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ON SOME PROBLEM

OF SIERPIŃSKI AND RUZIEWICZ

CONCERNING THE SUPERPOSITION

OF MEASURABLE FUNCTIONS.

MICROSCOPIC HAMEL BASIS

Aleksandra Karasińska — Elżbieta Wagner-Bojakowska

ABSTRACT. S. Ruziewicz and W. Sierpiński proved that each function f : R→R

can be represented as a superposition of two measurable functions. Here, a streng-
thening of this theorem is given. The properties of Lusin set and microscopic

Hamel bases are considered.

In this note, some properties concerning microscopic sets are considered.

���������� 1� We will say that a set E ⊂ R is microscopic if for each ε > 0 there
exists a sequence {In}n∈N of intervals such that E ⊂ ⋃n∈N

In, and m(In) ≤ εn

for each n ∈ N.
The notion of microscopic set on the real line was introduced by J. A p p e l l .

The properties of these sets were studied in [1]. The authors proved, among
others, that the family M of microscopic sets is a σ-ideal, which is situated
between countable sets and sets of Lebesgue measure zero, more precisely, be-
tween the σ-ideal of strong measure zero sets and sets with Hausdorff dimension
zero (see [3]). Moreover, analogously as the σ-ideal of Lebesgue nullsets, M is
orthogonal to the σ-ideal of sets of the first category, i.e., the real line can be
decomposed into two complementary sets such that one is of the first category
and the second is microscopic (compare [5, Lemma 2.2] or [3, Theorem 20.4]).

The paper consists of three parts. In the first one, a possibility of the repre-
sentation of an arbitrary function f : R→ R as a superposition of two functions
measurable with respect to some σ-algebra connected with microscopic sets is
studied.

The second part deals with the extended Principle of Duality between σ-ideals
of microscopic sets and sets of the first category and suitable σ-algebras.
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In the third part, the Lusin set and Hamel basis in the context of microscopic
sets are considered.

1. Superposition of functions

In 1933, S. R u z i e w i c z and W. S i e r p i ń s k i proved that for each func-
tion f : R→ R there exist two Lebesgue measurable functions g and h such that
f = g ◦ h (compare [9]).

Observe that an analogous theorem also holds if we replace measurable func-
tions with functions having the Baire property, i.e., measurable with respect
to the σ-algebra of sets having the Baire property. In 1935, W. S i e r p i ń s k i
proved (compare [11] or [12, p. 243–247]) that for each function f : R → R,
there exist two functions g and h which are pointwise discontinued (i.e., the sets
of continuity points of g and h are dense in R) and such that f = g ◦ h.

Let C(g) and C(h) denote the sets of continuity points of g and h, respec-
tively. Clearly, the sets C(g) and C(h) are dense and of type Gδ, so are residual.
Consequently, there exist two sets P1 and P2 of the first category such that
C(g) = R\P1 and C(h) = R\P2. Clearly, the functions g|(R\P1) and h|(R\P2) are
continuous, which is equivalent to the fact (see [8, Theorem 8.1]) that g and h
have the Baire property. Finally, for each function f : R → R there exist two
functions g and h having the Baire property such that f = g ◦ h.

In both cases, the measurability with respect to the σ-algebra generated
by Borel sets and the σ-ideal of nullsets or the σ-ideal of sets of the first category
was considered, respectively.

Now, we will prove that, in our case, for the σ-ideal of microscopic sets on the
real line, an analogous theorem is also valid.

Put B�M := {B�M : B ∈ B and M ∈ M},
where B denotes a family of Borel sets on the real line. As it was observed
earlier (see [3, Theorem 20.8]), B�M is a proper subfamily of the family L
of all Lebesgue measurable subsets of R, i.e., B�M � L.

For our purpose, we need an auxiliary lemma.

	�

� 2� Let f : R→ R. If there exists a microscopic set M such that the re-
striction of f to R\M is continuous, then f is measurable with respect to B�M.

P r o o f. Let M be a microscopic set such that g = f|(R\M) is continuous.

If U is an arbitrary open set then g−1(U ) is open in R \M , so g−1(U ) = G \M ,
where G is some open set. Clearly,

g−1(U ) = f−1(U ) \M ⊂ f−1(U ) ⊂ g−1(U ) ∪M.
Consequently,

G \M ⊂ f−1(U ) ⊂ G ∪M and f−1(U ) ∈ B�M. �
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The converse theorem does not hold. Let A be a set of type Fσ such that
A and R \ A have a positive measure on each interval (see [8, p. 37]).
If f is the characteristic function of A, then f is a Borel function and there
is no microscopic set M such that the restriction of f to R \M is continuous.

