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A VARIATIONAL McSHANE CHARACTERIZATION
OF LOCALLY CONVEX SPACES POSSESSING
THE RADON-NIKODYM PROPERTY

SOKOL BusH KALIAJ

ABSTRACT. We present a characterization of complete locally convex topolog-
ical vector spaces possessing the Radon-Nikodym property in terms of additive
interval functions whose McShane variational measures are absolutely continuous
with respect to the Lebesgue measure.

1. Introduction and Preliminaries

In the papers [2] and [5], characterizations of Banach spaces possessing the Ra-
don-Nikodym property are given in terms of additive interval functions whose
Henstock and McShane variational measures are absolutely continuous with re-
spect to the Lebesgue measure. There are also characterizations of the Radon-
-Nikodym property in terms of the limit average range and the average range
of additive interval functions, see [6], [7] and [§]. In the paper [5], it is shown
that a Banach space X has the Radon-Nikodym property if and only if for every
X-valued additive interval function . which has absolutely continuous McShane
variational measure there exists a McShane integrable function f: [0,1] — X
such that

p(I) = (M)/f for all closed subinterval I C [0,1]
T

and f is weakly equivalent to a measurable function g. Here, we extend this
result to a complete locally convex topological vector space X, Theorem
Due to this result, several X-valued set functions that are only additive can be
represented as McShane integrals.
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Let X be a Hausdorfl locally convex topological vector space (briefly a lo-
cally convex space) with topological dual X'. By & the family of all continuous
seminorms in X is denoted. For any p € &, we denote by )Z'p the quotient vec-
tor space X/p~1(0), by ¢p: X — )?p the canonical quotient map, by ()Z'p,f))

the quotient normed space and by (X,,p) the completion of (X, p). Note that
X' ={#,00,:pc 27, € X, }, (1.1)

where )ZZ’, is the topological dual of ()Afp, D). For every p, q € &2, such that p < g,
we denote by Gpq: Xy — X, the map defined as follows

pg(wq) = wy for each w, € X,
where w, = ¢, (x), for some vector x € w,. By Jpq the continuous linear extension
of gpq to X, is denoted.

We denote by Z the family of all non-degenerate closed subintervals of [0, 1],
by A the Lebesgue measure and by £ the family of all Lebesgue measurable
subsets of [0,1]. The two intervals I,J € T are said to be nonoverlapping if
int(I) Nint(J) = (), where int(/) denotes the interior of I. If a point function
F:[0,1] = X is given, then we denote by F the interval function F: T — X
defined by ﬁ([u,v]) = F(v) — F(u), for all [u,v] € Z. An interval function
p:Z — X is said to be additive if for each two nonoverlapping intervals I, J € 7
with T U J € Z, we have

p(IUJ) = o(I) +¢(J).
A function F': [0,1] — X is said to be differentiable by seminorms if there
is a function f: [0,1] — X satisfying the following property: given p € 2,
there exists a subset Z, C [0, 1] with A(Z,) = 0, such that
. F(t+h)—F(t)
1
is0”? < h

A pair (I,t) of an interval I € Z and a point ¢ € [0, 1] is said to be a McShane
tagged interval, t is said to be the tag of I. A Mcshane partition (M-partition)
in [0,1] is a finite collection of McShane tagged intervals (I,t) whose corre-
sponding intervals are nonoverlapping. A function ¢: E — (0, +00) is said to be
a gauge on E C [0,1]. We say that an M-partition 7 in [0, 1] is:

e an M-partition of [0,1] if U e, I = [0, 1],

e FE-tagged if for each (I,t) € w, we have t € F,

e J-fine, if for every (I,t) € w, we have I C (t — d0(t),t + 6(t)).

Let us now recall the definitions of McShane and variational McShane in-
tegrals. We refer to [9], [10] and [11] for more information about McShane and
variational McShane integrals of functions taking values in a locally convex space.

_ f(ﬂ) =0 forall t€l0,1]\Z,.
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DEFINITION 1.1. A function f: [0,1] — X is said to be McShane integrable
on [0, 1], if there exists a vector w € X satisfying the following property: given
e > 0 and p € &, there exists a gauge J5 on [0, 1] such that for every J;-fine,
M-partition 7 of [0, 1], we have

Pl Y. fOM) —w|<e.
(It)er
We denote (M) f[o 1] f = w. A function f: [0,1] — X is said to be McShane

0,1]
integrable on E C [0, 1] if the function f.xg: [0,1] — X is McShane integrable
on [0, 1], and we denote

(1) [ £z = ) [ 1
[0,1] E
where x g is the characteristic function of F.

