



Jacek Hejduk — Anna Loranty — Renata Wiertelak

ABSTRACT. This paper presents the properties of continuous functions equipped with the \mathcal{J} -density topology or natural topology in the domain and the range.

1. Introduction

Let \mathbb{R} be the set of real numbers, \mathbb{N} – the set of positive integers and \mathcal{L} – the family of Lebesgue measurable sets in \mathbb{R} . By $\lambda(A)$ we shall denote the Lebesgue measure of $A \in \mathcal{L}$ and by |I| – the length of an interval I. Furthermore, \mathcal{T}_{nat} will denote the natural topology on \mathbb{R} and \mathcal{T}_d – the density topology on \mathbb{R} . Moreover, if $A, B \subset \mathbb{R}$ and $z \in \mathbb{R}$ then

$$A \triangle B = (A \setminus B) \cup (B \setminus A),$$
$$A + z = \{a + z : a \in A\},$$
$$zA = \{z \cdot a : a \in A\}.$$

It is well known that a point $x_0 \in \mathbb{R}$ is a **density point** of $A \in \mathcal{L}$ if

$$\lim_{h \to 0^+} \frac{\lambda(A \cap [x_0 - h, x_0 + h])}{2h} = 1.$$

An equivalent form of this condition is the following one:

$$\lim_{\substack{h_1 \to 0^+, h_2 \to 0^+ \\ h_1 + h_2 > 0}} \frac{\lambda \left(A \cap [x_0 - h_1, x_0 + h_2]\right)}{h_1 + h_2} = 1.$$

Sometimes it is written in the form (see [6]):

$$\forall_{\{J_n\}_{n\in\mathbb{N}}} \left(0 \in \bigcap_{n\in\mathbb{N}} J_n \land |J_n| \underset{n\to\infty}{\longrightarrow} 0 \right) \Rightarrow \lim_{n\to\infty} \frac{\lambda \left(A \cap (J_n + x_0) \right)}{|J_n|} = 1,$$

where $\{J_n\}_{n\in\mathbb{N}}$ is a sequence of non-degenerate closed intervals.

2010 Mathematics Subject Classification: 54A10, 26A15, 54A20.

^{© 2016} Mathematical Institute, Slovak Academy of Sciences.

Keywords: \mathcal{J} -density topologies, \mathcal{J} -approximately continuous functions.

JACEK HEJDUK — ANNA LORANTY — RENATA WIERTELAK

By \mathcal{J} we will denote a sequence of non-degenerate and closed intervals $\{J_n\}_{n\in\mathbb{N}}$ tending to zero, that means diam $\{J_n \cup \{0\}\} \xrightarrow[n \to \infty]{} 0$. To shorten the notation, we will write \mathcal{J} instead of $\{J_n\}_{n\in\mathbb{N}}$.

From now on, the family of all sequences of intervals tending to zero will be denoted by \Im . Moreover, we will consider sequences which differ in only a finite number of their terms to be identical.

DEFINITION 1. Let $\mathcal{J} \in \mathfrak{S}$. We shall say that a point $x_0 \in \mathbb{R}$ is a \mathcal{J} -density point of a set $A \in \mathcal{L}$ if

$$\lim_{n \to \infty} \frac{\lambda(A \cap (x_0 + J_n))}{|J_n|} = 1.$$

If $A \in \mathcal{L}$ and $\mathcal{J} \in \mathfrak{S}$, then

 $\Phi_{\mathcal{J}}(A) := \{ x \in \mathbb{R} : x \text{ is a } \mathcal{J}\text{-density point of the set } A \}.$

PROPERTY 2 ([5]). If $A \in \mathcal{L}$ and $\mathcal{J} \in \mathfrak{S}$, then $\Phi_{\mathcal{J}}(A) \in \mathcal{L}$.

Moreover, this operator fulfills the following property.

PROPERTY 3 ([5]). For any sets $A, B \in \mathcal{L}$ and $\mathcal{J} \in \mathfrak{S}$ we have:

- (1) $\Phi_{\mathcal{J}}(\emptyset) = \emptyset, \ \Phi_{\mathcal{J}}(\mathbb{R}) = \mathbb{R};$
- (2) $\lambda(A \bigtriangleup B) = 0 \Rightarrow \Phi_{\mathcal{J}}(A) = \Phi_{\mathcal{J}}(B);$
- (3) $\Phi_{\mathcal{J}}(A \cap B) = \Phi_{\mathcal{J}}(A) \cap \Phi_{\mathcal{J}}(B).$

It turned out that the analogue of the Lebesgue Density Theorem does not hold for every sequence of intervals \mathcal{J} tending to zero. Studying paper [2], we can find a construction of a sequence $\mathcal{J} \in \mathfrak{S}$ and a set $A \in \mathcal{L}$ of positive measure such that $\lambda(\Phi_{\mathcal{J}}(A) \cap A) = 0$. However, if we consider a subfamily $\mathfrak{S}_{\alpha} \subset \mathfrak{S}$ such that for any sequence $\mathcal{J} \in \mathfrak{S}_{\alpha}$ we have

$$\alpha(\mathcal{J}) := \limsup_{n \to \infty} \frac{\operatorname{diam}(J_n \cup \{0\})}{|J_n|} < \infty,$$

then the analogue of the Lebesgue Density Theorem holds.