�
����
 3� For each function f : R → R there exist two functions g and h
measurable with respect to B�M such that f = g ◦ h.

P r o o f. Let us consider a function ϕ defined as follows

ϕ(x) =

∞∑
n=1

1

2n
[nx] for x ∈ R

(compare [11]), where [nx] denotes the integer part of nx. The function ϕ is in-
creasing (so pointwise discontinuous) and discontinuous for each rational num-
ber. Hence, the set E = ϕ(R) is nowhere dense. From [4, Theorem 3], there
exists an automorphism h1 on the real line such that h1(E) is a microscopic
nowhere dense set. Put h = h1 ◦ ϕ. Obviously, h(R) = h1

(
ϕ(R)

)
= h1(E).

Clearly, h−1((−∞, a)) = ϕ−1
(
h−1
1 ((−∞, a))

) ∈ B�M for each a ∈ R, as h1 is

a homeomorphism and ϕ is an increasing function, so h−1((−∞, a)) is a half-line
(closed or open). Consequently, h is measurable with respect to B�M.

Now, we define a function g : R→ R as follows:

1. if y ∈ h1(E), then there exists x ∈ R such that y = h1

(
ϕ(x)

)
= h(x).

In this case, we put g(y) = f(x);

2. if y 
∈ h1(E), then we put g(y) = 0.

As g|(R\h1(E)) is continuous and h1(E) ∈ M, using Lemma 2, we obtain that g

is measurable with respect to B�M. Clearly, f = g ◦ h. �

As B�M � L, the previous Theorem 3 is a strengthening of the result
of S. R u z i e w i c z and W. S i e r p i ń s k i from [9].

2. The extended Principle of Duality

In 1934, W. S i e r p i ń s k i proved (assuming CH) that there exists a bijection
f : R → R such that f(E) is a nullset if and only if E is of the first category.
In 1943, P. E r d ő s showed that a stronger version of this theorem is also valid.
He proved (assuming CH) that there exists a bijection f : R → R such that
f = f−1 and f(E) is a nullset if and only if E is a set of the first category.
From Erdős’s result, a theorem known as Duality Principle follows.
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������� ��������� ([8, Theorem 19.4])� Let P be any proposition solely in-
volving notions of measure zero, first category, and notions of pure set theory.
Let P ∗ be the proposition obtained from P by interchanging the terms “nullset”
and “set of first category” whenever they appear. Then, each of the propositions
P and P ∗ implies the other, assuming the continuum hypothesis.

In [5], authors proved that the theorem analogous to Sierpiński–Erdős Duality
Theorem for the families of microscopic sets and sets of the first category on the
real line is valid. Assuming CH, it is showed ([5, Theorem 2.12]) that there exists
a one-to-one mapping f of the real line onto itself such that f = f−1, and f(E)
is a microscopic set if and only if E is a set of the first category.

Observe that the extended Principle of Duality, including measurability with
respect to B�M and the property of Baire as dual notions, is not true.
Such possibility for measurability in the sense of Lebesgue and the Baire prop-
erty was considered by E. S z p i l r a j n in [15] (see also [8, p. 82]). The proof,
in our case, is analogous with necessary changes.

For A ⊂ R, let Ā denote the closure of A in the Euclidean topology on the
real line.

�
����
 4� There is no bijection f : R → R such that for an arbitrary set
E ⊂ R, the following conditions are fulfilled:

1. f(E) ∈ M if and only if E is a set of the first category,

2. f(E) ∈ B�M if and only if E is a set having the Baire property.

P r o o f. Suppose that there exists a bijection f : R→ R fulfilling the conditions
1 and 2. Let I = [0, 1] and E = f−1(I). Obviously, f(E) = I ∈ B�M, so E has
the Baire property.

