



Gertruda Ivanova — Elżbieta Wagner-Bojakowska

ABSTRACT. We introduce some families of functions $f: \mathbb{R} \to \mathbb{R}$ modifying the Darboux property analogously as it was done by [Maliszewski, A.: On the limits of strong Świątkowski functions, Zeszyty Nauk. Politech. Łódź. Mat. **27** (1995), 87–93], replacing continuity with \mathcal{A} -continuity, i.e., the continuity with respect to some family \mathcal{A} of subsets in the domain. We prove that if \mathcal{A} has (*)-property then the family $\mathcal{D}_{\mathcal{A}}$ of functions having \mathcal{A} -Darboux property is contained and dense in the family $\mathcal{D}\mathcal{Q}$ of Darboux quasi-continuous functions.

A function $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property if, on each interval $(a, b) \subset \mathbb{R}$, the function f assumes every real value between f(a) and f(b). In 1875, J. Darboux [4] showed that this property is not equivalent to the continuity and every derivative has the intermediate value property.

The intermediate value property is usually called the Darboux property and a function having the intermediate value property is called a Darboux function.

Let \mathcal{D} denote the class of Darboux functions. To simplify our notation, we will write:

 $< a, b >= (\min\{a, b\}, \max\{a, b\}).$

In 1977, T. Mańk and T. Świątkowski [16] defined some modification of the Darboux property. They considered a family of functions with the so-called Świątkowski property.

DEFINITION 1 ([16]). A function $f : \mathbb{R} \to \mathbb{R}$ has Świątkowski property if for each interval $(a, b) \subset \mathbb{R}$ there exists a point $x_0 \in (a, b)$ such that $f(x_0) \in \langle f(a), f(b) \rangle$ and f is continuous at x_0 .

In 1995, A. Maliszewski investigated a class of functions which possesses some stronger property.

DEFINITION 2 ([14]). A function $f : \mathbb{R} \to \mathbb{R}$ has the strong Świątkowski property if for each interval $(a, b) \subset \mathbb{R}$ and for each $\lambda \in \langle f(a), f(b) \rangle$ there exists a point $x_0 \in (a, b)$ such that $f(x_0) = \lambda$ and f is continuous at x_0 .

^{© 2014} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 26A15, 54C08.

Keywords: Darboux property, strong Świątkowski property, quasi-continuity.

GERTRUDA IVANOVA — ELŻBIETA WAGNER-BOJAKOWSKA

The family of all strong Świątkowski functions will be denoted by \mathcal{D}_s .

In 2009, Z. Grande considered some modification of strong Świątkowski property replacing the continuity with the approximate continuity.

DEFINITION 3 ([5]). A function $f : \mathbb{R} \to \mathbb{R}$ has the ap-Darboux property if for each interval $(a, b) \subset \mathbb{R}$ and for each $\lambda \in \langle f(a), f(b) \rangle$ there exists a point $x_0 \in (a, b)$ such that $f(x_0) = \lambda$ and f is approximately continuous at x_0 .

In the sequel, the family of all functions with the ap-Darboux property will be denoted by \mathcal{D}_{ap} .

Let \mathcal{I} be a σ -ideal of the sets of the first category. In [6] and [7], we introduce a family of functions $f : \mathbb{R} \to \mathbb{R}$ modifying the Darboux property analogously as it was done by Z. Grande and replacing approximate continuity with \mathcal{I} -approximate continuity, i.e., the continuity with respect to \mathcal{I} -density topology in the domain (see [3], [19], [20], [23], [24]).

DEFINITION 4. A function $f : \mathbb{R} \to \mathbb{R}$ has the \mathcal{I} -ap-Darboux property if for each interval $(a, b) \subset \mathbb{R}$ and for each $\lambda \in \langle f(a), f(b) \rangle$ there exists a point $x_0 \in (a, b)$ such that $f(x_0) = \lambda$ and f is \mathcal{I} -approximately continuous at x_0 .