DEFINITION 1.2. We say that a function f: [0,1] — X is variational McShane
integrable on [0, 1], if there is a function F': [0,1] — X satisfying the following
property: given € > 0 and p € &, there exists a gauge J, on [0, 1] such that for
every d5-fine, M-partition 7 of [0, 1], we have

S p (FOMD - F(D) < <.

(I,t)em

We say that F' is the primitive of f. If f is variational McShane integrable
with the primitive F, then f is McShane integrable and

F(r) = (M)/f forall TeT.
I

Given F: [0,1] - X, p € &, asubset E C [0,1] and gauge ¢ on E, we define
V) (B,6) = sup > p(F(I)),

(I,t)em

where supremum is taken over all E-tagged, d-fine, M-partition 7 in [0, 1]. Then,
we set M ) M )
Vipr) (E) = 1nf{V(p7F) (E,0): ¢ is a gauge on E}
The set function Vp{‘}(.) is said to be the McShane variational measure generated
by F with respect to seminorm p. By B. Thomson’s results from [15] or [16],
it is known that the set function V:*4(.) is a Borel metric outer measure on [0, 1J.

We denote by V(/;/)‘ the class of all functions F': [0, 1] — X such that for each

E € L, we have ™
ME)=0= Vip ) (E)=0.
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The function F': [0, 1] — X is said to be strongly absolutely continuous (sAC')
if, for each p € &, the function ¢, o F'is sAC.

A function f: [0,1] — X is said to be measurable by seminorms if, for each

pE 2, there exists a sequence ( f,gp ))k of measurable simple functions and a subset
Z, C [0,1] with A(Z,) = 0, such that

lim p(f,gm(t) - f(t)) =0 forall tel0,1]\Z,.

The function f: [0,1] — X is said to be weakly measurable, if 2’ f is measurable
for all 2’ € X',

Two weakly measurable functions f: [0,1] — X and g¢: [0,1] — X are said
to be weakly equivalent if, for every 2’ € X', there is a subset Z(*") C [0, 1] with
)\(Z(I/)) = 0 such that

df(t)=a'g(t) forall tel0,1]\ 2.

DEFINITION 1.3. A function f: [0,1] — X is said to be integrable by seminorms

if, for any p € &, there exists a sequence ( f,ip )) ., of measurable simple functions
and a subset Z,, C [0, 1] with A\(Z,) = 0, such that:

(i) for all t € [0,1] \ Z,, we have
lim p (70 = F() =0,

(ii) each function p o ( f,ip ) f) is Lebesgue integrable on [0, 1] and

Jim / p (f;ip ‘&) - f (t)) d\ =0,
[0,1]

(iii) for each E € L, there exists a vector vy € V such that
lim p /f,gp)(t) d\ —vg | =0.
k—o0
E

In this case, we put [ fd\ = vp.

We refer to [I] for more information about the integrability by seminorms.
This notion coincides with Bochner integrability in a Banach space.

A countable additive vector measure v : £ — X is said to be of bounded
variation if, for each p € &2, we have that the countable additive vector measure
¢p o v is of bounded variation. The countable additive vector measure v is said
to be A-continuous if, for each F € L, we have

AE) = 0= v(E) = 0.

It is easy to see that v is A-continuous, if and only if each ¢, o v is A-continuous.
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We say that X has the Radon-Nikodym property (the RNP) if, for each count-
able additive A-continuous vector measure v: £ — X of bounded variation, there
is an integrable by seminorms function f: [0,1] — X such that

v(E) :/fd)\ forall E e L.
E

2. The main result

The main result is Theorem Let us start with two auxiliary lemmas.
We refer to [3] for the notions used in the following lemma.

LEMMA 2.1. Let (X, ||.||) be a Banach space and let F': [0,1] — X be a function.
If F is sAC, then there exists a unique countably additive \-continuous vector
measure Fp: L — X such that

F(I)=F(I)  forall 1€eZ. (2.1)

Moreover, Fr is of bounded variation.

Proof. Let Zy be the set of all subintervals I C [0, 1] having one of two forms
[0,0] or (a,b], where 0 < a < b < 1. For such intervals, place

Fo([0,8]) = F([0,8]) and  Fy((a,b)) = F([a,0]).