THEOREM 4 ([5]). If $\mathcal{J} \in \mathfrak{S}_{\alpha}$ and $A \in \mathcal{L}$, then $\lambda(\Phi_{\mathcal{J}}(A) \bigtriangleup A) = 0$.

Property 3 and Theorem 4 mean that an operator $\Phi_{\mathcal{J}} \colon \mathcal{L} \to \mathcal{L}$ is a lower density operator for every $\mathcal{J} \in \mathfrak{S}_{\alpha}$. Therefore the family

$$\mathcal{T}_{\mathcal{J}} := \left\{ A \in \mathcal{L} : A \subset \Phi_{\mathcal{J}}(A) \right\}$$

is a topology on \mathbb{R} such that $\mathcal{T}_d \subset \mathcal{T}_{\mathcal{J}}$ (see [5]).

Obviously, one can ask what will happen if we consider any sequence $\mathcal{J} \in \mathfrak{S}$. In this case, we can prove the following fact.

THEOREM 5 ([5]). For every sequence $\mathcal{J} \in \mathfrak{S}$ and every set $A \in \mathcal{L}$ we have

$$\lambda(\Phi_{\mathcal{J}}(A) \setminus A) = 0.$$

By Property 3 and Theorem 5 we obtain that an operator $\Phi_{\mathcal{J}} \colon \mathcal{L} \to \mathcal{L}$ is an almost lower density operator. Theorem 10 in [5] says that the family

$$\mathcal{T}_{\mathcal{J}} = \left\{ A \in \mathcal{L} : A \subset \Phi_{\mathcal{J}}(A) \right\}$$

is a topology on \mathbb{R} such that $\mathcal{T}_{nat} \subset \mathcal{T}_{\mathcal{J}}$ and $\mathcal{T}_{nat} \neq \mathcal{T}_{\mathcal{J}}$.

It is easy to see that if $\mathcal{J} = \left\{ \left[-\frac{1}{n}, \frac{1}{n} \right] \right\}_{n \in \mathbb{N}}$, then x_0 is a \mathcal{J} -density point of a set $A \in \mathcal{L}$ if and only if x_0 is a density point of A (see [6]). Moreover, if we consider an unbounded and nondecreasing sequence $\langle s \rangle = \{s_n\}_{n \in \mathbb{N}}$ of positive numbers and a sequence $\mathcal{J} = \left\{ \left[-\frac{1}{s_n}, \frac{1}{s_n} \right] \right\}_{n \in \mathbb{N}}$, then the notion of a \mathcal{J} -density point of a set $A \in \mathcal{L}$ is equivalent to the notion of an $\langle s \rangle$ -density point of A(see [3]).

From the definition of a \mathcal{J} -density point and a \mathcal{J} -density topology it is easy to conclude the following property.

PROPERTY 6. For every $\mathcal{J} \in \mathfrak{F}$ and every set $A \in \mathcal{L}$ the following properties hold:

- (i) $\forall_{x \in \mathbb{R}} \forall_{a \in \mathbb{R}} x \in \Phi_{\mathcal{J}}(A) \Leftrightarrow (x+a) \in \Phi_{\mathcal{J}}(A+a),$
- (ii) $\forall \quad \forall \quad \forall \quad x \in \mathbb{R} \quad m \in \mathbb{R} \setminus \{0\} \quad x \in \Phi_{\mathcal{J}}(A) \Leftrightarrow mx \in \Phi_{m\mathcal{J}}(mA),$
- (iii) $\forall_{a \in \mathbb{R}} A \in \mathcal{T}_{\mathcal{J}} \Leftrightarrow (A+a) \in \mathcal{T}_{\mathcal{J}},$
- (iv) $\forall_{m \in \mathbb{R} \setminus \{0\}} A \in \mathcal{T}_{\mathcal{J}} \Leftrightarrow mA \in \mathcal{T}_{m\mathcal{J}}.$

Since for any $\mathcal{J} \in \mathfrak{S}$, the operator $\Phi_{\mathcal{J}}$ is an almost lower density operator, so, by [4, Theorem 25.27], we obtain immediately the following claim.

THEOREM 7. Let $\mathcal{J} \in \mathfrak{S}$.

- (i) (ℝ, T_J) is neither a first countable, nor a second countable, nor a separable, nor a Lindelöf space,
- (ii) λ(A) = 0 if and only if A is a closed and discrete set with respect to a topology T_J,
- (iii) a set $A \subset \mathbb{R}$ is compact with respect to a topology $\mathcal{T}_{\mathcal{J}}$ if and only if A is finite.