The family of all functions with the \mathcal{I} -ap-Darboux property will be denoted by $\mathcal{D}_{\mathcal{I}-ap}$.

Let $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$, where $\mathcal{P}(\mathbb{R})$ is a family of all subsets of \mathbb{R} . To simplify our considerations, we need the following definition.

DEFINITION 5. We will say that $f : \mathbb{R} \to \mathbb{R}$ is \mathcal{A} -continuous at a point $x \in \mathbb{R}$ if for each open set $V \subset \mathbb{R}$ with $f(x) \in V$ there exists a set $A \in \mathcal{A}$ such that $x \in A$ and $f(A) \subset V$. We will say that $f : \mathbb{R} \to \mathbb{R}$ is \mathcal{A} -continuous if f is \mathcal{A} -continuous at each point $x \in \mathbb{R}$.

It is not difficult to see that if \mathcal{A} is the Euclidean topology τ_e , then the notion of the \mathcal{A} -continuity is equivalent to the notion of the continuity in the classical sense. If \mathcal{A} is the density topology τ_d , then we have the approximate continuity. If \mathcal{A} is the \mathcal{I} -density topology $\tau_{\mathcal{I}}$, then we obtain the \mathcal{I} -approximate continuity. If \mathcal{A} is some topology τ on \mathbb{R} , then the \mathcal{A} -continuity is a continuity between (\mathbb{R}, τ) and (\mathbb{R}, τ_e) .

Of course, \mathcal{A} need not be a topology. Let \overline{A} (Int (A)) denote the closure (interior) of the set A in the Euclidean topology. A set $A \subset \mathbb{R}$ is said to be semi-open if there is an open set U such that $U \subset A \subset \overline{U}$ (see [11]). It is not difficult to see that A is semi-open if and only if $A \subset \overline{Int}(A)$. The family of all semi-open sets will be denoted by \mathcal{S} . A function $f: \mathbb{R} \to \mathbb{R}$ is semi-continuous if for each set V open in the Euclidean topology the set $f^{-1}(V)$ is semi-open (see [11]).

DEFINITION 6. A function $f : \mathbb{R} \to \mathbb{R}$ is quasi-continuous at a point x if for every neighbourhood U of x and for every neighbourhood V of f(x) there exists a non-empty open set $G \subset U$ such that $f(G) \subset V$. A function $f : \mathbb{R} \to \mathbb{R}$ is quasi-continuous if it is quasi-continuous at each point.

A. Neubrunnová [18] proved that f is semi-continuous if and only if it is quasi-continuous.

Obviously, S is not a topology and if A is the family of semi-open sets S, then the A-continuity is equivalent to the quasi-continuity.

DEFINITION 7. We will say that $f: \mathbb{R} \to \mathbb{R}$ has \mathcal{A} -Darboux property if for each interval $(a, b) \subset \mathbb{R}$ and each $\lambda \in \langle f(a), f(b) \rangle$ there exists a point $x \in (a, b)$ such that $f(x) = \lambda$ and f is \mathcal{A} -continuous at x.

The family of all functions having \mathcal{A} -Darboux property will be denoted by $\mathcal{D}_{\mathcal{A}}$. It is easy to see that if \mathcal{A} is the Euclidean topology τ_e , then $\mathcal{D}_{\mathcal{A}} = \mathcal{D}_{\tau_e} = \mathcal{D}_s$, if \mathcal{A} is the density topology τ_d , then $\mathcal{D}_{\mathcal{A}} = \mathcal{D}_{\tau_d} = \mathcal{D}_{ap}$, and if \mathcal{A} is the \mathcal{I} -density topology, then $\mathcal{D}_{\mathcal{A}} = \mathcal{D}_{\tau_z} = \mathcal{D}_{\mathcal{I}-ap}$.

The set A is of the first category at the point x (see [9]) if there exists an open neighbourhood G of x such that $A \cap G$ is of the first category. By D(A) we will denote the set of all points x such that A is not of the first category at x.

