d∫
c

k(t)
[
h(t)− g(t)

]f(t)
k(t)

dt−
⎡
⎣ c∫
a

f(t)

k(t)
g(t)k(t) dt+

b∫
d

f(t)

k(t)
g(t)k(t) dt

⎤
⎦

=

c∫
a

(
f(z)

k(z)
− f(t)

k(t)

)
g(t)k(t) dt+

d∫
c

(
f(t)

k(t)
− f(z)

k(z)

)
k(t)

[
h(t)− g(t)

]
dt

+

b∫
d

(
f(z)

k(z)
− f(t)

k(t)

)
g(t)k(t) dt

+
f(z)

k(z)

⎡
⎣ d∫
c

k(t)h(t) dt −
c∫
a

g(t)k(t) dt−
d∫
c

k(t)g(t) dt −
b∫
d

g(t)k(t) dt

⎤
⎦. (2.2)

Since d∫
c

k(t)h(t) dt =

b∫
a

k(t)g(t) dt,

we have

f(z)

k(z)

⎡
⎣ d∫
c

k(t)h(t) dt−
c∫
a

g(t)k(t) dt−
d∫
c

k(t)g(t) dt−
b∫
d

g(t)k(t) dt

⎤
⎦= 0.

Hence, (2.1) follows from (2.2). �
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In the following theorems we will give a generalization of Cerone’s result for
the function f/k.

������� 2.1� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Further, let 0 ≤ g ≤ h and
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b].

Then
b∫
a

f(t)g(t) dt ≤
d∫
c

f(t)h(t) dt +Rg(c, d) (2.3)

holds, where

Rg(c, d) =

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt ≥ 0. (2.4)

If f/k is a nondecreasing function, then the inequalities in (2.3) and (2.4) are
reversed.

P r o o f. Since f/k is nonincreasing, k is positive and 0 ≤ g ≤ h, we have

d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt ≥ 0, (2.5)

b∫
d

(
f(d)

k(d)
− f(t)

k(t)

)
g(t)k(t) dt ≥ 0 (2.6)

and Rg(c, d) ≥ 0. Now, from (2.1) for z = d, (2.5) and (2.6), we have

d∫
c

f(t)h(t)dt −
b∫
a

f(t)g(t)dt+

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt =

d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt+

b∫
d

(
f(d)

k(d)
− f(t)

k(t)

)
g(t)k(t) dt ≥ 0. (2.7)

Hence, (2.3) holds. �

������� 2.2� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Further, let 0 ≤ g ≤ h and
∫ d
c
h(t)k(t)dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b].
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Then
d∫
c

f(t)h(t) dt− rg(c, d) ≤
b∫
a

f(t)g(t) dt (2.8)

holds, where

rg(c, d) =

b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt ≥ 0. (2.9)

If f/k is a nondecreasing function, then the inequalities in (2.8) and (2.9) are
reversed.

P r o o f. Since f/k is nonincreasing, k is positive and 0 ≤ g ≤ h, we have

c∫
a

(
f(t)

k(t)
− f(c)

k(c)

)
k(t)g(t) dt ≥ 0, (2.10)

d∫
c

(
f(c)

k(c)
− f(t)

k(t)

)
k(t)

[
h(t)− g(t)

]
dt ≥ 0 (2.11)

and rg(c, d) ≥ 0. Now, from (2.1) for z = c, (2.10) and (2.11), we have

b∫
a

f(t)g(t) dt−
d∫
c

f(t)h(t) dt +

b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt =

c∫
a

(
f(t)

k(t)
− f(c)

k(c)

)
g(t)k(t) dt +

d∫
c

(
f(c)

k(c)
− f(t)

k(t)

)
k(t)

[
h(t)− g(t)

]
dt ≥ 0. (2.12)

Hence, (2.8) holds. �

Remark 2.1� If we take c = a and d = a + λ in Theorem 2.1, we obtain
a Mercer’s generalization of the right-hand Steffensen’s inequality (see [3, The-
orem 3]). If we take c = b − λ and d = b in Theorem 2.2, we obtain a similar
generalization of the left-hand Steffensen’s inequality which is obtained in [8]
from a generalization given by P e č a r i ć in [6] (see [8, Theorem 2.7]).

In [8], the authors proved a generalization of W u and S r i v a s t a v a
refinement of Steffensen’s inequality for the nonincreasing function f/k. In the
following theorems we will generalize these results to obtain bounds which
involve any two subintervals.
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������� 2.3� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Further, let 0 ≤ g ≤ h and
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b].

Then

b∫
a

f(t)g(t) dt ≤
d∫
c

f(t)h(t) dt −
d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt+Rg(c, d)

≤
d∫
c

f(t)h(t) dt +Rg(c, d) (2.13)

holds, where Rg(c, d) is defined by (2.4).

