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KOROUS TYPE INEQUALITIES

FOR ORTHOGONAL POLYNOMIALS

IN TWO VARIABLES

Branislav Ftorek — Pavol Oršanský

ABSTRACT. J. Korous reached an important result for general orthogonal poly-
nomials in one variable. He dealt with the boundedness and uniform boundedness

of polynomials
{
Pn(x)

}∞
n=0

orthonormal with the weight function

h(x) = δ(x)h̃(x),

where h̃(x) is the weight function of another system of polynomials
{
P̃n(x)

}∞
n=0

orthonormal in the same interval and

δ(x) ≥ δ0 > 0

is a certain function. We generalize this result for orthogonal polynomials in two

variables multiplying their weight function h(x, y) by a polynomial, dividing
h(x, y) by a polynomial, and multiplying h(x, y) with separated variables by a cer-
tain function δ(x, y).

1. Introduction

A generalization of the weight function and a study of relevant properties
of orthogonal polynomials are important parts of investigation in the theory
of orthogonal polynomials. J. K o r o u s reached an important result for general
orthogonal polynomials in one variable in [6]. The theorem first published in that
paper later became known as Korous theorem.

������� 1.1 (Korous)� Let a system of polynomials
{
P̃n(x)

}∞
n=0

orthonormal

with a weight function h̃(x) and generalized system of polynomials
{
Pn (x)

}∞
n=0
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orthonormal with a weight function h(x)= h̃(x)δ (x) be given, where

δ(x)≥δ0>0 and δ (x)

satisfies the Lipschitz condition

|δ (x1)− δ (x2)| ≤ M |x1 − x2| , x1, x2 ∈ (a, b),

(a, b) is the interval of orthogonality of the polynomials{
P̃n(x)

}∞
n=0

and
{
Pn(x)

}∞
n=0

.

Then the following estimation

|Pn (x)| ≤ 1

δ0
|P̃n (x)|+ KM

δ
3/2
0

(|P̃n (x)|+ |P̃n−1 (x)|
)
,

where δ0 = min δ (x), x ∈ (a, b) and K = max
{|a| , |b|} holds.

In the paper, we address this topic to orthogonal polynomials in two vari-
ables. However, the application of certain techniques from the field of orthogonal
polynomials in one variable is not possible. For example, a reproducing kernel
function for orthogonal polynomials in two variables Kn(x, y, u, v) has a complex
integral form (see (4.10) and the monograph [11]), as opposed to the simple re-
lation (4.3). The expression (4.3) of the kernel Kn(x, t) plays a fundamental role
in the original proof of the Korous theorem. Therefore, we used some simplifying
assumptions and the obtained results are not quite general.

1.1. Orthogonal polynomials in two variables

Many authors dealt with the issues associated with the orthogonal polynomi-
als in two variables, e.g., J a c k s o n ([3]), K o o r n w i n d e r ([4], [5]), M a r č o -
k o v á ([8], [9], [10]), K r a l l, S h e f f e r ([7]) and S u e t i n ([11]). We recall
some properties of the algebraic polynomials in two wariables given in [11]. Let
an algebraic polynomial in two variables be written in the form

Pn,k(x, y) =

n−1∑
m=0

m∑
s=0

cm,sx
m−sys +

k∑
s=0

cn,sx
n−sys. (1.1)

Index n in this formula is a total degree of the polynomial with respect to the
variables x and y. The second sum in relation (1.1) contains the homogeneous
monomials of the total degree n with respect to the variables x and y. Thus, we
get the leading coefficients

cn,0, cn,1, . . . , cn,k−1, cn,k. (1.2)

The last of these coefficients, i.e., the number cn,k, is called the principal coef-
ficient of the polynomial (1.1). It is natural to assume that the principal coef-
ficient is not equal to zero. In this case we say that the polynomial (1.1) has
an order (n, k). Obviously, some of the main coefficients in (1.2), except for the
principal one, may be equal to zero.
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The first sum in the relation (1.1) contains at most 1
2n (n+ 1) terms, and

the second one at most (k + 1) terms. This means that the number of all terms
of the polynomial is

N (n, k) =
n (n+ 1)

2
+ k + 1. (1.3)

We say that the order (r, s) of the polynomial Pr,s(x, y) is lower than the
order (n, k) of (1.1), if r < n or r = n and s < k. We denote it by (r, s) < (n, k).