Let $\mathcal{B}a$ be a family of all functions having the Baire property.

DEFINITION 8. We will say that the family \mathcal{A} has (*)-property if

- 1. $\tau_e \subset \mathcal{A} \subset \mathcal{B}a;$
- 2. $A \subset D(A)$ for each $A \in \mathcal{A}$.

It is not difficult to see that the wide class of topologies has (*)-property, for example, Euclidean topology, \mathcal{I} -density topology, topologies constructed in [10] by E. Lazarow, R. A. Johnson and W. Wilczyński or topology constructed by R. Wiertelak in [22]. Some families of sets which are not the topologies also have (*)-property, for example, the family of semi-open sets, however, it does not have the density topology.

DEFINITION 9. We will say that $f : \mathbb{R} \to \mathbb{R}$ has q-property if for each $(a, b) \subset \mathbb{R}$ and for each non-empty open interval $(C, D) \subset f((a, b))$ there exists a nonempty open interval $(c, d) \subset (a, b)$ such that $f((c, d)) \subset (C, D)$.

LEMMA 1. Darboux function $f : \mathbb{R} \to \mathbb{R}$ has q-property if and only if f is quasicontinuous.

Proof. \Rightarrow : Let $x \in \mathbb{R}$. There are two cases:

1. f is constant on some neighbourhood of x. Then, f is continuous at x.

2. f is constant on no neighbourhood of x. Let (a, b) and (p, q) be arbitrary intervals such that $x \in (a, b)$ and $f(x) \in (p, q)$. From the Darboux property, f((a, b)) is a non-degenerate interval and

$$f(x) \in (p,q) \cap f((a,b)).$$

Hence, $(p,q) \cap f((a,b))$ is a non-degenerate interval and it contains some non-empty interval (C, D). From q-property, there exists a non-empty open interval $(c, d) \subset (a, b)$ such that $f((c, d)) \subset (C, D) \subset (p, q)$.

 \Leftarrow : Suppose $f : \mathbb{R} \to \mathbb{R}$ is quasi-continuous and $(a, b) \subset \mathbb{R}$. Let (C, D) be an arbitrary non-empty open interval contained in f((a, b)). Then, there exists a point $x \in (a, b)$ such that $f(x) \in (C, D)$. Hence, from Definition 6, there exists a non-empty open interval $(c, d) \subset (a, b)$ such that $f((c, d)) \subset (C, D)$.

LEMMA 2. If \mathcal{A} has (*)-property and $f \in \mathcal{D}_{\mathcal{A}}$, then f has q-property.

Proof. Let (a, b) be such that f((a, b)) is a non-degenerate interval, and let $(C, D) \subset f((a, b))$.

Fix $y \in (C, D)$ and a number $\epsilon > 0$ with $[y - \epsilon, y + \epsilon] \subset (C, D)$. Clearly,

$$[y - \epsilon, y + \epsilon] \subset f((a, b)).$$

Since $f \in \mathcal{D}_{\mathcal{A}}$, there exists a point $x \in (a, b)$ such that f(x) = y and f is \mathcal{A} -continuous at x. Hence, we can find a set $A_x \in \mathcal{A}$ satisfying $x \in A_x$ and $f(A_x) \subset (y - \epsilon, y + \epsilon)$.

As \mathcal{A} has (*)-property, A_x has the Baire property and is not of the first category at x. Hence, $A_x \cap (a, b)$ has the Baire property and is not of the first category at x, too. Consequently,

$$A_x \cap (a, b) = G\Delta P = (G \setminus P) \cup (P \setminus G),$$

where G is open and P is of the first category in the Euclidean topology. Obviously, $G \neq \emptyset$, hence, there exists an interval $(c, d) \subset G$. Observe that $(c, d) \setminus P \subset (a, b)$, so, $(c, d) \subset (a, b)$ and $(c, d) \setminus P \subset A_x$, i.e., $f((c, d) \setminus P) \subset f(A_x) \subset (y - \epsilon, y + \epsilon)$.