Let o consist of all finite unions of such intervals. It is clear that </ is an algebra
and that if a set £ € &/ has the form

E=LUILU---UI,,

where I, I5, ..., I, are pairwise disjoint intervals of type described, then
is independent of the particular family of pairwise disjoint intervals I, I, ..., I,

whose union is E. Thus, we may define the vector Fy(E) by the equation
Fuy(E) = Fo(L) + Fo(Iz) + - - + Fo(I,).

By Definition I.1.1 in [3], the set function F : &/ — X is a vector measure.
Clearly, we have that F/: & — X is a unique vector measure such that

F(I)=Fy(I)=F() forall IeT, (2.2)

where T is the closure of I. Since F is sAC, we get that F., is of bounded
variation and
lim F,(A)=0. (2.3)

A(A)—0
(Acst)
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Let us consider a sequence (A,,) of pairwise disjoint members of o7 such that
A=U72,A, € o Since
lim A(A\ U, 4;)=0,

n—oo

we obtain by (23) that
i [|Fur (A) = Uiy Fa (A7) = limn_ [Py (A U2y A = 0,

Thus, Iy is a countable additive measure on A, and since it is of bounded
variation, we obtain in [3] Proposition 1.1.15] that F., is also strongly additive.
Consequently, by Carathéodory-Hahn-Kluvanek Extension Theorem in [3], Fy
has a unique countable additive extension Fg: 8 — X, where & is o-algebra
generated by 7.

CLAIM 1. The vector measure Fgg is A-continuous. To see this, let us consider the
semimetric space B(N\) consisting of members of B equipped with the semimetric

p(B,B') = A(BAB),

where BAB' = (B\ B') U (B’ \ B). In [, Lemma IIL.7.1], </(\) consisting
of elements of of is dense in #(N\). By 23) and

F(A) —FW(A/) :FM(A\AQA,) —FM(A,\AQA,),

the function Fgr: o/ — X is uniformly continuous. Consequently, Feg is the uni-
que uniformly continuous extension of Fos. Hence,

li Fu(B)|| = 0.
A(ngHOII 2(B)||
(Be®B)

Therefore, by [3, Theorem 1.2.1], it follows that Feg is A-continuous.

CrLAM 2. The vector measure Feg is of bounded variation. To see this, we con-

sider finite collection {B;: i = 1,2,...,m} of pairwise disjoint members of A
and let 0 < € < 1 be given. Then, there exists § > 0 such that for each B, B’ € A,
we have e

MBAB') < 6 = ||F»(B) — Fx(B')|| < L
Since < is dense in B(N), for each B; there is an A; such that

0
Note that
because
(Az N A]) \ B, C AZ'ABZ' and (AZ n AJ) \ Bj C AjABj

and

AZ' ﬂAj C ((Az N Aj) \ Bz) U ((Az N A]) \ Bj)
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Therefore,

ZIIF@ ||<Z||Fg¢ ||+ <M+< +2<M+1

where M = varg,, ([0, 1]) This means that Fg is of bounded variation.

CrLAaimm 3. The vector measure Fg has an extension to a countable additive
A-continuous vector measure Fr: L — X. Moreover, Fr: L — X is of bounded
variation. First, we note that

L={BUZ :Be€ % and Z' C Z for some Z € Z},
where & ={Z € B : \N(Z) =0}. Then, let us define Fr : L — X as follows
F:(BUZ') = F%(B) forall BUZ' € L.

This is well defined, since if ByUZ] = BaUZ),, then A(B1\ Bz) = A(B2\B1) =0
and from this it follows that

Fz(B1) = F(B1 \ B2) + Fz(B1 N Bs)

(

Fy(B1 N By)
(
(

Fp(B2 \ By) + Fg(B1 N By)
Fe(B2).

Clearly, Fy is a countable additive \-continuous vector measure of bounded vari-
ation such that Fp(B) = Fg(B) for all B € A.

Cramm 4. The vector measure Fy is unique. Suppose that Fg has another
extension to a countable additive A-continuous vector measure Gp : L — X.
Let BU Z' be an arbitrary element of L. We can assume that BN Z' = )
(otherwise, replace Z' with Z' \ B). Since the vector measure G is A-continuous
and \(Z') =0, we obtain

Gr(BUZ')=Ge(B)+Ge(Z') =Ge(B) = Fu(B) = Fe(BUZ').
Hence, we infer that Fr is unique.