Let x1, x2, . . . be a countable and dense subset of E. Let Ii be an open interval
containing xi such that

m
(
f(Ii) ∩ I

)
<

1

2i+1
for i ∈ N. (1)

Such interval exists, as

{xi} =

∞⋂
j=1

(
xi − 1

j
, xi +

1

j

)
, so f

({xi}
)
=

∞⋂
j=1

f

((
xi − 1

j
, xi +

1

j

))

is a microscopic set, hence of Lebesgue measure zero. Consequently,

lim
j→∞

m

(
f

((
xi − 1

j
, xi +

1

j

)))
= 0,

and for each i∈N there exists ji∈N such that for the interval Ii=
(
xi− 1

ji
, xi+

1
ji

)
,

condition (1) holds.
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Put

G =

∞⋃
i=1

Ii.

Obviously, G is open, E ⊂ Ḡ, so E ⊂ (G ∩E) ∪ (Ḡ \G). Hence,

I = f(E) ⊂
∞⋃
i=1

[
f(Ii) ∩ I

] ∪ f(Ḡ \G).

As Ḡ\G is nowhere dense, f(Ḡ \G) is microscopic, so also of Lebesgue measure
zero. Consequently, using (1), we obtain

1 = m(I) ≤
∞∑
i=1

m
[
f(Ii) ∩ I

]
<

1

2
,

which is a contradiction. �

3. Lusin set and Hamel basis

In this part, we will prove that the image of Lusin set under arbitrary con-
tinuous function is microscopic. Recall that an uncountable set A ⊂ R is called
a Lusin set if it has a countable intersection with every set of the first category.
The construction of such a set using continuum hypothesis was given indepen-
dently by N. L u s i n (1914) and P. M a h l o (1913).

M. K u c z m a proved (see [6, Lemma 3.4.1]) that for an arbitrary set E ⊂ Rn

and an arbitrary continuous function f : E → Rm (n,m ∈ N), there exists
a decomposition

E = A ∪B,

where A ∩ B = ∅, A is of the first category and f(B) is a nullset. By a slight
modification of the above mentioned construction, we obtain the following

	�

� 5� Let E ⊂ R be an arbitrary set and let f : E → R be an arbitrary
continuous function. The set E can be represented as the union of two disjoint
sets A and B such that A is of the first category and f(B) is a microscopic set.

P r o o f. If E is finite, the lemma is obvious (we can put A = E and B = ∅).
Assume that E is infinite. Let {pk}k∈N be a sequence of points of E,
dense in E. Let n ∈ N. By the continuity of f , for each k ∈ N, there exists
a positive number δnk

such that

f((pk − δnk
, pk + δnk

)) ⊂
(
f(pk)− 1

2(n+ 1)k
, f(pk) +

1

2(n+ 1)k

)
.
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Put

En = E \
∞⋃
k=1

(pk − δnk
, pk + δnk

), A =

∞⋃
n=1

En and B = E \A.
Obviously,

E = A ∪ B and A ∩B = ∅.
Assume y ∈ int Ēn. Then there exists an open interval (y − η, y + η) ⊂ Ēn.
Hence, (y− η, y+ η)∩En 
= ∅. So, there exists pk ∈ (y− η, y+ η). Consequently,

(pk − δnk
, pk + δnk

) ∩ (y − η, y + η) 
= ∅.
On the other hand,

(pk − δnk
, pk + δnk

) ∩ En=∅,
so the interval (pk − δnk

, pk + δnk
) ∩ (y − η, y + η) does not contain any point

of En. Simultaneously, (y− η, y+ η) ⊂ Ēn, so, in each subinterval of the interval
(y − η, y + η), a point of En can be found–a contradiction.

Finally, int Ēn = ∅, so En is nowhere dense for n ∈ N and, consequently, A is
of the first category.

Now, we will prove that f(B) is microscopic. We have

B = E \A = E \
∞⋃

n=1

En =

∞⋂
n=1

[
E \

(
E \

∞⋃
k=1

(pk − δnk
, pk + δnk

)

)]
⊂

∞⋂
n=1

∞⋃
k=1

(pk − δnk
, pk + δnk

).

Hence,

f(B) ⊂ f

( ∞⋂
n=1

∞⋃
k=1

(pk − δnk
, pk + δnk

)

)
⊂

∞⋂
n=1

∞⋃
k=1

f((pk − δnk
, pk + δnk

)) ⊂
∞⋂

n=1

∞⋃
k=1

(
f(pk)− 1

2(n+ 1)k
, f(pk) +

1

2(n+ 1)k

)
.