If f/k is a nondecreasing function, then the inequality in (2.13) is reversed.

P r o o f. Similar to the proof of Theorem 2.1. �

������� 2.4� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Further, let 0 ≤ g ≤ h and
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b].

Then
d∫
c

f(t)h(t) dt− rg(c, d)

≤
d∫
c

f(t)h(t) dt +

d∫
c

(
f(c)

k(c)
− f(t)

k(t)

)
k(t)

[
h(t)−g(t)] dt− rg(c, d)

≤
b∫
a

f(t)g(t) dt (2.14)

holds, where rg(c, d) is defined by (2.9).

If f/k is a nondecreasing function, then the inequality in (2.14) is reversed.

P r o o f. Similar to the proof of Theorem 2.2. �

Remark 2.2� If we take c = a and d = a + λ in Theorem 2.3, or c = b − λ
and d = b in Theorem 2.4, we obtain generalizations of W u and S r i v a s t a v a
refinement of Steffensen’s inequality given in [8].

In [4], M i l o v a n o v i ć and P e č a r i ć gave weaker conditions for the func-
tion g in Steffensen’s inequality. Motivated by their result, we will give weaker
conditions for the function g in our previous theorems.
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������� 2.5� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Let
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b]. If

x∫
c

k(t)g(t) dt ≤
x∫
c

k(t)h(t) dt, c ≤ x ≤ d (2.15)

and
b∫
x

k(t)g(t) dt ≥ 0, d ≤ x ≤ b, (2.16)

then
b∫
a

f(t)g(t) dt ≤
d∫
c

f(t)h(t) dt+

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt. (2.17)

P r o o f. Using the identity (2.7) and applying integration by parts, we obtain

d∫
c

f(t)h(t) dt−
b∫
a

f(t)g(t) dt+

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt =

−
d∫
c

⎛
⎝ x∫
c

k(t)
[
h(t)−g(t)] dt

⎞
⎠d(f(x)

k(x)

)
−

b∫
d

⎛
⎝ b∫
x

g(t)k(t) dt

⎞
⎠d(f(x)

k(x)

)
≥ 0, (2.18)

when (2.16) holds. �

Taking c = a and d = a+λ in Theorem 2.5, we obtain the following theorem.

������� 2.6� Let k be a positive integrable function on [a, b], let f, g, h :
[a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing. Let λ

be defined by
∫ a+λ
a

h(t)k(t) dt =
∫ b
a
g(t)k(t) dt. If

x∫
a

k(t)g(t) dt ≤
x∫
a

k(t)h(t) dt, a ≤ x ≤ a+ λ (2.19)

and b∫
x

k(t)g(t) dt ≥ 0, a+ λ ≤ x ≤ b, (2.20)

then
b∫
a

f(t)g(t) dt ≤
a+λ∫
a

f(t)h(t) dt. (2.21)
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Remark 2.3� In [8], the authors proved that, for a non-negative function h,
the conditions (2.19) and (2.20) are equivalent to

x∫
a

k(t)g(t) dt ≤
x∫
a

k(t)h(t) dt and

b∫
x

k(t)g(t) dt ≥ 0, for all x ∈ [a, b].

Hence, in Theorem 2.6, we obtain the sufficient conditions given in [8, Theo-
rem 2.17].

������� 2.7� Let k be a positive integrable function on [a, b], and f, g, h :
[a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Let
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b]. If

d∫
x

k(t)g(t) dt ≤
d∫
x

k(t)h(t) dt, c ≤ x ≤ d (2.22)

and x∫
a

k(t)g(t) dt ≥ 0, a ≤ x ≤ c, (2.23)

then
d∫
c

f(t)h(t) dt −
b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt ≤

b∫
a

f(t)g(t) dt. (2.24)

P r o o f. Using the identity (2.12) and applying integration by parts, we obtain

b∫
a

f(t)g(t) dt−
d∫
c

f(t)h(t) dt +

b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt =

−
c∫
a

⎛
⎝ x∫
a

g(t)k(t) dt

⎞
⎠d(f(x)

k(x)

)
−
d∫
c

⎛
⎝ d∫
x

k(t)
[
h(t)− g(t)

]
dt

⎞
⎠d(f(x)

k(x)

)
≥ 0, (2.25)

when (2.23) holds. �

Taking c = b− λ and d = b in Theorem 2.7, we obtain the following theorem.