CLAIM 5. The vector measure Fy satisfies (21)). Indeed, since T C A, we obtain

by 22)) that N
Fg(I) = F(I) forall I€Z,

and since Fr is an extension of Fg to L, it follows that Fr satisfies [Z1) and
the proof is finished.

0
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LEMMA 2.2. Let X be a complete locally convex space and let F': [0.1] — X
be a function. If F is sAC, then there exists a unique countable additive \-con-
tinuous vector measure Fr: L — X such that

F(I) = Fp(I) for every I e€Z.
Moreover, Fr is of bounded variation.

Proof. Since each ¢, 0 F is sAC, we obtain by Lemma 21l that for each p € &

there is a unique countable additive A-continuous vector measure F ép )L Yp
of bounded variation such that

(¢ 0 F)(I) = F(I) for each I €T. (2.4)

Suppose that two arbitrary continuous seminorms p and ¢ such that p < ¢
are given. Since g,, is a continuous and linear map, we get that g,, o Féq) is

a countably additive A-continuous vector measure of bounded variation such
that B
(¢po F)(I) = (gpq o Féq)) (I)  foreach Ie€eZ.
Consequently, we obtain by uniqueness of Fép ) that
gpq ° FL(:q) — FL(ZP)

According to [I4, Theorem 5.4, for every E € L there exists a unique vector
Fr(E) € X such that

ép(Fe(E)) = FP(E) forall pe 2. (2.5)

Hence, the function F: £L — X is a countable additive A-continuous vector

measure of bounded variation, because each F ép ) is such a vector measure.
By [24) and (Z3), for each I € Z, we have also that

¢p(Fe (D)) = 6, (F(I)) forall pe 2.
Since X is Hausdorff, the last result yields
Fr(I) = F(I) forall IeZ.
Thus, F, is the desired vector measure and the proof is finished. g

Now, we are ready to present the main result.

THEOREM 2.3. Let X be a complete locally convex space and let F :[0,1] — X
be a function. Then, the following statements are equivalent:

(i) X has the RNP,
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(ii) if we have
FEV(/;} forall pe 2,
then F' is differentiable by seminorms,
(iii) of we have
FEV(/I\;)[ forall pe P,

then there is a variational McShane integrable function f:[0,1] — X such
that

F(r) = (M)/f forall Te€T,
T
(iv) if we have

FEV(/I\;)[ forall pe 2P,
then there is a McShane integrable function f: [0,1] — X such that

F(I) = (M)/f forall IeT,
I

and f is weakly equivalent to a measurable by seminorm function g.
Proof. (i) = (ii) Assume that for each p € &, we have F € V(/j‘;;. Since
V(/;le) = qu:jf)F forall pe 2,

we obtain by [5, Lemma 3.1] that each ¢, 0 F' is sAC and therefore the function F
is sAC. Hence, by Lemma [2.2] there exists a countable additive A-continuous
vector measure v: £L — X of bounded variation such that

F(I) = v(I) for every I €I, (2.6)

and since X has the RNP, there exists an integrable by seminorms function f
such that

v(E) :/fd)\ for every FE € L.
E
Fix an arbitrary p € . Then, the function ¢, o f is Bochner integrable and

(6 0 )(E) = (B) / (épo f)d\  forall Eec,
E

and consequently, we obtain by (2.6) that

¢p(F(I>)—(B)/<¢po fldy forall TeT

I

31



SOKOL BUSH KALIAJ

Hence, by [3, Theorem I1.2.9], there exists Z, C [0,1] with A(Z,) = 0 such that
(ppo F)'(t) = (¢po f)(t) for all t € [0,1]\ Z,. Since p is arbitrary, it follows that
F is differentiable by seminorms.

(ii) = (iii) Assume that for each p € &, we have F € V(/]\D/;. Then, by (ii),
there exists a function f: [0,1] — X satisfying the following property: for each
p € &, there exists a subset Z, C [0, 1] with A(Z,) = 0 such that

) <F(t +h) - F(t)

li
11m h

P - f(t)> =0 forall te[0,1]\ Z,.

Hence,
(¢po F)(t) = (¢po )(t) for all t€0,1]\ Z,,

and since Vm = V(;‘F), we have also in [5, Lemma 3.1] that each ¢,0 F is sAC.