We say that a sequence of intervals $\mathcal{J} = \{[a_n, b_n]\}_{n \in \mathbb{N}} \in \mathfrak{S}$ is **right-side** (left-side) tending to zero if there exists $n_0 \in \mathbb{N}$ such that $b_n > 0$ $(a_n < 0)$ for $n \ge n_0$ and

$$\lim_{n \to \infty} \frac{\min\{0, a_n\}}{b_n} = 0 \quad \left(\lim_{n \to \infty} \frac{\max\{0, b_n\}}{a_n} = 0\right).$$

Obviously, if for a sequence $\mathcal{J} \in \mathfrak{I}$ there exists $n_0 \in \mathbb{N}$ such that $J_n \subset [0, \infty)$ $(J_n \subset (-\infty, 0])$ for $n > n_0$, then \mathcal{J} is right-side (left-side) tending to zero. A sequence of intervals $\mathcal{J} \in \mathfrak{F}$ is **one-side tending to zero** if it is right-side or left-side tending to zero.

THEOREM 8. If \mathcal{J} is a sequence of intervals tending to zero, then $[0,b) \in \mathcal{T}_{\mathcal{J}}$ for b > 0 ((a,0] $\in \mathcal{T}_{\mathcal{J}}$ for a < 0) if and only if the sequence \mathcal{J} is right-side (left-side) tending to zero.

Proof. We give the proof only for the case when the sequence \mathcal{J} is rightside tending to zero; the second case is left to the reader. Sufficiency. Let $\mathcal{J} = \{[a_n, b_n]\}_{n \in \mathbb{N}}$ be a sequence of intervals right-side tending to zero and b > 0. Without the loss of generality we may assume that $0 < b_n < b$ for $n \in \mathbb{N}$. It is sufficient to show that $0 \in \Phi_{\mathcal{J}}([0, b))$. We prove that for every increasing sequence $\{n_k\}_{k \in \mathbb{N}}$ there exists subsequence $\{n_{k_m}\}_{m \in \mathbb{N}}$ such that

$$\lim_{m \to \infty} \frac{\lambda([0,b) \cap J_{n_{k_m}})}{|J_{n_{k_m}}|} = 1.$$

$$\tag{1}$$

Let $\{n_k\}_{k\in\mathbb{N}}$ be an increasing sequence of natural numbers. If $a_{n_k} \geq 0$ for infinitely many $k \in \mathbb{N}$, then we choose subsequence $\{n_{k_m}\}_{m\in\mathbb{N}}$ such that $a_{n_{k_m}} \geq 0$ for $m \in \mathbb{N}$. Hence, $J_{n_{k_m}} \subset [0, b)$ for $m \in \mathbb{N}$. Therefore, condition (1) is fulfilled.

Now, we assume that $a_{n_k} \ge 0$ only for finite numbers $k \in \mathbb{N}$. Then, there is a $k_1 \in \mathbb{N}$ such that for $k > k_1$ we have $a_{n_k} < 0$ and

$$\frac{\lambda([0,b)\cap J_{n_k})}{|J_{n_k}|} = \frac{|J_{n_k}| - \lambda([a_{n_k},0))}{|J_{n_k}|} = 1 - \frac{-a_{n_k}}{|J_{n_k}|} \ge 1 + \frac{a_{n_k}}{b_{n_k}}.$$

The above and the assumption that the sequence \mathcal{J} is right-side tending to zero implies condition (1).

We conclude that, in both cases, $0 \in \Phi_{\mathcal{J}}([0, b))$.

NECESSITY. Let $\mathcal{J} = \{[a_n, b_n]\}_{n \in \mathbb{N}} \in \mathfrak{I}$ and $[0, b) \in \mathcal{T}_{\mathcal{J}}$, where b > 0. Obviously, $0 \in \Phi_{\mathcal{J}}([0, b))$ and $b_n \leq 0$ only for finitely many $n \in \mathbb{N}$. Without loss of generality we may assume that $b_n > 0$ for $n \in \mathbb{N}$. Suppose that \mathcal{J} is not right-side tending to zero. Then,

$$\limsup_{n \in \mathbb{N}} \frac{|\min\{0, a_n\}|}{b_n} = \beta > 0.$$

So, there exists subsequence $\{n_k\}_{k\in\mathbb{N}}$ such that

$$\lim_{k \to \infty} \frac{|\min\{0, a_{n_k}\}|}{b_{n_k}} = \beta$$

and also that $a_{n_k} < 0$ for $k \in \mathbb{N}$. Moreover, there exists $k_0 \in \mathbb{N}$ such that

$$\frac{1}{2}\beta b_{n_k} < |a_{n_k}| < \frac{3}{2}\beta b_{n_k} \quad \text{for} \quad k > k_0.$$

Then,

$$\frac{\lambda([0,b) \cap J_{n_k})}{|J_{n_k}|} = \frac{\lambda(J_{n_k}) - \lambda([a_{n_k},0))}{|J_{n_k}|} = 1 - \frac{|a_{n_k}|}{b_{n_k} + |a_{n_k}|} \le 1 - \frac{1/2\beta b_{n_k}}{b_{n_k} + 3/2\beta b_{n_k}} = 1 - \frac{\beta}{2 + 3\beta}.$$

It implies that $0 \notin \Phi_{\mathcal{J}}([0, b))$. This contradiction finishes the proof.