������� 2.8� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.
Let λ be defined by

b∫
b−λ

h(t)k(t) dt =

b∫
a

g(t)k(t) dt.
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If
b∫
x

k(t)g(t) dt ≤
b∫
x

k(t)h(t) dt, b− λ ≤ x ≤ b (2.26)

and x∫
a

k(t)g(t) dt ≥ 0, a ≤ x ≤ b− λ, (2.27)

then
b∫

b−λ
f(t)h(t) dt ≤

b∫
a

f(t)g(t) dt. (2.28)

Remark 2.4� In [8], the authors proved that for a non-negative function h,
the conditions (2.26) and (2.27) are equivalent to

b∫
x

k(t)g(t) dt ≤
b∫
x

k(t)h(t) dt and

x∫
a

k(t)g(t) dt ≥ 0, for all x ∈ [a, b].

Hence, in Theorem 2.8, we obtain the sufficient conditions given in [8, Theo-
rem 2.18].

Taking k ≡ 1 and h ≡ 1 in Theorems 2.5 and 2.7, we obtain weaker conditions
for the function g in Cerone’s generalization of Steffensen’s inequality.

������� 2.9� Let f, g : [a, b] → R be integrable functions on [a, b] such that f

is nonincreasing. Let λ = d− c =
∫ b
a
g(t) dt, where [c, d] ⊆ [a, b]. If

x∫
c

g(t) dt ≤ x− c, c ≤ x ≤ d and

b∫
x

g(t) dt ≥ 0, d ≤ x ≤ b,

then b∫
a

f(t)g(t) dt ≤
d∫
c

f(t) dt+

c∫
a

(
f(t)− f(d)

)
g(t) dt. (2.29)

������� 2.10� Let f, g : [a, b] → R be integrable functions on [a, b] such that

f is nonincreasing. Let λ = d− c =
∫ b
a
g(t) dt, where [c, d] ⊆ [a, b]. If

d∫
x

g(t) dt ≤ d− x, c ≤ x ≤ d and

x∫
a

g(t) dt ≥ 0, a ≤ x ≤ c, (2.30)

then d∫
c

f(t) dt−
b∫
d

(
f(c)− f(t)

)
g(t) dt ≤

b∫
a

f(t)g(t) dt. (2.31)
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In the following theorems, we will give weaker conditions for Theorem 2.3 and
Theorem 2.4.

������� 2.11� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Let
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt,where [c, d] ⊆ [a, b]. If (2.15) and (2.16) hold,

then

b∫
a

f(t)g(t) dt ≤
d∫
c

f(t)h(t) dt +

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt

−
d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt

≤
d∫
c

f(t)h(t) dt +

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt. (2.32)

P r o o f. Using the identity (2.1) for z = d and applying integration by parts,
we obtain

d∫
c

f(t)h(t) dt−
b∫
a

f(t)g(t) dt+

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt

−
d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt

=

b∫
d

(
f(d)

k(d)
− f(t)

k(t)

)
g(t)k(t) dt

= −
b∫
d

⎛
⎝ b∫
x

g(t)k(t) dt

⎞
⎠d(f(x)

k(x)

)
≥ 0 (2.33)

when
b∫
x

k(t)g(t) dt ≥ 0, d ≤ x ≤ b. (2.34)
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Furthermore,

d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt =

−
d∫
c

⎛
⎝ x∫
c

k(t)
[
h(t)− g(t)

]
dt

⎞
⎠d(f(x)

k(x)

)
≥ 0 (2.35)

when
x∫
c

k(t)g(t) dt ≤
x∫
c

k(t)h(t) dt, c ≤ x ≤ d. (2.36)

Hence, (2.32) holds when (2.16) holds. �

������� 2.12� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Let
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt,where [c, d] ⊆ [a, b]. If

b∫
x

k(t)g(t) dt ≥ 0 for d ≤ x ≤ b, (2.37)

then
b∫
a

f(t)g(t) dt ≤
d∫
c

f(t)h(t) dt +

c∫
a

(
f(t)

k(t)
− f(d)

k(d)

)
g(t)k(t) dt

−
d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt. (2.38)

If we additionally have

x∫
c

k(t)g(t) dt ≤
x∫
c

k(t)h(t) dt for c ≤ x ≤ d, (2.39)

then (2.32) holds.

P r o o f. Similar to the proof of Theorem 2.11. �
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������� 2.13� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Let
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b]. If (2.22) and (2.23) hold,

then

d∫
c

f(t)h(t) dt−
b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt

≤
d∫
c

f(t)h(t) dt −
b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt

+

d∫
c

(
f(c)

k(c)
− f(t)

k(t)

)
k(t)

[
h(t)− g(t)

]
dt

≤
b∫
a

f(t)g(t) dt. (2.40)

P r o o f. Similar to the proof of Theorem 2.11 using the identity (2.1) for z=c.
�

������� 2.14� Let k be a positive integrable function on [a, b], and let
f, g, h : [a, b] → R be integrable functions on [a, b] such that f/k is nonincreasing.