����	 1.2 ([11, Lemma 1])� Let every polynomial of the system
{
Pn,k(x, y)

}
have a nonzero principal coefficient. Then, any polynomial Qn,k(x, y) of the
order (n, k) can be uniquely represented in the form

Qn,k(x, y) =

n−1∑
m=0

m∑
s=0

am,sPm,s(x, y) +

k∑
s=0

an,sPn,s(x, y). (1.4)


������� 1.3 ([11])� Let G be a finite simply connected domain in the plane
xOy which is bounded by a rectifiable Jordan curve Γ. A non-negative function
h (x, y) is called a weight function in the domain G, if it is integrable over the
domain G and is not equivalent to zero, i.e., the condition

0 <

∫∫
G

h (x, y) dx dy < ∞ (1.5)

holds.


������� 1.4 ([11])� The system of algebraic polynomials
{
Fn,k(x, y)

}
is

called orthonormal over the domain G with the weight function h (x, y), if the
following conditions are fulfilled:

(i) the principal coefficient cn,k of every polynomial Fn,k(x, y) is positive,

(ii) polynomials of the system
{
Fn,k(x, y)

}
satisfy the condition of orthonor-

mality with the weight h (x, y) over the domain G, i.e.,∫∫
G

h (x, y)Fn,k(x, y)Fm,s(x, y) dx dy = δn,mδk,s, (1.6)

where δi,j is the Kronecker delta.

In the Definition 1.3, the conditions of boundedness of the domain G and
of rectifiability of the contour Γ may be omitted. Then, we require the existence
of all power moments of the weight function h(x, y), i.e., integrals

hn,k =

∫∫
G

h(x, y)xn−kyk dx dy

must be finite.
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����	 1.5 ([11, Theorem 1])� Let a polynomial Fn,k(x, y) of order (n, k) with
the principal coefficient cn,k �= 0 be given. This polynomial is an orthogonal
polynomial with a weight function h(x, y) over a domain G if and only if for any
polynomial Pp,q(x, y) of lower order (p, q) the following condition∫∫

G

h (x, y)Fn,k(x, y)Pp,q(x, y) dx dy = 0

holds.

2. Multiplying weight function with a polynomial

Let Rr,t (x, y) ≥ 0 be a polynomial defined over the domain G, where G is
an interior of a closed rectifiable Jordan curve Γ. Let Pn,k (x, y) be a polyno-
mial orthonormal on the domain G with respect to the weight function h (x, y).
Further, let Qn,k (x, y) be a polynomial orthonormal on the domain G with
respect to the weight function

w(x, y) = Rr,t (x, y)h (x, y) . (2.1)

The total degree of the product Rr,t (x, y)Qn,k (x, y) will not be greater
than (n+ r), and according to (1.4), we have

Rr,t (x, y)Qn,k (x, y) =

n+r∑
m=0

m∑
s=0

cm,sPm,s(x, y), (2.2)

where

cm,s =

∫∫
G

h (x, y)Rr,t (x, y)Qn,k (x, y)Pm,s (x, y) dx dy. (2.3)

If m < n, from the condition of orthogonality of Qn,k (x, y) on domain G with
respect to the weight function (2.1), we get cm,s = 0 (Lemma 1.5), and the
polynomial (2.2) has a form

Rr,t (x, y)Qn,k (x, y) =

n+r∑
m=n

m∑
s=0

cm,sPm,s(x, y). (2.4)

Using Schwarz inequality for non-zero coefficients cm,s, we have

c2m,s ≤
∫∫
G

h (x, y)R2
r,t (x, y)Q

2
n,k (x, y) dx dy

∫∫
G

h (x, y)P 2
m,s (x, y) dx dy.

Since Pm,s (x, y) is the polynomial orthonormal on the domain G with respect
to the weight function h (x, y), the second integral in the above relationship
is equal to one. Let K be a maximum of the polynomial Rr,t (x, y) on the
domain G.
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Then,∫∫
G

h (x, y)R2
r,t (x, y)Q

2
n,k (x, y) dx dy ≤

≤ K

∫∫
G

h (x, y)Rr,t (x, y)Q
2
n,k (x, y)dx dy = K,

because Qn,k (x, y) is an orthonormal polynomial on the domain G with respect
to the weight function (2.1). So,

|cm,s| ≤ K1/2. (2.5)

Based on the above considerations, we state the following theorem.