A direct consequence of the above theorem is

THEOREM 9. If a sequence of intervals \mathcal{J} is tending to zero then $[a, b] \in \mathcal{T}_{\mathcal{J}}$ $((a, b] \in \mathcal{T}_{\mathcal{J}})$ for a < b if and only if the sequence \mathcal{J} is right-side (left-side) tending to zero.

2. Continuous functions

For $\mathcal{J} \in \mathfrak{T}$ we consider four families of continuous functions defined as follows:

$$\mathcal{C}_{nat, nat} = \{ f : (\mathbb{R}, \mathcal{T}_{nat}) \to (\mathbb{R}, \mathcal{T}_{nat}) \text{ and } f \text{ is continuous} \},\$$

$$\mathcal{C}_{nat, \mathcal{J}} = \{ f : (\mathbb{R}, \mathcal{T}_{nat}) \to (\mathbb{R}, \mathcal{T}_{\mathcal{J}}) \text{ and } f \text{ is continuous} \},\$$

$$\mathcal{C}_{\mathcal{J}, nat} = \{ f : (\mathbb{R}, \mathcal{T}_{\mathcal{J}}) \to (\mathbb{R}, \mathcal{T}_{nat}) \text{ and } f \text{ is continuous} \},\$$

$$\mathcal{C}_{\mathcal{J}, \mathcal{J}} = \{ f : (\mathbb{R}, \mathcal{T}_{\mathcal{J}}) \to (\mathbb{R}, \mathcal{T}_{\mathcal{J}}) \text{ and } f \text{ is continuous} \}.$$

PROPERTY 10. For $\mathcal{J} \in \mathfrak{S}$ the family $\mathcal{C}_{nat, \mathcal{J}}$ consists of constant functions.

Proof. Let $f \in C_{nat,\mathcal{J}}$ and $a, b \in \mathbb{R}$ be such that a < b. Then f([a, b]) is a nonempty and compact set with respect to the topology $\mathcal{T}_{\mathcal{J}}$. By Theorem 7, f([a, b]) is finite. Moreover, it is a connected set in \mathcal{T}_{nat} , so f([a, b]) is a singleton. Hence, f(a) = f(b), and the function f is constant.

PROPERTY 11. For $\mathcal{J} \in \mathfrak{S}$, the following inclusions hold:

- (i) $C_{nat, \mathcal{J}} \subsetneq C_{nat, nat} \subset C_{\mathcal{J}, nat}$,
- (ii) $\mathcal{C}_{nat, \mathcal{J}} \subsetneq \mathcal{C}_{\mathcal{J}, \mathcal{J}} \subset \mathcal{C}_{\mathcal{J}, nat}$.

Proof. All the inclusions are the consequence of the fact that $\mathcal{T}_{nat} \subset \mathcal{T}_{\mathcal{J}}$. The inclusions $\mathcal{C}_{nat, \mathcal{J}} \subset \mathcal{C}_{nat, nat}$ and $\mathcal{C}_{nat, \mathcal{J}} \subset \mathcal{C}_{\mathcal{J}, \mathcal{J}}$ are proper because the identical function is a member of $\mathcal{C}_{nat, nat}$ and $\mathcal{C}_{\mathcal{J}, \mathcal{J}}$ but not $\mathcal{C}_{nat, \mathcal{J}}$.

PROPERTY 12. If \mathcal{J} is a sequence of intervals one-side tending to zero then:

- (i) $\mathcal{C}_{nat, nat} \setminus \mathcal{C}_{\mathcal{J}, \mathcal{J}} \neq \emptyset$,
- (ii) $\mathcal{C}_{\mathcal{J},\mathcal{J}} \setminus \mathcal{C}_{nat,nat} \neq \emptyset$.

JACEK HEJDUK — ANNA LORANTY — RENATA WIERTELAK

Proof. We give the proof only for the case when the sequence \mathcal{J} is right sidetending to zero; the second case is left to the reader. To show the first condition, we consider the function $f(x) = -x^2$. Obviously, $f \in \mathcal{C}_{nat, nat} \subset \mathcal{C}_{\mathcal{J}, nat}$. By Theorem 9, $[-1, 1) \in \mathcal{T}_{\mathcal{J}}$ but $f^{-1}([-1, 1)) = [-1, 1] \notin \mathcal{T}_{\mathcal{J}}$. Thus, $f \notin \mathcal{C}_{\mathcal{J}, \mathcal{J}}$, and condition (i) is proved.