Let
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where [c, d] ⊆ [a, b]. If

x∫
a

k(t)g(t) dt ≥ 0 for a ≤ x ≤ c, (2.41)

then

d∫
c

f(t)h(t) dt −
b∫
d

(
f(c)

k(c)
− f(t)

k(t)

)
g(t)k(t) dt

+

d∫
c

(
f(c)

k(c)
− f(t)

k(t)

)
k(t)

[
h(t)− g(t)

]
dt ≤

b∫
a

f(t)g(t) dt. (2.42)

If we additionally have

d∫
x

k(t)g(t) dt ≤
d∫
x

k(t)h(t) dt for c ≤ x ≤ d, (2.43)

then (2.40) holds.
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P r o o f. Similar to the proof of Theorem 2.13. �

3. n-exponential convexity and exponential convexity

First, let us recall some definitions and properties of exponentially convex
functions. For more details, see [2] and [7].


���
����
 3.1� A function ψ : I → R is n-exponentially convex in the Jensen
sense on I if n∑

i,j=1

ξiξjψ

(
xi + xj

2

)
≥ 0 (3.1)

holds for all choices ξi ∈ R and xi ∈ I, i = 1, . . . , n.

A function ψ : I → R is n-exponentially convex if it is n-exponentially convex
in the Jensen sense and continuous on I.

Remark 3.1� n-exponentially convex function in the Jensen sense is k-expo-
nentially convex in the Jensen sense for every k ∈ N, k ≤ n.


���
����
 3.2� A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

Remark 3.2� A positive function is log-convex in the Jensen sense if and only
if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

����������
 3.1� If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2,
x1 �= x2, y1 �= y2, then the following inequality

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
is valid.

If the function f is concave, the inequality is reversed.


���
����
 3.3� Let f be a real-valued function defined on [a, b]. Thenth order
divided difference of f at distinct points x0, x1, . . . , xn in [a, b] is defined
recursively by

[xj ; f ] = f(xj), j = 0, . . . , n,

and

[x0, x1, . . . , xn; f ] =
[x1, . . . , xn; f ]− [x0, . . . , xn−1; f ]

xn − x0
.
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Remark 3.3� The value [x0, x1, . . . , xn; f ] is independent from the order
of the points x0, . . . , xn. The previous definition can be extended to include
the case in which some or all of the points coincide by assuming that
x0 ≤ · · · ≤ xn and letting

[ x, . . . , x︸ ︷︷ ︸
j+1 times

; f ] =
f (j)(x)

j!
,

provided that f (j) exists.

Motivated by inequalities (2.3), (2.8), (2.13) and (2.14), under the assump-
tions of Theorems 2.1, 2.2, 2.3 and 2.4, we define the following functionals:

L1(f) =

b∫
a

f(t)g(t) dt−
d∫

c

f(t)h(t) dt−Rg(c, d), (3.2)

L2(f) =

d∫
c

f(t)h(t) dt− rg(c, d)−
b∫

a

f(t)g(t) dt, (3.3)

L3(f) =

b∫
a

f(t)g(t) dt−
d∫

c

f(t)h(t) dt

+

d∫
c

(
f(t)

k(t)
− f(d)

k(d)

)
k(t)

[
h(t)− g(t)

]
dt−Rg(c, d), (3.4)

L4(f) =

d∫
c

f(t)h(t) dt

+

d∫
c

(
f(c)

k(c)
− f(t)

k(t)

)
k(t)

[
h(t)− g(t)

]
dt− rg(c, d)−

b∫
a

f(t)g(t) dt. (3.5)

Remark 3.4� The functionals L1 and L2 can also be considered under the
assumptions of Theorems 2.5 and 2.7, respectively. The functional L3 can also be
considered under the conditions of Theorems 2.11 and 2.12, and the functional L4

can also be considered under the assumptions of Theorems 2.13 and 2.14.

Remark 3.5� Li(f) ≥ 0, i = 1, . . . , 4 for all nondecreasing functions f/k.

Now, we give mean value theorems for defined functionals.