Now, let us prove that $f((c,d)) \subset [y-\epsilon, y+\epsilon]$. Put

$$V = \mathbb{R} \setminus \left[y - \epsilon, y + \epsilon \right].$$

Clearly,

$$f^{-1}(V) \cap (c,d) = (c,d) \setminus f^{-1}([y-\epsilon,y+\epsilon])$$
(1)

and

$$(c,d) \setminus P \subset f^{-1}\Big(f\big((c,d) \setminus P\big)\Big) \subset f^{-1}\big([y-\epsilon,y+\epsilon]\big).$$

$$(2)$$

From (1) and (2), we obtain

$$f^{-1}(V) \cap (c,d) \subset P.$$
(3)

104

Assume that $f((c, d)) \cap V \neq \emptyset$, i.e., there exists $x_1 \in f^{-1}(V) \cap (c, d)$. From (3), we can find a point $x_2 \in (x_1, d) \setminus f^{-1}(V)$. The set V is open, hence there exists a point $Z \in V \cap \langle f(x_1), f(x_2) \rangle$. As $f \in \mathcal{D}_{\mathcal{A}}$, we can find a point $z \in (x_1, x_2)$ such that f(z) = Z and f is \mathcal{A} -continuous at z, i.e., there exists a set $A_z \in \mathcal{A}$ such that $z \in A_z$ and

$$f(A_z) \subset V. \tag{4}$$

By (3) and (4), we have

$$A_z \cap (x_1, x_2) \subset f^{-1}(V) \cap (c, d) \subset P,$$

i.e., $z \in A_z \cap (x_1, x_2)$, and A_z is of the first category at z, which is a contradiction, as \mathcal{A} has (*)-property and $A_z \in \mathcal{A}$. Hence, $f((c, d)) \cap V = \emptyset$, i.e., $f((c, d)) \subset [y - \epsilon, y + \epsilon] \subset (C, D)$.

From now on, by Q we will denote the family of quasi-continuous functions and by $\mathcal{D}Q$ the family of quasi-continuous functions with the Darboux property.

THEOREM 1. If \mathcal{A} has (*)-property, then $\mathcal{D}_s \subset \mathcal{D}_{\mathcal{A}} \subset \mathcal{D}\mathcal{Q}$.

Proof. It follows easily from Lemma 1 and Lemma 2.

Let us show that these inclusions may be proper for different families \mathcal{A} .

LEMMA 3. There exists a family $\mathcal{A} \neq \tau_e$ with (*)-property such that $\mathcal{D}_s = \mathcal{D}_{\mathcal{A}}$.

Proof. Let $\mathcal{A} = \tau_h$, where $\tau_h = \{G \setminus P : G \in \tau_e \text{ and } P \in \mathcal{I}\}$ is a H. Hashimoto topology (see [8]). Obviously, $\tau_e \subset \tau_h$, so $\mathcal{D}_s \subset \mathcal{D}_{\tau_h}$.

Let us show that $\mathcal{D}_{\tau_h} \subset \mathcal{D}_s$. Fix a function $f \in \mathcal{D}_{\tau_h}$, an interval (a, b) such that $f(a) \neq f(b)$ and $Z \in \langle f(a), f(b) \rangle$. Hence, as f has the τ_h -Darboux property, there exists a point $z \in (a, b)$ such that f(z) = Z and f is τ_h -continuous at z.