To prove the second condition, we define the function

$$h(x) = x - k$$
 for $x \in [k, k+1), k \in \mathbb{Z}$.

It is easy to see that for every set $A \subset \mathbb{R}$

$$h^{-1}(A) = \bigcup_{k \in \mathbb{Z}} \left(\left(A \cap [0, 1) \right) + k \right)$$

holds.

Thus for every set $A \in \mathcal{T}_{\mathcal{J}}$, by Theorem 9 and Property 6, we have that $h^{-1}(A) \in \mathcal{T}_{\mathcal{J}}$. Hence, $h \in \mathcal{C}_{\mathcal{J}, \mathcal{J}} \subset \mathcal{C}_{\mathcal{J}, nat}$. Since

$$h^{-1}\left(\left(-1,\frac{1}{2}\right)\right) = \bigcup_{k\in\mathbb{Z}} \left[k,k+\frac{1}{2}\right) \notin \mathcal{T}_{nat},$$

we get that $h \notin C_{nat, nat}$ and condition (ii) is satisfied.

A direct consequence of this proof is the following property.

PROPERTY 13. Let \mathcal{J} be a sequence of intervals one-side tending to zero. Then the inclusions

- (i) $\mathcal{C}_{nat, nat} \subset \mathcal{C}_{\mathcal{J}, nat}$,
- (ii) $\mathcal{C}_{\mathcal{J},\mathcal{J}} \subset \mathcal{C}_{\mathcal{J},nat}$

are proper.

The subsequent terminology is needed in the reminder of this section.

Either of the sets

$$\bigcup_{n\in\mathbb{N}}(a_n,b_n),\quad \bigcup_{n\in\mathbb{N}}[a_n,b_n]$$

is a **right interval set at a point** x_0 if $x_0 < b_{n+1} < a_n < b_n$ for $n \in \mathbb{N}$ and $\lim_{n\to\infty} a_n = x_0$.

In the case when $a_n < b_n < a_{n+1} < x_0$ for $n \in \mathbb{N}$ and $\lim_{n\to\infty} a_n = x_0$ it is called a **left interval set at a point** x_0 .

We will call the union of a right interval set and a left interval set at the same point x_0 a **both interval set at a point** x_0 . A set A is an **interval set at a point** x_0 if it is a right interval or a left interval or a both interval set at a point x_0 . An interval set at a point 0 is simply called an **interval set**.

THEOREM 14. For every sequence of intervals $\mathcal{J} \in \mathfrak{S}$ there exists an interval set *B* consisting of open intervals such that 0 is an \mathcal{J} -density point of *B*.

Proof. Let $J_n = [a_n, b_n]$ for $n \in \mathbb{N}$ and define

$$M_r = \{ n \in \mathbb{N} : b_n > 0 \}, \quad M_l = \{ n \in \mathbb{N} : a_n < 0 \}.$$

Clearly, at least one of these sets is infinite. There are three possibilities:

 1^0 The set M_r is infinite and the set M_l is finite. We can assume that the set M_l is empty, hence $a_n \ge 0$ for $n \in \mathbb{N}$. Let $c_1 = \frac{1}{2}$ and

$$I(1) = \left\{ k \in \mathbb{N} \colon J_k \cap \left(\frac{1}{2}, 1\right) \neq \emptyset \right\},$$

$$j(1) = \max\left(\{1\} \cup \left\{k \in I(1)\right\}\right),$$

$$z_1 = \min\left(\left\{\frac{1}{2}\right\} \cup \left\{\left|J_k \cap \left(\frac{1}{2}, 1\right)\right| \colon k \in I(1)\right\}\right),$$

$$d_1 = c_1 + 2^{-j(1)}z_1.$$

If we define c_k , I(k), j(k), z_k and d_k for k = 1, 2, ..., n-1, then there exists a natural number i(n) such that $2^{1-i(n)} \leq |[c_{n-1}, d_{n-1}]|$. We put $c_n = 2^{-i(n)}$ and

$$\begin{split} I(n) &= \left\{ k \in \mathbb{N} \colon J_k \cap (c_n, 2c_n) \neq \emptyset \right\},\\ j(n) &= \max\left(\{n\} \cup \left\{ k \in I(n) \right\} \right),\\ z_n &= \min\left(\{c_n\} \cup \left\{ |J_k \cap (c_n, 2c_n)| \colon k \in I(n) \right\} \right),\\ d_n &= c_n + 2^{-j(n)} z_n. \end{split}$$

Notice that

$$d_n \le 2c_n \le |[c_{n-1}, d_{n-1}]| < c_{n-1} \tag{2}$$

and

$$[c_n, d_n] \le 2^{-j(n)} |J_k| \le 2^{-k} |J_k| \quad \text{for } k \in \mathbb{N}.$$
 (3)