Let ε > 0. There exists n0 ∈ N such that
1

n0 + 1
< ε. Clearly,

f(B) ⊂
∞⋃
k=1

(
f(pk)− 1

2(n0 + 1)k
, f(pk) +

1

2(n0 + 1)k

)

and

m

((
f(pk)− 1

2(n0 + 1)k
, f(pk) +

1

2(n0 + 1)k

))
=

1

(n0 + 1)k
< εk

for each k ∈ N. �
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The next theorem is a strengthening of the result obtained by W. S i e r p i ń -
s k i ( [10] or [6, Theorem 3.4.1]) and gives an interesting property of Lusin sets.

�
����
 6� If E ⊂ R is a Lusin set and f : E → R a continuous function,
then f(E) is microscopic.

P r o o f. By the previous lemma, the set E can be represented as a union of two
disjoint sets A and B where A is of the first category and f(B) is microscopic.
As E is a Lusin set, each uncountable subset of E is of the second category.
Hence A and, consequently, f(A) is countable. Finally, f(E) is microscopic. �
Remark 7� In particular, any Lusin set is microscopic as the image of itself
by the identity function. So, Lusin sets are “very small” from the point of view
of measure theory (as well Lebesgue as Hausdorff measure). From the point
of view of topology, the situation is quite different: each Lusin set is of the
second category and without the Baire property (compare [6, Theorem 3.4.2]).

Now, let us consider a Hamel basis of R. Recall that a Hamel basis is any base
of the linear space (Rn;Q; +; ·). The properties of Hamel bases were investigated
by M. K u c z m a [6]. It is observed there, among others, that every Hamel ba-
sis has the power of continuum ( [6, Theorem 4.2.3]). W. S i e r p i ń s k i in [13]
(see Théoréme I) proved that every measurable Hamel basis is a nullset (com-
pare also [6, Corollary 11.2.1]), and under the assumption of continuum hypoth-
esis, there exists a Hamel basis H ⊂ R which is a Lusin set (compare [14] or
[6, Corollary 11.6.1]). So, from the Remark 7, it follows

��������� 8� There exists a Hamel basis which is a microscopic set.

We can prove even more: there exists a microscopic Hamel basis which has
the (∗) property.
���������� 9� ([6], Chapter 3.3) The set A ⊂ R has (∗) property if any set B
with Baire property such that B ⊂ A or B ⊂ R \A is of the first category.

The (∗) property is a topological analogue of the saturated non-measurability
([7] or [6, p. 56]).

For our purpose, we will use the following class of sets introduced by
R. G e r and M. K u c z m a in [2] (see also [6, Chapter 9.1]):

U = {T ⊂ R : every convex function f : D → R, where T ⊂ D ⊂ R
and

D is convex and open, bounded above on T is continuous in D}.
Theorem of M. M e h d i says (compare [6, Theorem 9.3.2]) that if T ⊂ R con-
tains a second category set with the Baire property, then T ∈ U . From Corol-
lary 9.3.2 in [6], it follows that each set from the family U contains a Hamel basis.
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Simultaneously, if a Borel set X spans the real line then, from Theorem 11.4.3
in [6], it follows that there exists a Burstin basis H relative to X (A Hamel basis
H ⊂ X is called a Burstin basis relative to X if and only if H intersects every
uncountable Borel subset of X). Theorem 11.4.2 in [6] says that if the set X ⊂ R
is residual, then every Burstin basis relative to X has (∗) property.

These facts will be useful in the argument of the next theorem.

�
����
 10� There exists a Hamel basis which is a microscopic set and has
(∗) property.
P r o o f. In [5, Lemma 2.2], it is proved that the real line can be represented as
a union of two complementary sets A and B such that A is a microscopic set
of typeGδ and B is of the first category. Thus, A is of the second category and has
the Baire property. By the Theorem of Mehdi, A ∈ U . Moreover, from [6, Corol-
lary 9.3.2], we can conclude that A contains a Hamel basis. Thus, A is a Borel
set which spans the real line, so A satisfies assumptions of [6, Theorem 11.4.3].
Therefore, A contains a Burstin basis H relative to A. Since A is residual, from
[6, Theorem 11.4.2], basis H satisfies condition (∗). Obviously, H is microscopic
as a subset of the microscopic set A. �
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functions jouissant de la propriété de Baire, Fund. Math. 24 (1935), 12–16.
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