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ON J -CONTINUOUS FUNCTIONS

Jacek Hejduk — Anna Loranty — Renata Wiertelak

ABSTRACT. This paper presents the properties of continuous functions equip-

ped with the J -density topology or natural topology in the domain and the range.

1. Introduction

Let R be the set of real numbers, N – the set of positive integers and
L – the family of Lebesgue measurable sets in R. By λ(A) we shall denote
the Lebesgue measure of A ∈ L and by |I| – the length of an interval I. Further-
more, Tnat will denote the natural topology on R and Td – the density topology
on R. Moreover, if A, B ⊂ R and z ∈ R then

A � B = (A \B) ∪ (B \A),
A+ z = {a+ z : a ∈ A},

zA = {z · a : a ∈ A}.
It is well known that a point x0 ∈ R is a density point of A ∈ L if

lim
h→0+

λ(A ∩ [x0 − h, x0 + h])

2h
= 1.

An equivalent form of this condition is the following one:

lim
h1 → 0+, h2 → 0+

h1 + h2 > 0

λ (A ∩ [x0 − h1, x0 + h2])

h1 + h2
= 1.

Sometimes it is written in the form (see [6]):

∀{Jn}n∈N

(
0 ∈

⋂
n∈N

Jn ∧ |Jn| −→
n→∞0

)
⇒ lim

n→∞
λ (A ∩ (Jn + x0))

|Jn|
= 1,

where {Jn}n∈N is a sequence of non-degenerate closed intervals.

c© 2016 Mathematical Institute, Slovak Academy of Sciences.
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ByJ we will denote a sequence of non-degenerate and closed intervals {Jn}n∈N

tending to zero, that means diam
{
Jn ∪{0}

}
−→
n→∞0. To shorten the notation,

we will write J instead of {Jn}n∈N.

From now on, the family of all sequences of intervals tending to zero will be
denoted by 
. Moreover, we will consider sequences which differ in only a finite
number of their terms to be identical.

���������� 1� Let J∈
. We shall say that a point x0∈R is a J-density point
of a set A ∈ L if

lim
n→∞

λ(A ∩ (x0 + Jn))

|Jn|
= 1.

If A ∈ L and J ∈ 
, then
ΦJ (A) := {x ∈ R : x is a J -density point of the set A}.

	
���
�� 2 ([5])� If A ∈ L and J ∈ 
, then ΦJ (A) ∈ L.

Moreover, this operator fulfills the following property.

	
���
�� 3 ([5])� For any sets A,B ∈ L and J ∈ 
 we have:

(1) ΦJ (∅) = ∅, ΦJ (R) = R;

(2) λ(A � B) = 0 ⇒ ΦJ (A) = ΦJ (B);

(3) ΦJ (A ∩B) = ΦJ (A) ∩ ΦJ (B).

It turned out that the analogue of the Lebesgue Density Theorem does not
hold for every sequence of intervals J tending to zero. Studying paper [2], we can
find a construction of a sequence J ∈ 
 and a set A ∈ L of positive measure
such that λ(ΦJ (A) ∩ A) = 0. However, if we consider a subfamily 
α ⊂ 
 such
that for any sequence J ∈ 
α we have

α(J ) := lim sup
n→∞

diam(Jn ∪ {0})
|Jn|

< ∞,

then the analogue of the Lebesgue Density Theorem holds.

���
�� 4 ([5])� If J ∈ 
α and A ∈ L, then λ
(
ΦJ (A) � A

)
= 0.

Property 3 and Theorem 4 mean that an operator ΦJ : L → L is a lower
density operator for every J ∈ 
α. Therefore the family

TJ :=
{
A ∈ L : A ⊂ ΦJ (A)

}
is a topology on R such that Td ⊂ TJ (see [5]).

Obviously, one can ask what will happen if we consider any sequence J ∈ 
.
In this case, we can prove the following fact.

���
�� 5 ([5])� For every sequence J ∈ 
 and every set A ∈ L we have

λ
(
ΦJ (A) \A

)
= 0.
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By Property 3 and Theorem 5 we obtain that an operator ΦJ : L → L is
an almost lower density operator. Theorem 10 in [5] says that the family

TJ =
{
A ∈ L : A ⊂ ΦJ (A)

}
is a topology on R such that Tnat ⊂ TJ and Tnat = TJ .

It is easy to see that if J =
{[
− 1

n ,
1
n

]}
n∈N

, then x0 is a J -density point

of a set A ∈ L if and only if x0 is a density point of A (see [6]). Moreover, if we
consider an unbounded and nondecreasing sequence 〈s〉 = {sn}n∈N of positive
numbers and a sequence J =

{[
− 1

sn
, 1
sn

]}
n∈N

, then the notion of a J -density

point of a set A ∈ L is equivalent to the notion of an 〈s〉-density point of A
(see [3]).