Putting

$$B = \bigcup_{n \in \mathbb{N}} (d_{n+1}, c_n),$$

we obtain that B is a right interval set. Moreover,

$$(J_n \setminus B) \subset J_n \cap \left([0, d_{k(n)+1}] \cup [c_{k(n)}, d_{k(n)}] \right)$$

where $k(n) = \min\{k \in \mathbb{N} : J_n \cap [c_k, d_k] \neq \emptyset\}$ for $n \in \mathbb{N}$. From (3) we obtain

$$|J_n \cap [c_{k(n)}, d_{k(n)}]| \le |[c_{k(n)}, d_{k(n)}]| \le 2^{-n} |J_n|.$$

55

In addition, from (2) and (3) we have

$$|J_n \cap [0, d_{k(n)+1}]| \le d_{k(n)+1} \le |[c_{k(n)}, d_{k(n)}]| \le 2^{-n} |J_n|.$$

Hence, for every $n \in \mathbb{N}$ we have

$$\lambda(J_n \setminus B) \le 2^{1-n} |J_n|. \tag{4}$$

Therefore,

$$\lim_{n \to \infty} \frac{\lambda(B \cap J_n)}{|J_n|} = \lim_{n \to \infty} \frac{|J_n| - \lambda(J_n \setminus B)}{|J_n|}$$
$$\geq \lim_{n \to \infty} \frac{|J_n| - 2^{1-n}|J_n|}{|J_n|} \ge \lim_{n \to \infty} 1 - 2^{1-n} = 1.$$

For that reason, 0 is an \mathcal{J} -density point of B.

 2^0 The set M_l is infinite and the set M_r is finite. In this case we consider sequence of intervals $-\mathcal{J} = \{-J_n\}_{n \in \mathbb{N}}$. From the first part of the proof, there exists a right interval set C consisting of open intervals such that 0 is an $(-\mathcal{J})$ density point of C. Putting B = -C, we obtain a left interval set B composed of open intervals such that $0 \in \Phi_{\mathcal{J}}(B)$.

 3^0 Both sets, M_l and M_r , are infinite. Let $M_l = \{l_n : n \in \mathbb{N}\}$ and $M_r = \{r_n : n \in \mathbb{N}\}$. We then consider sequences of intervals $\mathcal{J}_L = \{L_n\}_{n \in \mathbb{N}}$ and $\mathcal{J}_R = \{R_n\}_{n \in \mathbb{N}}$, where

$$L_n = J_n \cap (-\infty, 0] \quad \text{for } n \in M_l,$$

$$L_n = (-J_n) \cap (-\infty, 0] \quad \text{for } n \notin M_l,$$

$$R_n = J_n \cap [0, \infty) \quad \text{for } n \in M_r,$$

$$R_n = (-J_n) \cap [0, \infty) \quad \text{for } n \notin M_r.$$

As in the first part, we define B_r . It is a right interval set consisting of open intervals such that it is an \mathcal{J}_R -density point of B_r . Similarly we define a left interval set B_l consisting of open intervals such that 0 is an \mathcal{J}_L -density point of B_l . Then, the set $B = B_l \cup B_r$ is the interval set composed of open intervals. We must show that 0 is an \mathcal{J} -density point of B.

It follows from (4) that

$$\lambda(L_n \setminus B) \le 2^{1-n} |L_n|$$
 and $\lambda(R_n \setminus B) \le 2^{1-n} |R_n|$ for $n \in \mathbb{N}$.

Therefore,

$$\lambda(J_n \setminus B) \le \lambda(L_n \setminus B) + \lambda(R_n \setminus B) \le 2^{1-n} |L_n| + 2^{1-n} |R_n| \le 2^{2-n} |J_n| \quad \text{for} \quad n \in \mathbb{N}.$$

It implies that

$$\lim_{n \to \infty} \frac{\lambda(B \cap J_n)}{|J_n|} \ge \lim_{n \to \infty} 1 - 2^{2-n} = 1.$$

As a result, $0 \in \Phi_{\mathcal{J}}(B)$.

As a simple consequence of the proof of the previous theorem, we obtain the following:

THEOREM 15. For every sequence of intervals \mathcal{J} tending to zero there exists a sequence of intervals \mathcal{K} tending to zero such that topologies generated by \mathcal{J} and \mathcal{K} . respectively, are incomparable.

Proof. The set $C = [-1, 1] \setminus (B \cup \{0\})$, where B is the set from the previous proof, is an interval set composed of closed intervals. We order them in the sequence \mathcal{K} . Then, $0 \in \Phi_{\mathcal{T}}(B), 0 \notin \Phi_{\mathcal{K}}(B), 0 \notin \Phi_{\mathcal{T}}(C), 0 \in \Phi_{\mathcal{K}}(C)$. It is easy to conclude that $\mathcal{T}_{\mathcal{J}} \setminus \mathcal{T}_{\mathcal{K}} \neq \emptyset$ and $\mathcal{T}_{\mathcal{K}} \setminus \mathcal{T}_{\mathcal{J}} \neq \emptyset$.