Let us observe that f is τ_e -continuous at z. Indeed, fix $\epsilon > 0$. Hence, there exists a set $A \in \tau_h$ such that $z \in A$ and

$$f(A) \subset \left(f(z) - \frac{\epsilon}{2}, f(z) + \frac{\epsilon}{2}\right).$$

The set A is open in τ_h , therefore $A = G \setminus P$, where G is open and P is of the first category. Obviously $A \subset G$, so $z \in G$, and there exists $\delta > 0$ such that $(z - \delta, z + \delta) \subset G$. Hence $(z - \delta, z + \delta) \setminus P \subset G \setminus P = A$, so

$$f((z-\delta,z+\delta)\setminus P) \subset \left(f(z)-\frac{\epsilon}{2},f(z)+\frac{\epsilon}{2}\right).$$

Analogously as in the proof of Lemma 2 (replacing (c, d) with $(z - \delta, z + \delta)$ and $(y - \epsilon, y + \epsilon)$ with $[f(z) - \epsilon/2, f(z) + \epsilon/2]$) we obtain that

$$f\left(\left(z-\delta,z+\delta\right)\right) \subset \left[f\left(z\right)-\frac{\epsilon}{2},f\left(z\right)+\frac{\epsilon}{2}\right].$$

Consequently,

$$f\left(\left(z-\delta,z+\delta\right)\right) \subset \left(f\left(z\right)-\epsilon,f\left(z\right)+\epsilon\right)$$

so f is τ_e -continuous at z and $f \in \mathcal{D}_s$.

We will say that the sets of the form $\bigcup_{n=1}^{\infty} (a_n, b_n)$ or $\bigcup_{n=1}^{\infty} [a_n, b_n]$ are righthand interval sets (left-hand interval sets) at $x \in \mathbb{R}$ if $b_{n+1} < a_n < b_n$ ($b_n < a_{n+1} < b_{n+1}$) for $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = x$.

LEMMA 4. There exists a family $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$ with (*)-property such that $\mathcal{D}_s \subsetneq \mathcal{D}_{\mathcal{A}} \subsetneq \mathcal{D}\mathcal{Q}$.

Proof. Let $\mathcal{A} = \tau_{\mathcal{I}}$, where $\tau_{\mathcal{I}}$ denotes the \mathcal{I} -density topology. Then, \mathcal{A} has (*)-property, so $\mathcal{D}_s \subset \mathcal{D}_{\mathcal{A}} \subset \mathcal{D}\mathcal{Q}$.

Let us prove $\mathcal{D}_s \subsetneq \mathcal{D}_{\tau_{\mathcal{I}}} \subsetneq \mathcal{D}\mathcal{Q}$.

Assume that $A = \bigcup_{n=1}^{\infty} (a_n, b_n)$ is a right interval set at zero and put

$$f_A(x) = \begin{cases} 1-x & \text{for } x \leq 0, \\ 1-\frac{1}{n} & \text{for } x \in [a_n, b_n], n \in \mathbb{N}, \\ 0 & \text{for } x = \frac{a_n + b_{n+1}}{2}, n \in \mathbb{N} \text{ and for } x \in [b_1, \infty), \\ \text{linear on the intervals } [b_{n+1}, \frac{a_n + b_{n+1}}{2}], [\frac{a_n + b_{n+1}}{2}, a_n], n \in \mathbb{N}. \end{cases}$$

Obviously, f_A is continuous at each point $x \in \mathbb{R}$, $x \neq 0$, and assumes value 1 only at 0. Hence, $f_A \notin \mathcal{D}_s$. On the other hand, it is easy to see, that $f_A \in \mathcal{DQ}$ for each right-hand interval set A.

Let B be a right-hand interval set at 0 such that 0 is a right-hand \mathcal{I} -density point of B (see [6]). Obviously, $f_B \in \mathcal{D}_{\tau_{\mathcal{I}}} \setminus \mathcal{D}_s$.

Let C be a right-hand interval set at 0 such that 0 is a right-hand \mathcal{I} -dispersion point of C. Then, f_C is not \mathcal{I} -approximately continuous at 0 (see [6] for more details) and assumes value 1 only at point 0, so $f_C \in \mathcal{DQ} \setminus \mathcal{D}_{\tau_{\mathcal{I}}}$.