������� 3.1� Let f, g, h and k be integrable functions on [a, b] with k > 0, and
let f/k ∈ C1[a, b]. Further, let 0 ≤ g ≤ h and

d∫
c

h(t)k(t) dt =

b∫
a

g(t)k(t) dt, where [c, d] ⊆ [a, b].
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Then, there exists ξ ∈ [a, b] such that

b∫
a

f(t)g(t) dt−
d∫
c

f(t)h(t) dt −Rg(c, d)

=
f ′(ξ)k(ξ)− f(ξ)k′(ξ)

k2(ξ)

×
⎡
⎣ b∫
a

tk(t)g(t) dt −
d∫
c

tk(t)h(t) dt −
c∫
a

(t− d)k(t)g(t) dt

⎤
⎦, (3.6)

that is,

L1(f) =
f ′(ξ)k(ξ)− f(ξ)k′(ξ)

k2(ξ)
· L1(id · k).

P r o o f. Since
(
f
k

)′
is continuous on [a, b], there exist

m = min
x∈[a,b]

f ′(x)k(x)− f(x)k′(x)
k2(x)

and M = max
x∈[a,b]

f ′(x)k(x)− f(x)k′(x)
k2(x)

.

Now, we consider the functions F1, F2 : [a, b] → R defined by

F1(x) =Mxk(x)− f(x) and F2(x) = f(x)−mxk(x).

Note that F1/k, F2/k are nondecreasing functions, so, by Remark 3.5, we have

L1(F1) ≥ 0, L1(F2) ≥ 0.

Further, from Theorem 2.1, we get

L1(f) ≤ML1(id · k), (3.7)

L1(f) ≥ mL1(id · k), (3.8)

that is,
mL1(id · k) ≤ L1(f) ≤ML1(id · k).

If L1(id · k) = 0, then L1(f) = 0, and (3.6) holds for all ξ ∈ [a, b]. Otherwise,

m ≤ L1(f)

L1(id · k) ≤M.

Since
(
f(x)/k(x)

)′
is continuous, there exists ξ ∈ [a, b] such that (3.6) holds and

the proof is complete. �
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������� 3.2� Let f, g, h and k be integrable functions on [a, b] with k > 0, and

let f/k ∈ C1[a, b]. Further, let 0 ≤ g ≤ h and
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt,

where [c, d] ⊆ [a, b]. Then, there exists ξ ∈ [a, b] such that

Li(f) =
f ′(ξ)k(ξ)− f(ξ)k′(ξ)

k2(ξ)
· Li(id · k), i = 2, 3, 4.

P r o o f. Similar to the proof of Theorem 3.1. �

������� 3.3� Let f, f̂, g, h and k be integrable functions on [a, b] with k > 0,

and let f(x)/k(x), f̂(x)/k(x) ∈ C1[a, b] such that f̂ ′(x)k(x)− f̂(x)k′(x) �= 0 for

every x ∈ [a, b]. Further, let 0 ≤ g ≤ h and
∫ d
c
h(t)k(t) dt =

∫ b
a
g(t)k(t) dt, where

[c, d] ⊆ [a, b]. Then, there exists ξ ∈ [a, b] such that

Li(f)

Li(f̂)
=
f ′(ξ)k(ξ)− f(ξ)k′(ξ)
f̂ ′(ξ)k(ξ)− f̂ (ξ)k′(ξ)

, i = 1, . . . , 4. (3.9)

P r o o f. For the functionals Li, i = 1, . . . , 4, we define

Φi(t) = f(t)Li(f̂)− f̂(t)Li(f).

Note that
Φi(t)

k(t)
=
f(t)

k(t)
Li(f̂)− f̂(t)

k(t)
Li(f) ∈ C1[a, b].

By Theorems 3.1 and 3.2, there exists ξ ∈ [a, b] such that

Li(Φi) =
Φ′
i(ξ)k(ξ)− Φi(ξ)k

′(ξ)
k2(ξ)

Li(id · k).

From Li(Φi) = 0 it follows that

Φ′
i(ξ)k(ξ)− Φi(ξ)k

′(ξ) = 0,

That is,[
f ′(ξ)k(ξ)− f(ξ)k′(ξ)

]
Li(f̂)−

[
f̂ ′(ξ)k(ξ)− f̂(ξ)k′(ξ)

]
Li(f) = 0,

and (3.9) is proved. �

Now, we will use an idea from [2] to give an elegant method of producing
n-exponentially convex functions and exponentially convex functions applying
defined functionals on a given family with the same property. The following
theorem and corollary are the same as in [8]; only for other functionals and
for the reader’s convenience, we will recall them without proof. In the following,
I and J will denote intervals in R.
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������� 3.4� Let k be a positive function, and Ω = {fp/k : p ∈ J} be
a family of functions defined on I such that the function p 	→ [x0, x1; fp/k]
is n-exponentially convex in the Jensen sense on J for mutually different points
x0, x1 ∈ I. Let Li, i = 1, . . . , 4 be linear functionals defined by (3.2)–(3.5).
Then, p 	→Li(fp) is an n-exponentially convex function in the Jensen sense on J.