������� 2.1� Let the polynomial Rr,t (x, y) ≥ 0 on the finite simply connected
domain G. Let

{
Pn,k (x, y)

}
be a system of polynomials orthonormal on the

domain G with respect to the weight function h (x, y). Let Qn,k (x, y) be a poly-
nomial orthonormal on the domain G with respect to the weight function

w(x, y) = Rr,t (x, y)h (x, y)

and let
|Pn,k (x, y)| ≤ H (2.6)

on the domain G, where H does not depend on the total degree of these polyno-
mials and on variables x, y.

Then,

|Rr,t (x, y)Qn,k (x, y)| ≤ 1

2
(r + 1)(2n+ r + 2)K1/2H (2.7)

on the domain G, where K is the maximum of the polynomial Rr,t (x, y) on G.

P r o o f. From (1.3), we have N(n, n) = (n+1)(n+2)
2 , and the expression (2.4)

has at most

N(n+ r, n+ r)−N(n− 1, n− 1) =
(n+ r + 1)(n+ r + 2)

2
− n(n+ 1)

2

=
1

2
(r + 1)(2n+ r + 2)

terms. And now, the inequality (2.7) follows from (2.4), (2.5) and (2.6). �

3. Dividing weight function with a polynomial

Let Rr,t (x, y) > 0 be a polynomial defined over the domain G, where G is
an interior of the closed rectifiable Jordan curve Γ. Let Pn,k (x, y) be a polyno-
mial orthonormal on the domain G with respect to the weight function h (x, y).
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Next, let Qn,k (x, y) be a polynomial orthonormal on the domain G with respect
to the weight function

w(x, y) =
h(x, y)

Rr,t (x, y)
. (3.1)

In the sum

Qn,k(x, y) =

n∑
m=0

m∑
s=0

cm,sPm,s(x, y), (3.2)

coefficients cm,s may be written in the form

cm,s =

∫∫
G

h (x, y)

Rr,t (x, y)
Qn,k(x, y)Pm,s(x, y)Rr,t (x, y) dx dy. (3.3)

For m + r < n, these integrals are equal to zero (according to Lemma 1.5),
because the polynomial Pm,s(x, y)Rr,t (x, y) has the total degree less than n.
Then, we have

Qn,k(x, y) =

n∑
m=n−r

m∑
s=0

cm,sPm,s(x, y). (3.4)

For r > n, we get (according to (3.2))

Qn,k(x, y) =

n∑
m=0

m∑
s=0

cm,sPm,s(x, y). (3.5)

For the nonzero coefficients in these sums, we get

|cm,s| ≤
∫∫
G

h (x, y) |Qn,k (x, y)| |Pm,s (x, y)| dx dy.

We denote by K the maximum of the polynomial Rr,t (x, y) on G. Using the
Schwarz inequality again and using the orthonormal property of the polynomials
Pm,s(x, y), Qn,k(x, y), we get

c2m,s ≤
∫∫
G

h (x, y)Q2
n,k (x, y) dx dy

∫∫
G

h (x, y)P 2
m,s (x, y) dx dy

=

∫∫
G

h (x, y)Q2
n,k (x, y) dx dy

=

∫∫
G

h (x, y)

Rr,t (x, y)
Rr,t (x, y)Q

2
n,k (x, y) dx dy

≤K

∫∫
G

h (x, y)

Rr,t (x, y)
Q2

n,k (x, y) dx dy = K.

Therefore,
|cm,s| ≤ K1/2. (3.6)
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������� 3.1� Let the polynomial Rr,t (x, y) > 0 on the finite simply connected
domain G. Let

{
Pn,k(x, y)

}
be a system of polynomials orthonormal on the do-

main G with respect to the weight function h (x, y). Let Qn,k (x, y) be a polyno-
mial orthonormal on the domain G with respect to the weight function

w(x, y) =
h(x, y)

Rr,t (x, y)
, (3.7)

and let
|Pn,k (x, y)| ≤ H (3.8)

on the domain G, where H does not depend on the total degree of this polynomial
and on the variables x, y. Then, the following inequalities hold:

if r < n, |Qn,k (x, y)| ≤ 1

2
(r + 1)(2n− r + 2)K1/2H, (3.9)

if r ≥ n, |Qn,k (x, y)| ≤ 1

2
(n+ 1)(n+ 2)K1/2H. (3.10)

K is the maximum of the polynomial Rr,t(x, y) on G and (x, y) ∈ G.