LEMMA 5. There exists a family $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$ with (*)-property such that $\mathcal{D}_{\mathcal{A}} = \mathcal{D}\mathcal{Q}$.

Proof. Let us observe that the family S of semi-open sets has (*)-property. Fix $A \in S$. As $A \subset \overline{Int(A)}$, the set A is a union of two sets, where the first is open and the second is nowhere dense, so A has the Baire property. Fix a point $x \in A$ and an interval (a, b) such that $x \in (a, b)$. Hence $x \in \overline{Int(A)}$, so $(a, b) \cap Int(A) \neq \emptyset$, i.e., $(a, b) \cap A$ is of the second category and $x \in D(A)$. Consequently, $A \subset D(A)$.

By Theorem 1, we have $\mathcal{D}_{\mathcal{S}} \subset \mathcal{D}\mathcal{Q}$.

Let $f \in \mathcal{DQ}$. Fix $(a, b) \subset \mathbb{R}$ such that $f(a) \neq f(b)$, and let $Z \in \langle f(a), f(b) \rangle$. From the Darboux property, there exists $z \in (a, b)$ such that f(z) = Z. As f is quasi-continuous at $z, f \in \mathcal{DS}$.

Consequently, we can put $\mathcal{A} = \mathcal{S}$.

Let \mathcal{U} be a family of all functions such that for each a < b and for each set $A \subset [a, b]$ with $card(A) < card(\mathbb{R})$, the set $f([a, b] \setminus A)$ is dense in < f(a), f(b) >. Let $\mathcal{QU} = \mathcal{Q} \cap \mathcal{U}$. As $\mathcal{D} \subset \mathcal{U}$ (for more details, see [2]), we have $\mathcal{DQ} \subset \mathcal{QU}$.

A function $f: \mathbb{R} \to \mathbb{R}$ is cliquish at the point x if for every neighbourhood U of x and for each $\epsilon > 0$ there exists a non-empty open set $G \subset U$ such that $|f(y) - f(z)| < \epsilon$ for each $y, z \in G$. A function $f: \mathbb{R} \to \mathbb{R}$ is cliquish if it is cliquish at each point.

It is noted (see [15]) that each quasi-continuous function is cliquish and a function f is cliquish if and only if the set of discontinuity points of f is of the first category. Hence the sum of two cliquish functions is cliquish.

Let Cliq denote the family of all cliquish functions.

From the Lindenbaum's Theorem ([12]), it is well-known that an arbitrary function can be represented as a sum of two Darboux functions (see also [1, Chapter I, Theorem 4.1]). In [5], Z. Grande proved that every real function f defined on some interval is the sum of two functions from \mathcal{D}_{ap} .

W. Sierpiński in [21] proved that an arbitrary function can be represented as a limit of a pointwise convergent sequence of Darboux functions. Z. Grande showed the analogous result for his family, i.e., that every real function f defined on some interval is the limit of a pointwise convergent sequence of functions from \mathcal{D}_{ap} . As for each family \mathcal{A} having (*)-property $\mathcal{D}_{\mathcal{A}} \subset \mathcal{D}\mathcal{Q}$ it is easily seen that analogous results for our family do not hold, moreover:

THEOREM 2. If \mathcal{A} has (*)-property, then:

- 1. $f \in \mathcal{D}_{\mathcal{A}} + \mathcal{D}_{\mathcal{A}}$ if and only if $f \in \mathcal{D}_s + \mathcal{D}_s$ if and only if $f \in \mathcal{D}\mathcal{Q} + \mathcal{D}\mathcal{Q}$ if and only if $f \in \mathcal{C}liq$;
- 2. f is cliquish if and only if f is a limit of pointwise convergent sequence of functions having A-Darboux property;
- 3. $f \in QU$ if and only if f is a limit of uniformly convergent sequence of functions having A-Darboux property.

Proof. Let \mathcal{A} be an arbitrary family having (*)-property.