If the function p 	→ Li(fp) is continuous on J, then it is n-exponentially
convex on J.

Remark 3.6� If in Theorem 3.4 we have that p 	→ [x0, x1; fp/k] is exponentially
convex in the Jensen sense on J , then p 	→ Li(fp) is an exponentially convex
function in the Jensen sense on J . If p 	→ Li(fp) is continuous on J, then it is
exponentially convex on J.

������	�� 3.1� Let k be a positive function, and Ω = {fp/k : p ∈ J} be
a family of functions defined on I such that the function p 	→ [x0, x1; fp/k] is
2-exponentially convex in the Jensen sense on J for mutually different points
x0, x1 ∈ I. Let Li, i = 1, . . . , 4 be linear functionals defined by (3.2)–(3.5).
Then, the following statements hold:

(i) If the function p 	→ Li(fp) is continuous on J, then it is a 2-exponentially
convex function on J. If p 	→ Li(fp) is additionally strictly positive, then
it is also log-convex on J. Furthermore, the following inequality holds true:

[
Li(fs)

]t−r ≤ [
Li(fr)

]t−s[
Li(ft)

]s−r
(3.10)

for every choice r, s, t ∈ J, such that r < s < t.

(ii) If the function p 	→ Li(fp) is strictly positive and differentiable on J,
then, for every p, q, u, v ∈ J such that p ≤ u and q ≤ v, we have

Mp,q(Li,Ω) ≤Mu,v(Li,Ω), (3.11)

where

Mp,q(Li,Ω) =

⎧⎪⎪⎨
⎪⎪⎩

(
Li(fp)
Li(fq)

) 1
p−q

, p �= q;

exp

(
d
dpLi(fp)

Li(fp)

)
, p = q

(3.12)

for fp/k, fq/k ∈ Ω.

Remark 3.7� The results from Theorem 3.4 and Corollary 3.1 still hold when
x0 = x1 ∈ I. This follows from Remark 3.3.
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4. Applications to Stolarsky type means

In this section, we will apply general results from the previous section to sev-
eral families of functions which fulfill conditions of the obtained general results
to get other exponentially convex functions and Stolarsky means.

Example 4.1. Let k be a positive integrable function, and let

Ω1 =
{
fp/k : (0,∞) → R : p ∈ R

}
be a family of functions where fp is defined by

fp(x) =

{
xp

p k(x), p �= 0;

log x k(x), p = 0.

Since
d

dx

fp(x)

k(x)
= xp−1 = e(p−1) log x > 0 for x > 0,

then fp/k is a nondecreasing function for x > 0 and p 	→ d
dx

fp(x)
k(x) is exponentially

convex by definition. Similarly as in the proof of Theorem 3.4, we have that
p 	→ [x0, x1; fp/k] is exponentially convex (and so, exponentially convex in the
Jensen sense). Using Remark 3.6, we conclude that p 	→ Li(fp), i = 1, . . . , 4 are
exponentially convex in the Jensen sense. It is easy to verify that these mappings
are continuous (although the mapping p 	→ fp is not continuous for p = 0),
so, they are exponentially convex.

For this family of functions, Mp,q(L1,Ω1) from (3.12) becomes

for p �= q:

Mp,q(L1,Ω1) =

(
q

p

∫ b

a
tpk(t)g(t)dt−∫ d

c
tpk(t)h(t)dt−∫ c

a
(tp−dp)k(t)g(t)dt∫ b

a
tqk(t)g(t)dt−∫ d

c
tqk(t)h(t)dt−∫ c

a
(tq−dq)k(t)g(t)dt

) 1
p−q

,

for p �= 0:

Mp,p(L1,Ω1) =

exp

(∫ b

a
tp log tk(t)g(t)dt−∫ d

c
tplog tk(t)h(t)dt−∫ c

a
(tp log t−dp log d)k(t)g(t)dt∫ b

a
tpk(t)g(t)dt−∫ d

c
tpk(t)h(t)dt−∫ c

a
(tp − dp)k(t)g(t)dt

− 1

p

)
,

M0,0(L1,Ω1) =

exp

(
1

2

∫ b

a
log2 tk(t)g(t)dt−∫ d

c
log2 tk(t)h(t)dt−∫ c

a
(log2 t−log2 d)k(t)g(t)dt∫ b

a
log tk(t)g(t)dt−∫ d

c
log t k(t)h(t)dt−∫ c

a
(log t−log d)k(t)g(t)dt

)
.
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For other functionals, an explicit shape of Mp,q(Li,Ω1), i = 2, 3, 4, can be
obtained in a similar way from the general functional notation given by

Mp,q(Li,Ω1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
Li(fp)
Li(fq)

) 1
p−q

, p �= q;

exp

(
Li(fp

f0
k )

Li(fp)
− 1

p

)
, p = q �= 0;

exp

(
Li(f0

f0
k )

2Li(f0)

)
, p = q = 0.