PROPERTY 16. Let $\mathcal{J} \in \mathfrak{F}$ and A be an open interval set such that $0 \in \Phi_{\mathcal{J}}(A)$. Then, there exists an interval set $B \subset A$ composed of closed intervals such that $0 \in \Phi_{\mathcal{T}}(B).$

Proof. Let $A = \bigcup_{k \in \mathbb{N}} A_k$, where A_k are disjoint open intervals. Putting $N_k := \{i \in \mathbb{N} : J_i \cap A_k \neq \emptyset\}$ for every $k \in \mathbb{N}$,

we obtain a finite set. Then we define

$$j_k := \max(\{k\} \cup \{i \colon i \in N_k\}),$$
$$l_k := \min(\{|A_k|\} \cup \{|J_i| \colon i \in N_k\}).$$

Let B_k be a closed subinterval of A_k such that $\lambda(A_k \setminus B_k) \leq 2^{-(k+j_k)} l_k$ for $k \in \mathbb{N}$. Observe that for any $n \in \mathbb{N}$ and $k \in \mathbb{N}$ we have

$$\lambda(B_k \cap J_n) = \lambda(A_k \cap J_n) - \lambda((A_k \setminus B_k) \cap J_n)$$

$$\geq \lambda(A_k \cap J_n) - 2^{-(k+j_k)} l_k$$

$$\geq \lambda(A_k \cap J_n) - 2^{-(k+n)} |J_n|.$$

Hence, the following holds for $B = \bigcup_{k \in \mathbb{N}} B_k$ and any $n \in \mathbb{N}$:

$$\lambda(B \cap J_n) = \lambda\left(\bigcup_{k \in \mathbb{N}} B_k \cap J_n\right) = \sum_{k \in \mathbb{N}} \lambda(B_k \cap J_n)$$

$$\geq \sum_{k \in \mathbb{N}} \left(\lambda(A_k \cap J_n) - 2^{-(k+n)} |J_n|\right)$$

$$= \sum_{k \in \mathbb{N}} \lambda(A_k \cap J_n) - \sum_{k \in \mathbb{N}} 2^{-(k+n)} |J_n| = \lambda(A \cap J_n) - 2^{-n} |J_n|.$$

Therefore,

$$\lim_{n \to \infty} \frac{\lambda(B \cap J_n)}{|J_n|} \ge \lim_{n \to \infty} \frac{\lambda(A \cap J_n) - 2^{-n}|J_n|}{|J_n|} = \lim_{n \to \infty} \frac{\lambda(A \cap J_n)}{|J_n|} - 2^{-n}.$$

ce $0 \in \Phi_{\mathcal{I}}(A)$, we have $0 \in \Phi_{\mathcal{I}}(B)$.

Sind $\mathcal{I}_{\mathcal{J}}(A), \mathsf{V}$ $\mathcal{J}(D)$

57

PROPERTY 17. Let $\mathcal{J} \in \mathfrak{S}$. Then, there exists $\mathcal{K} \in \mathfrak{S}$ such that $\mathcal{T}_{\mathcal{J}} \neq \mathcal{T}_{\mathcal{K}}$, $\mathcal{C}_{\mathcal{J},\mathcal{J}} \neq \mathcal{C}_{\mathcal{K},\mathcal{K}}$ and $\mathcal{C}_{\mathcal{J},nat} \neq \mathcal{C}_{\mathcal{K},nat}$.

Proof. 1° Suppose that the sequence \mathcal{J} is left-side tending to zero. Then, as a sequence \mathcal{K} , we put any sequence right-side tending to zero and we define the function $f: \mathbb{R} \to \mathbb{R}$ in the following way: $f(x) = \chi_{[0,\infty)}$. Obviously, Theorem 9 implies that $\mathcal{T}_{\mathcal{J}} \neq \mathcal{T}_{\mathcal{K}}$. Moreover, it is easy to see that $f \notin \mathcal{C}_{\mathcal{J}, nat}$. So, we obtain that

 $f \in \mathcal{C}_{\mathcal{K},\mathcal{K}} \subset \mathcal{C}_{\mathcal{K},nat}$ and $f \notin \mathcal{C}_{\mathcal{J},nat} \supset \mathcal{C}_{\mathcal{J},\mathcal{J}}$.

 2^{o} Suppose that the sequence \mathcal{J} is not left-side tending to zero. Then, as a sequence \mathcal{K} , we put any sequence left-side tending to zero and we define function $f \colon \mathbb{R} \to \mathbb{R}$ in the following way: $f(x) = \chi_{(0,\infty)}$. Arguments similar to those above show that

$$f \in \mathcal{C}_{\mathcal{K},\mathcal{K}} \subset \mathcal{C}_{\mathcal{K},nat}$$
 and $f \notin \mathcal{C}_{\mathcal{J},nat} \supset \mathcal{C}_{\mathcal{J},\mathcal{J}}$.