Therefore, by [I3, Theorem 7.4.13], each function ¢, o f is variational McShane
integrable (strongly McShane integrable) on [0, 1] and

(¢p°ﬁ)(1)—(M)/¢pOf for every I €.
T

Therefore, we obtain by Definition [[L2] that f is variational McShane integrable
on [0,1] and

F(I) = (M)/f for every I €.
1

(iii) = (iv) Assume that for each p € &, we have F € V(/j‘;;. Then, we obtain
by (iii) that there exists a variational McShane integrable function f: [0,1] — X
such that F(I) = (M) [, f, for all I € Z. Then, by Definition [[Z each function
¢p o f is variational McShane integrable and therefore, we obtain by [I3] The-
orem 5.1.4] that each function ¢, o f is Bochner integrable. Fix an arbitrary
p € Z. Since ¢p,o f is measurable, we can choose a sequence (A,Ep ) ) ., of measurable
simple functions which converges pointwise almost everywhere to ¢, o f and

FP([0,1)) € (¢ 0 £)([0,1])  forall keN.

Therefore, we can define a sequence ( f,Ep )) ,, of measurable simple functions such
that f*) = ¢, o £\, for all k € N. Hence,

ler&p( ,gp)(t) — f(t)) =0 A —a.e. on [0,1].

Since p is arbitrary, the last result yields that f is measurable by seminorms.
Thus, f is weakly equivalent to the measurable by seminorms function f.
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(iv) = (i) Let v: £ — V be a countable additive A\-continuous vector measure
of bounded variation. We define a function F': [0,1] — X as follows

F(I)=v(I) forall IeZ.

Fix an arbitrary p € £ Since ¢, o v is an countable additive A-continuous
vector measure of bounded variation, its variation |¢,ov/| is a A-continuous finite
measure. Therefore, we obtain by [12] Theorem 6.11] that to a given & > 0, there
exists 77, > 0 such that for every F € £, we have

AE) <np = |¢pov|(E) <e.

Let D be a finite collection of pairwise nonoverlapping intervals in Z such that
> rep A) < 1p. Then,

> B((po F)D) <D by ovl(I) = |pov] ( U 1) <e.
IeD IeD IeD
This means that ¢, o F is sAC. Hence, we obtain by [5, Lemma 3.1] that
FevM,

and since p is arbitrary, the last result together with (iv) yields that there exists
a McShane integrable function f: [0, 1] — X such that

ﬁ(I)—(M)/f forevery I e€Z
T

and f is weakly equivalent to a measurable by seminorms function g: [0,1] — X.
Since f:[0,1] — X is McShane integrable, we obtain by Definition [[T] that
each function ¢, o f is McShane integrable and

(¢p 0 F)(I) = (M) / dpof for every I €. (2.7)
I

By (1)), we have also that ¢, o f is weakly equivalent to ¢, o g. Now, by the
same manner as in Theorem 3.1 ((iv) = (i)) in [5], we get that the function ¢,0g
is Bochner integrable and

(ppov)(E) = (B)/((;ﬁp og)dA for every E € L. (2.8)
E
We will show that g is integrable by seminorms. Since ¢, o g is measurable,

we can define a sequence (g,(f )) of measurable simple functions such that
<¢pog,(€p))([0, 1]) C (¢p 0 9)([0,1]) forall k€N

33



SOKOL BUSH KALIAJ

and the equalities
lim p (g (1) = g(t)) = lim 5 (6,0 97)(8) = (Bp09)() =0 (2.9)

hold true at almost all ¢ € [0,1]. We have also that ¢, o g is almost everywhere
bounded on [0, 1]. Therefore, we obtain by Dominated Convergence Theorem,
[3, Theorem I1.2.3], that

lim 7 /(qspog,(f))dA—(B)/(qspog)dA ~0

k—o0
E E
foreach FE € L (2.10)

and

lim [p (g,gm(t) - f(t)) d\ = 0. (2.11)

k—o0
[0,1]

By 23) and ZI0), we get

lim p /g,g”) d\— v(E)| =0.
k—o0
E

By Definition [[3] since p is arbitrary, the last equality together with (2:9) and
([217)) yields that g is integrable by seminorms and

v(E) :/g A for each FE € L.
E
This proves that X has the RNP and the proof is finished. O
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