From the definition of a J -density point and a J -density topology it is easy
to conclude the following property.

	
���
�� 6� For every J ∈ 
 and every set A ∈ L the following proper-
ties hold:

(i) ∀
x∈R

∀
a∈R

x ∈ ΦJ (A) ⇔ (x+ a) ∈ ΦJ (A+ a),

(ii) ∀
x∈R

∀
m∈R\{0}

x ∈ ΦJ (A) ⇔ mx ∈ ΦmJ (mA),

(iii) ∀
a∈R

A ∈ TJ ⇔ (A+ a) ∈ TJ ,

(iv) ∀
m∈R\{0}

A ∈ TJ ⇔ mA ∈ TmJ .

Since for any J ∈ 
, the operator ΦJ is an almost lower density operator,
so, by [4, Theorem 25.27], we obtain immediately the following claim.

���
�� 7� Let J ∈ 
.
(i) (R, TJ ) is neither a first countable, nor a second countable, nor a separable,

nor a Lindelöf space,

(ii) λ(A) = 0 if and only if A is a closed and discrete set with respect to
a topology TJ ,

(iii) a set A ⊂ R is compact with respect to a topology TJ if and only if A is
finite.

We say that a sequence of intervals J = {[an, bn]}n∈N
∈ 
 is right-side

(left-side) tending to zero if there exists n0 ∈ N such that bn > 0 (an < 0)
for n ≥ n0 and

lim
n→∞

min{0, an}
bn

= 0

(
lim

n→∞
max{0, bn}

an
= 0

)
.

Obviously, if for a sequence J ∈ 
 there exists n0 ∈ N such that Jn ⊂ [0,∞)
(Jn ⊂ (−∞, 0]) for n > n0, then J is right-side (left-side) tending to zero.
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A sequence of intervals J ∈ 
 is one-side tending to zero if it is right-side
or left-side tending to zero.

���
�� 8� If J is a sequence of intervals tending to zero, then [0, b) ∈ TJ
for b > 0 ((a, 0] ∈ TJ for a < 0) if and only if the sequence J is right-side
(left-side) tending to zero.

P r o o f. We give the proof only for the case when the sequence J is right-
-side tending to zero; the second case is left to the reader. Sufficiency. Let
J = {[an, bn]}n∈N be a sequence of intervals right-side tending to zero and b > 0.
Without the loss of generality we may assume that 0 < bn< b for n ∈ N. It is suf-
ficient to show that 0 ∈ ΦJ ([0, b)). We prove that for every increasing sequence
{nk}k∈N

there exists subsequence {nkm
}m∈N

such that

lim
m→∞

λ([0, b) ∩ Jnkm
)

|Jnkm
| = 1. (1)

Let {nk}k∈N be an increasing sequence of natural numbers. If ank
≥ 0 for

infinitely many k ∈ N, then we choose subsequence {nkm
}m∈N

such that ankm
≥ 0

for m ∈ N. Hence, Jnkm
⊂ [0, b) for m ∈ N. Therefore, condition (1) is fulfilled.

Now, we assume that ank
≥ 0 only for finite numbers k ∈ N. Then, there is

a k1 ∈ N such that for k > k1 we have ank
< 0 and

λ([0, b) ∩ Jnk
)

|Jnk
| =

|Jnk
| − λ([ank

, 0))

|Jnk
| = 1− −ank

|Jnk
| ≥ 1 +

ank

bnk

.

The above and the assumption that the sequence J is right-side tending to zero
implies condition (1).

We conclude that, in both cases, 0 ∈ ΦJ ([0, b)).

���������� Let J = {[an, bn]}n∈N ∈ 
 and [0, b) ∈ TJ , where b > 0. Obviously,
0 ∈ ΦJ ([0, b)) and bn≤ 0 only for finitely many n ∈ N. Without loss of generality
we may assume that bn> 0 for n ∈ N. Suppose that J is not right-side tending
to zero. Then,

lim sup
n∈N

|min{0, an}|
bn

= β > 0.

So, there exists subsequence {nk}k∈N such that

lim
k→∞

|min{0, ank
}|

bnk

= β

and also that ank
< 0 for k ∈ N. Moreover, there exists k0 ∈ N such that

1

2
βbnk

< |ank
| < 3

2
βbnk

for k > k0.
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Then,
λ([0, b) ∩ Jnk

)

|Jnk
| =

λ(Jnk
)− λ([ank

, 0))

|Jnk
| = 1− |ank

|
bnk

+ |ank
|

≤ 1− 1/2βbnk

bnk
+ 3/2βbnk

= 1− β

2 + 3β
.