Applying Theorem 3.3 for functions fp/k, fq/k ∈ Ω1, we obtain that there
exists ξ ∈ [a, b] such that

ξp−q =
Li(fp)

Li(fq)
, i = 1, . . . , 4.

Since the function ξ 	→ ξp−q is invertible for p �= q, we have

a ≤
(
Li(fp)

Li(fq)

) 1
p−q

≤ b, i = 1, . . . , 4

which together with the fact that Mp,q(Li,Ω1) is continuous, symmetric and
monotonic shows that Mp,q(Li,Ω1), i = 1, . . . , 4 are means.

Example 4.2. Let k be a positive integrable function and let

Ω2 =
{
gp/k : R → (0,∞) : p ∈ R

}
be a family of functions where gp is defined by

gp(x) =

⎧⎨
⎩
epx

p k(x), p �= 0;

x k(x), p = 0.

Since d
dx

gp(x)
k(x) = epx > 0, gp/k is a nondecreasing function on R for every p ∈ R

and p 	→ d
dx

gp(x)
k(x)

is exponentially convex by definition. As in Example 4.1,

we conclude that p 	→ Li(gp), i = 1, . . . , 4, are exponentially convex.

For this family, from (3.12), we have

for p �= q:

Mp,q(L1,Ω2) =(
q

p

∫ b

a
eptk(t)g(t)dt −∫ d

c
eptk(t)h(t)dt −∫ c

a
(ept − edt)k(t)g(t)dt∫ b

a
eqtk(t)g(t)dt −∫ d

c
eqtk(t)h(t)dt −∫ c

a
(eqt − edt)k(t)g(t)dt

) 1
p−q

,

71
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for p �= 0:

Mp,q(L1,Ω2) =

exp

(∫ b

a
epttk(t)g(t)dt −∫ d

c
epttk(t)h(t)dt −∫ c

a
(eptt− edtt)k(t)g(t)dt∫ b

a
eptk(t)g(t)dt −∫ d

c
eptk(t)h(t)dt −∫ c

a
(ept − edt)k(t)g(t)dt

− 1

p

)
,

M0,0(L1,Ω2) =

exp

(
1

2

∫ b

a
t2k(t)g(t)dt −∫ d

c
t2k(t)h(t)dt −∫ c

a
(t2 − d2)k(t)g(t)dt∫ b

a
tk(t)g(t)dt −∫ d

c
tk(t)h(t)dt −∫ c

a
(t− d)k(t)g(t)dt

)
.

From (3.11), it follows that Mp,q(L1,Ω2) is monotonic in parameters p and q.

For other functionals, an explicit shape of Mp,q(Li,Ω2), i = 2, 3, 4, can be
obtained in a similar way from the general functional notation given by

Mp,q(Li,Ω2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Li(gp)
Li(gq)

) 1
p−q

, p �= q;

exp
(
Li(id·gp)
Li(gp)

− 1
p

)
, p = q �= 0;

exp
(
Li(id·g0)
2Li(g0)

)
, p = q = 0.

Theorem 3.3 applied to the functions gp/k, gq/k ∈ Ω2 and functionals Li,
i = 1, . . . , 4, implies that

Sp,q(Li,Ω2) = logMp,q(Li,Ω2)

satisfies a ≤ Sp,q(Li,Ω2) ≤ b, so Sp,q(Li,Ω2) is a mean, and by (3.11), it is
monotonic.

Example 4.3. Let k be a positive integrable function and let

Ω3 =
{
φp/k : (0,∞) → (0,∞) : p ∈ (0,∞)

}
be a family of functions, where φp is defined by

φp(x) =

{−p−x

log p k(x), p �= 1;

xk(x), p = 1.

Since d
dx

φp(x)
k(x)

= p−x > 0 for p, x ∈ (0,∞), φp/k is a nondecreasing function

for x > 0. d
dx

φp(x)
k(x) = p−x is the Laplace transformation of a non-negative func-

tion, that is, p−x = 1
Γ(x)

∫∞
0
e−pttx−1 dt, so p 	→ d

dx
φp(x)
k(x) is exponentially convex

on (0,∞). As in Example 4.1, we conclude that p 	→ Li(φp), i = 1, . . . , 4, are
exponentially convex.
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For this family of functions, from (3.12), we have

for p �= q:

Mp,q(L1,Ω3) =(
log q

log p

∫ b

a
p−tk(t)g(t)dt−∫ d

c
p−tk(t)h(t)dt−∫ c

a
(p−t − p−d)k(t)g(t)dt∫ b

a
q−tk(t)g(t)dt−∫ d

c
q−tk(t)h(t)dt−∫ c

a
(q−t−q−d)k(t)g(t)dt

) 1
p−q

,

for p �= 1:

Mp,p(L1,Ω3) =

exp

(
−1

p

∫ b

a
tp−tk(t)g(t)dt−∫ d

c
tp−tk(t)h(t)dt−∫ c

a
(tp−t−tp−d)k(t)g(t)dt∫ b

a
p−tk(t)g(t)dt−∫ d

c
p−tk(t)h(t)dt−∫ c

a
(p−t−p−d)k(t)g(t)dt

− 1

p log p

)
,

M1,1(L1,Ω3) =

exp

(
−1

2

∫ b

a
t2k(t)g(t)dt−∫ d

c
t2k(t)h(t)dt−∫ c

a
(t2−d2)k(t)g(t)dt∫ b

a
tk(t)g(t)dt−∫ d

c
tk(t)h(t)dt−∫ c

a
(t−d)k(t)g(t)dt

)
.

For other functionals, an explicit shape can be obtained from a general func-
tional notation given by

Mp,q(Li,Ω3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
Li(φp)
Li(φq)

) 1
p−q

, p �= q;

exp
(

−Li(id·φp)
pLi(φp)

− 1
p log p

)
, p = q �= 1;

exp
(

−Li(id·φ1)
2Li(φ1)

)
, p = q = 1.

Again, using Theorem 3.3, it follows that

Sp,q(Li,Ω3) = −L(p, q) logMp,q(Li,Ω3)

satisfies a ≤ Sp,q(Li,Ω3) ≤ b, so Sp,q(Li,Ω3) is a mean, and by (3.11), mono-
tonic. L(p, q) is the logarithmic mean defined by

L(p, q) =

{
p−q

log p−log q , p �= q;

p, p = q.

Example 4.4. Let k be a positive integrable function and let

Ω4 =
{
ψp/k : (0,∞) → (0,∞) : p ∈ (0,∞)

}
be a family of functions, where ψp is defined by

ψp(x) =
−e−x√p√

p
k(x).
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For every p > 0, ψp are nondecreasing functions for x > 0. Again, we conclude,

p 	→ d
dx

ψp(x)
k(x) = e−x

√
p is the Laplace transform of a non-negative function, so it is

exponentially convex on (0,∞). As in Example 4.1, we conclude that p 	→ Li(ψp),
i = 1, . . . , 4, are exponentially convex. For this family of functions, from (3.12),
we have

for p �= q:

Mp,q(L1,Ω4) =(√
q√
p

∫ b

a
e−t

√
pk(t)g(t)dt−∫ d

c
e−t

√
pk(t)h(t)dt−∫ c

a
(e−t

√
p−e−d

√
p)k(t)g(t)dt∫ b

a
e−t

√
qk(t)g(t)dt−∫ d

c
e−t

√
qk(t)h(t)dt−∫ c

a
(e−t

√
q−e−d

√
q)k(t)g(t)dt

) 1
p−q

,

Mp,p(L1,Ω4) =

exp

(
−1

2
√
p

∫ b

a
te−t

√
pk(t)g(t)dt−∫ d

c
te−t

√
pk(t)h(t)dt−∫ c

a
t(e−t

√
p−e−d

√
p)k(t)g(t)dt∫ b

a
e−t

√
pk(t)g(t)dt−∫ d

c
e−t

√
pk(t)h(t)dt−∫ c

a
(e−t

√
p−e−d

√
p)k(t)g(t)dt

− 1

2p

)
.

For other functionals, an explicit shape of

Mp,q(Li,Ω4), i = 2, 3, 4,

can be obtained in a similar way from the general functional notation given by

Mp,q(Li,Ω4) =

⎧⎪⎨
⎪⎩

(
Li(ψp)
Li(ψq)

) 1
p−q

, p �= q;

exp
(

−Li(id·ψp)
2
√
pLi(ψp)

− 1
2p

)
, p = q.

Theorem 3.3 applied to the functions ψp/k, ψq/k ∈ Ω4 and functionals Li,
i = 1, . . . , 4, implies that

Sp,q(Li,Ω4) = −(√
p+

√
q
)
logMp,q(Li,Ω4),

satisfies
a ≤ Sp,q(Li,Ω4) ≤ b,

so Sp,q(Li,Ω4) is a mean, and by (3.11), it is monotonic.
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Faculty of Civil Engineering

University of Rijeka
Radmile Matejčić 3
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