Let $\mathcal{J} = \{J_n\}_{n \in \mathbb{N}}$ and $\mathcal{K} = \{K_n\}_{n \in \mathbb{N}}$ be sequences of intervals. Then, the sequence ordered in an arbitrary fashion containing all intervals of the sequences \mathcal{J} and \mathcal{K} , and denoted by $\mathcal{J} \cup \mathcal{K}$, is called **the union of sequences** \mathcal{J} and \mathcal{K} .

PROPERTY 18. The sequences of intervals \mathcal{J} and \mathcal{K} are tending to zero if and only if the sequence $\mathcal{J} \cup \mathcal{K}$ is tending to zero.

PROPERTY 19. If $\mathcal{J} \in \mathfrak{S}$ and $\mathcal{K} \in \mathfrak{S}$, then

$$\mathcal{T}_{\mathcal{J}\cup\mathcal{K}}=\mathcal{T}_{\mathcal{J}}\cap\mathcal{T}_{\mathcal{K}}.$$

Proof. It is a direct consequence of the following fact:

$$\Phi_{\mathcal{J}\cup\mathcal{K}}(A) = \Phi_{\mathcal{J}}(A) \cap \Phi_{\mathcal{K}}(A).$$

PROPERTY 20. Let $\mathcal{J} \in \Im$ and $\mathcal{K} \in \Im$. Then,

- (i) $\mathcal{C}_{\mathcal{J},nat} \cap \mathcal{C}_{\mathcal{K},nat} = \mathcal{C}_{\mathcal{J} \cup \mathcal{K},nat}$
- (ii) $\mathcal{C}_{nat,\mathcal{J}} \cap \mathcal{C}_{nat,\mathcal{K}} = \mathcal{C}_{nat,\mathcal{J}\cup\mathcal{K}},$
- (iii) $\mathcal{C}_{\mathcal{J},\mathcal{J}} \cap \mathcal{C}_{\mathcal{K},\mathcal{K}} \subsetneq \mathcal{C}_{\mathcal{J}\cup\mathcal{K},\mathcal{J}\cup\mathcal{K}}$.

Proof. The condition (i) and the inclusion (iii) are evident by Property 19. The condition (ii) follows from Property 10. Let

$$\mathcal{J} = \left\{ \left[-\frac{1}{n}, 0 \right] \right\}_{n \in \mathbb{N}}, \qquad \mathcal{K} = \left\{ \left[0, \frac{1}{n} \right] \right\}_{n \in \mathbb{N}}$$

Then, \mathcal{J} is left-side tending to zero and \mathcal{K} is right-side tending to zero. It is easy to observe that $\mathcal{T}_{\mathcal{J}\cup\mathcal{K}}$ is the density topology. Thus, the function f(x) = -x

ON $\mathcal J\text{-}\mathsf{CONTINUOUS}$ FUNCTIONS

belongs to the family $C_{\mathcal{J}\cup\mathcal{K},\mathcal{J}\cup\mathcal{K}}$. By Theorem 9, we have that $[0,1) \in \mathcal{T}_{\mathcal{K}}$, whereas $f^{-1}([0,1)) = (-1,0] \notin \mathcal{T}_{\mathcal{K}}$. It implies that

$$f \notin \mathcal{C}_{\mathcal{K},\mathcal{K}}$$
 so $f \notin (\mathcal{C}_{\mathcal{J},\mathcal{J}} \cap \mathcal{C}_{\mathcal{K},\mathcal{K}}).$

REFERENCES

- BRUCKNER, A. M.: Differentiation of Real Functions. Lecture Notes in Math., Vol. 659, Springer Verlag, Berlin, 1978.
- [2] CSÖRNYEI, M.: Density theorems revisited, Acta Sci. Math. 64 (1998), 59-65.
- [3] FILIPCZAK, M.—FILIPCZAK, T.—HEJDUK, J.: On the comparison of the density type topologies, Atti Semin. Mat. Fis. Univ. Modena LII (2004), 1–11.
- [4] HEJDUK, J.—WIERTELAK, R.: On the Abstract Density Topologies Generated by Lower and Almost Lower Density Operators. Traditional and Present-day Topics in Real Analysis, Lodź University Press, 2013.
- [5] HEJDUK, J.—WIERTELAK, R.: On the generalization of density topologies on the real line, Math. Slovaca 64 (2014), 1267–1276.
- [6] WILCZYŃSKI, W.: Density topologies, in: Handbook of Measure Theory (E. Pap., ed.), North Holland, Amsterdam, 2002, pp. 675–702.

Received December 3, 2014

Lódź University Faculty of Mathematics and Computer Science Banacha 22 PL-90-238 Łódź POLAND E maik baiduk@math.uni

E-mail: hejduk@math.uni.lodz.pl loranta@math.uni.lodz.pl wiertelak@math.uni.lodz.pl