- 1. From Theorem 1 we obtain $\mathcal{D}_s \subset \mathcal{D}_A \subset \mathcal{D}Q \subset \mathcal{C}liq$. Consequently, $\mathcal{D}_s + \mathcal{D}_s \subset \mathcal{D}_A + \mathcal{D}_A \subset \mathcal{D}Q + \mathcal{D}Q \subset \mathcal{C}liq + \mathcal{C}liq = \mathcal{C}liq$. On the other hand, by [13, Corollary 3.4, Chapter II], we have $\mathcal{C}liq \subset \mathcal{D}_s + \mathcal{D}_s$, so $\mathcal{C}liq = \mathcal{D}_s + \mathcal{D}_s = \mathcal{D}_A + \mathcal{D}_A = \mathcal{D}Q + \mathcal{D}Q$.
- 2. By [14, Corollary 6], the function f is cliquish if and only if there exists a pointwise convergent sequence of Darboux quasi-continuous functions $\{f_n\}_{n\in\mathbb{N}}$ such that $f = \lim_{n\to\infty} f_n$, and if and only if there exists a pointwise convergent sequence of strong Świątkowski functions $\{g_n\}_{n\in\mathbb{N}}$ such

GERTRUDA IVANOVA — ELŻBIETA WAGNER-BOJAKOWSKA

that $f = \lim_{n \to \infty} g_n$. So, by Theorem 1, we have that f is a limit of pointwise convergent sequence of functions having \mathcal{A} -Darboux property if and only if f is cliquish.

3. In [17, Theorem 4], the author proved that $f \in \mathcal{QU}$ if and only if f is a limit of uniformly convergent sequence of Darboux quasi-continuous functions. On the other hand, by [14, Corollary 5], $f \in \mathcal{QU}$ if and only if f is a limit of uniformly convergent sequence of strong Świątkowski functions. So, by Theorem 1, $f \in \mathcal{DQ}$ if and only if f is a limit of uniformly convergent sequence of functions having \mathcal{A} -Darboux property.

Let us introduce a metric ρ in the space \mathcal{UQ} in the following way:

$$\rho(f,g) = \min\left\{1, \sup\left\{|f(t) - g(t)| : t \in \mathbb{R}\right\}\right\}.$$

COROLLARY 1. If \mathcal{A} has (*)-property, then $\mathcal{D}_{\mathcal{A}}$ is dense in $(\mathcal{D}\mathcal{Q}, \rho)$, and the closure of $\mathcal{D}_{\mathcal{A}}$ equals $\mathcal{Q}\mathcal{U}$.

Proof. Let \mathcal{A} be a family having (*)-property. By the previous theorem, f is a limit of uniformly convergent sequence of functions having \mathcal{A} -Darboux property if and only if $f \in \mathcal{QU}$, so $\mathcal{D}_{\mathcal{A}}$ is dense in (\mathcal{QU}, ρ) , and the closure of $\mathcal{D}_{\mathcal{A}}$ equals \mathcal{QU} . As $\mathcal{DQ} \subset \mathcal{QU}, \mathcal{D}_{\mathcal{A}}$ is dense in (\mathcal{DQ}, ρ) .

Clearly, if $\mathcal{A}_1 \subset \mathcal{A}_2$ then $\mathcal{D}_{\mathcal{A}_1} \subset \mathcal{D}_{\mathcal{A}_2}$. The opposite implication does not hold: there exist uncomparable families \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{D}_{\mathcal{A}_1} \subset \mathcal{D}_{\mathcal{A}_2}$. For example, if \mathcal{A}_1 is Hashimoto topology and \mathcal{A}_2 is a family of! semi-open sets, then, by Lemmas 3 and 5, we have $\mathcal{D}_{\mathcal{A}_1} = \mathcal{D}_s \subsetneq \mathcal{D}\mathcal{Q} = \mathcal{D}_{\mathcal{A}_2}$. Simultaneously, if P is a set of the first category dense in \mathbb{R} , then $\mathbb{R} \setminus P$ is open in the Hashimoto topology but not semi-open. On the other hand, [0, 1] is semi-open but not open in the Hashimoto topology.