P r o o f. The sum (3.4) has at most (according to (1.3))

N(n, n)−N(n− r − 1, n− r − 1) =
(n+ 1)(n+ 2)

2
− (n− r)(n− r + 1)

2

=
1

2
(r + 1)(2n− r + 2)

terms and the sum (3.5) has at most N(n, n) = 1
2 (n + 1)(n + 2) terms.

It is obvious that (3.9), (3.10) follow from (3.4), (3.5), (3.6) and (3.8).
�

Observe that a similar problem and related topics have been investigated
in [1] for orthogonal polynomials in one variable. The connection coefficients
between two sets of orthogonal polynomials on the real line are studied in the
paper [12].

4. Weight function with separated variables

In this section, we assume that the weight function has separated variables
(cf. [4], [5], [9], [10]), i.e.,

h(x, y) = v1(x)v2(y). (4.1)

Let the polynomials
{
pn(x)

}
be orthonormal on an interval (a, b) with a weight

function v1(x), i.e.,

b∫
a

v1(x)pn(x)pm(x) dx = δn,m, −∞ ≤ a < b ≤ ∞,
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and let the system of orthonormal polynomials
{
qn(x)

}
be associated with

a weight function v2(x) on (c, d), i.e.,

d∫
c

v2(x)qn(x)qm(x) dx = δn,m, −∞ ≤ c < d ≤ ∞.

Consider now the polynomials in two variables

Fn,m(x, y) = pn−m(x)qm(y). (4.2)

These polynomials are orthonormal over the domain G = (a, b) × (c, d) with
respect to the weight function (4.1).

For polynomials pn(x) = a
(n)
n xn + · · · and qn(x) = b

(n)
n xn + · · · ,

we have reproducing kernel functions given by the Christoffel-Darboux formulae
(cf. [13, Theorem 3.2.2])

Kn(x, t) =

n∑
i=0

pi(x)pi(t) =
a
(n)
n

a
(n+1)
n+1

pn+1(x)pn(t)− pn(x)pn+1(t)

x− t
(4.3)

and

K∗
n(x, t) =

n∑
i=0

qi(x)qi(t) =
b
(n)
n

b
(n+1)
n+1

qn+1(x)qn(t)− qn(x)qn+1(t)

x− t
.

Letting t → x, we find

Kn(x, x) =

n∑
i=0

pi(x)pi(x)=
a
(n)
n

a
(n+1)
n+1

[
p′n+1(x)pn(x)− p′n(x)pn+1(x)

]
(4.4)

and

K∗
n(x, x) =

n∑
i=0

qi(x)qi(x) =
b
(n)
n

b
(n+1)
n+1

[
q′n+1(x)qn(x)− q′n(x)qn+1(x)

]
. (4.5)

������� 4.1� Let
{
Fn,m(x, y)

}
be a system of polynomials (4.2) orthonormal

with the weight function h(x, y) = v1(x)v2(y) over the domain G = (a, b)×(c, d).
Let

{
Qn,m(x, y)

}
be a system of orthonormal polynomials associated with the

weight function
w(x, y) = h(x, y)δ(x, y)

on G. Let the function δ(x, y) be bounded on G and

δ(x, y) ≥ M > 0. (4.6)

Then, the following estimation

|Qn,k(x, y)| ≤ 1√
M

k∑
s=0

|Fn,s(x, y)|+ n√
M

(
Kn−1(x, x)K

∗
n−1(y, y)

)1
2 (4.7)

holds on G. The kernels Kn(x, x), K∗
n(x, x) are given by (4.4) and (4.5).
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P r o o f. The polynomial Qn,k(x, y) can be represented in the form (Lemma 1.2)

Qn,k(x, y) =

n−1∑
m=0

m∑
s=0

cm,sFm,s(x, y) +

k∑
s=0

cn,sFn,s(x, y), (4.8)

where the coefficients ci,j are determined by the equality

ci,j =

∫∫
G

h(u, v)Qn,k(u, v)Fi,j(u, v) du dv. (4.9)

Substituting (4.9) into the expansion (4.8), we obtain

Qn,k(x, y) =

∫∫
G

h(u, v)Qn,k(u, v)

[
n−1∑
m=0

m∑
s=0

Fm,s(x, y)Fm,s(u, v)

]
du dv

+

∫∫
G

h(u, v)Qn,k(u, v)

[
k∑

s=0

Fn,s(x, y)Fn,s(u, v)

]
du dv.

The sum

Kn(x, y, u, v) =

n∑
m=0

m∑
s=0

Fm,s(x, y)Fm,s(u, v), (4.10)

similarly to the case of orthonormal polynomials in one variable, there is called
the kernel of order n of the orthonormal polynomials system (cf. [11]).
Then, we have

Qn,k(x, y) =

∫∫
G

h(u, v)Qn,k(u, v)Kn−1(x, y, u, v) du dv

+

∫∫
G

h(u, v)Qn,k(u, v)

[
k∑

s=0

Fn,s(x, y)Fn,s(u, v)

]
du dv. (4.11)

If we denote the first integral in previous relation

S1 =

∫∫
G

h(u, v)Qn,k(u, v)Kn−1(x, y, u, v) du dv,

we will have

|S1| ≤
∫∫
G

h(u, v)|Qn,k(u, v)||Kn−1(x, y, u, v)| du dv. (4.12)
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Now, we need to estimate the kernel Kn−1(x, y, u, v). Using (4.2) and Cauchy
inequality, we get

|Kn−1(x, y, u, v)| ≤
n−1∑
m=0

m∑
s=0

|Fm,s(x, y)Fm,s(u, v)|

=

n−1∑
m=0

m∑
s=0

|pm−s(x)qs(y)pm−s(u)qs(v)|

≤
n−1∑
i=0

|pi(x)pi(u)|
n−1∑
i=0

|qi(y)qi(v)|

≤
(

n−1∑
i=0

p2i (x)

n−1∑
i=0

p2i (u)

n−1∑
i=0

q2i (y)

n−1∑
i=0

q2i (v)

)1
2

.

With regard to (4.4) and (4.5), we have

|Kn−1(x, y, u, v)| ≤
(
Kn−1(x, x)Kn−1(u, u)K

∗
n−1(y, y)K

∗
n−1(v, v)

)1
2 . (4.13)

From (4.12) and (4.13), the inequality

|S1| ≤
(
Kn−1(x, x)K

∗
n−1(y, y)

)1
2

×
∫∫
G

h(u, v)|Qn,k(u, v)|K
1
2
n−1(u, u)K

∗ 1
2

n−1(v, v) du dv

follows. To estimate this integral, we use (4.6) and we obtain

|S1| ≤
(
Kn−1(x, x)K

∗
n−1(y, y)

)1
2

1√
M

⎛⎝∫∫
G

h(u, v)δ(u, v)Q2
n,k(u, v) du dv

⎞⎠
1
2

×
⎛⎝∫∫

G

h(u, v)Kn−1(u, u)K
∗
n−1(v, v) du dv

⎞⎠
1
2

.

Because the weight function h(x, y) has separated variables (4.1), we replace
the last integral with double integrals, and from orthonormal property of the
systems

{
pn(x)

}
,
{
qn(x)

}
, we have∫∫

G

h(u, v)Kn−1(u, u)K
∗
n−1(v, v) du dv

=

b∫
a

v1(u)Kn−1(u, u) du

d∫
c

v2(v)K
∗
n−1(v, v) dv = n . n = n2.

10
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So,
|S1| ≤

(
Kn−1(x, x)K

∗
n−1(y, y)

)1
2

n√
M

. (4.14)

Denoting the second integral in the expression (4.11) by S2, we have

S2 =

k∑
s=0

Fn,s(x, y)

∫∫
G

h(u, v)Qn,k(u, v)Fn,s(u, v) du dv.

Using condition (4.6), we obtain

|S2| ≤ 1√
M

k∑
s=0

|Fn,s(x, y)|
∫∫
G

h(u, v)
√

δ(u, v)|Qn,k(u, v)||Fn,s(u, v)| du dv,

and by Schwarz inequality,

|S2| ≤ 1√
M

k∑
s=0

|Fn,s(x, y)|
⎛⎝∫∫

G

h(u, v)δ(u, v)Q2
n,k(u, v) du dv

⎞⎠
1
2

×
⎛⎝∫∫

G

h(u, v)F 2
n,s(u, v) du dv

⎞⎠
1
2

.

From orthonormal properties of the systems
{
Fn,m(x, y)

}
and

{
Qn,m(x, y)

}
,

|S2| ≤ 1√
M

k∑
s=0

|Fn,s(x, y)| (4.15)

follows. From (4.11), we get

|Qn,k(x, y)| ≤ |S1|+ |S2|.
Finally, from (4.14), (4.15), we get the statement of the theorem. �
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