REFERENCES

- BRUCKNER, A. M.: Differentiation of Real Functions, in: Lecture Notes in Math., Vol. 659, Springer, Berlin, 1978.
- [2] BRUCKNER, A. M.—CEDER, J. G.—WEISS, M. L.: Uniform limits of Darboux functions, Colloq. Math. 15 (1966), 65–77.
- [3] CIESIELSKI, K.—LARSON, L.—OSTASZEWSKI, K.: I-density continuous functions, Mem. Amer. Math. Soc. 515 (1994), 133 p.
- [4] DARBOUX, G.: Memoire sur les fonctions discontinues, Ann. Sci. Scuola Norm. Sup. 4 (1875), 57–112.
- [5] GRANDE, Z.: On a subclass of the family of Darboux functions, Colloq. Math. 117 (2009), 95–104.

- [6] IVANOVA, G.: Remarks on some modification of the Darboux property, Bull. Soc. Sci. Lettres Lódź Sér. Rech. Déform. 72 (2014), 91–100.
- [7] IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Darboux property, Math. Slovaca (to appear).
- [8] HASHIMOTO, H.: On the *-topology and its application, Fund. Math. 91 (1976), 5–10.
- [9] KURATOWSKI, A.—MOSTOWSKI, A.: Teoria Mnogości Wraz ze Wstępem do Opisowej Teorii Mnogości. PWN, Warszawa, 1978.
- [10] LAZAROW, E.—JOHNSON, R. A.—WILCZYŃSKI, W.: Topologies related to sets having the Baire property, Demonstratio Math. 21 (1989), 179–191.
- [11] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [12] LINDENBAUM, A.: Sur quelques propriétés des fonctions de variable réelle, Ann. Soc. Math. Polon. 6 (1927), 129–130.
- [13] MALISZEWSKI, A.: Darboux Property and Quasi-Continuity. A uniform approach. WSP, Słupsk, 1996.
- [14] MALISZEWSKI, A.: On the limits of strong Świątkowski functions, Zeszyty Nauk. Politech. dz. Mat. 27 (1995), 87–93.
- [15] MALISZEWSKI, A.: Sums and products of quasi-continuous functions, Real Anal. Exchange 21 (1995-96), 320–329.
- [16] MANK, T.—ŚWIĄTKOWSKI, T.: On some class of functions with Darboux's characteristic, Zeszyty Nauk. Politech. dz. Mat. 11 (301) (1977), 5–10.
- [17] NATKANIEC, T.: On quasi-continuous functions having Darboux property, Math. Pannon. 3 (1992), 81–96.
- [18] NEUBRUNNOVA, A.: On certain generalizations of the notion of continuity, Matematický časopis 23 (1973), 374–380.
- [19] POREDA, W.-WAGNER-BOJAKOWSKA, E.-WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- [20] POREDA, W.-WAGNER-BOJAKOWSKA, E.-WILCZYŃSKI, W.: Remarks on *I*-density and *I*-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985), 553–563.
- [21] SIERPINSKI, W.: Sur une propriété de fonctions réelles quelconques définies dans les espaces métriques, Matematiche (Catania) 8 (1953), 73–78.
- [22] WIERTELAK, R.: A generalization of density topology with respect to category, Real Anal. Exchange 32 (2006/2007), 273–286.
- [23] WILCZYŃSKI, W.: A generalization of the density topology, Real Anal. Exchange 8 (1982-83), 16–20.
- [24] WILCZYŃSKI, W.: A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984-85), 241–265.

Received December 2, 2013

Gertruda Ivanova Elżbieta Wagner-Bojakowska University of Łódź Faculty of Mathematics and Computer Science ul. Banacha 22 PL-90-238 Łódź POLAND

E-mail: gertruda@math.uni.lodz.pl wagner@math.uni.lodz.pl