It implies that 0 /∈ ΦJ ([0, b)). This contradiction finishes the proof. �

A direct consequence of the above theorem is

���
�� 9� If a sequence of intervals J is tending to zero then [a, b) ∈ TJ
((a, b] ∈ TJ ) for a < b if and only if the sequence J is right-side (left-side)
tending to zero.

2. Continuous functions

For J ∈ 
 we consider four families of continuous functions defined as follows:

Cnat, nat =
{
f : (R, Tnat) → (R, Tnat) and f is continuous

}
,

Cnat,J =
{
f : (R, Tnat) → (R, TJ ) and f is continuous

}
,

CJ, nat =
{
f : (R, TJ ) → (R, Tnat) and f is continuous

}
,

CJ,J =
{
f : (R, TJ ) → (R, TJ ) and f is continuous

}
.

	
���
�� 10� For J ∈ 
 the family Cnat,J consists of constant functions.

P r o o f. Let f ∈ Cnat,J and a, b ∈ R be such that a < b. Then f([a, b]) is
a nonempty and compact set with respect to the topology TJ . By Theorem 7,
f([a, b]) is finite. Moreover, it is a connected set in Tnat, so f([a, b]) is a singleton.
Hence, f(a) = f(b), and the function f is constant. �

	
���
�� 11� For J ∈ 
, the following inclusions hold:

(i) Cnat,J � Cnat, nat ⊂ CJ, nat,

(ii) Cnat,J � CJ,J ⊂ CJ, nat.

P r o o f. All the inclusions are the consequence of the fact that Tnat⊂ TJ . The in-
clusions Cnat,J ⊂ Cnat, nat and Cnat,J ⊂ CJ,J are proper because the identical
function is a member of Cnat, nat and CJ,J but not Cnat,J . �

	
���
�� 12� If J is a sequence of intervals one-side tending to zero then:

(i) Cnat, nat \ CJ,J = ∅,
(ii) CJ,J \ Cnat, nat = ∅.
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P r o o f. We give the proof only for the case when the sequence J is right side-
-tending to zero; the second case is left to the reader. To show the first condi-
tion, we consider the function f(x) = −x2. Obviously, f ∈ Cnat, nat ⊂ CJ, nat.
By Theorem 9, [−1, 1) ∈ TJ but f−1([−1, 1)) = [−1, 1] /∈ TJ . Thus, f /∈ CJ,J ,
and condition (i) is proved.

To prove the second condition, we define the function

h(x) = x− k for x ∈ [k, k + 1), k ∈ Z.

It is easy to see that for every set A ⊂ R

h−1(A) =
⋃
k∈Z

((
A ∩ [0, 1)

)
+ k
)

holds.

Thus for every set A ∈ TJ , by Theorem 9 and Property 6, we have that
h−1(A) ∈ TJ . Hence, h ∈ CJ,J ⊂ CJ, nat. Since

h−1

((
−1,

1

2

))
=
⋃
k∈Z

[
k, k +

1

2

)
/∈ Tnat,

we get that h /∈ Cnat, nat and condition (ii) is satisfied. �

A direct consequence of this proof is the following property.

	
���
�� 13� Let J be a sequence of intervals one-side tending to zero.
Then the inclusions

(i) Cnat, nat ⊂ CJ, nat,

(ii) CJ,J ⊂ CJ, nat

are proper.

The subsequent terminology is needed in the reminder of this section.

Either of the sets ⋃
n∈N

(an, bn),
⋃
n∈N

[an, bn]

is a right interval set at a point x0 if x0 < bn+1 < an < bn for n ∈ N and
limn→∞ an = x0.

In the case when an < bn < an+1 < x0 for n ∈ N and limn→∞ an = x0 it is
called a left interval set at a point x0.

We will call the union of a right interval set and a left interval set at the
same point x0 a both interval set at a point x0. A set A is an interval set
at a point x0 if it is a right interval or a left interval or a both interval set at
a point x0. An interval set at a point 0 is simply called an interval set.
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���
�� 14� For every sequence of intervals J ∈ 
 there exists an interval
set B consisting of open intervals such that 0 is an J -density point of B.

P r o o f. Let Jn = [an, bn] for n ∈ N and define

Mr = {n ∈ N : bn> 0}, Ml = {n ∈ N : an< 0}.

Clearly, at least one of these sets is infinite. There are three possibilities:

10 The set Mr is infinite and the set Ml is finite. We can assume that the
set Ml is empty, hence an ≥ 0 for n ∈ N. Let c1 = 1

2 and

I(1) =

{
k ∈ N : Jk ∩

(
1

2
, 1

)
= ∅
}
,

j(1) = max
(
{1} ∪

{
k ∈ I(1)

})
,

z1 = min

({
1

2

}
∪
{∣∣∣∣Jk ∩

(
1

2
, 1

)∣∣∣∣ : k ∈ I(1)

})
,

d1 = c1 + 2−j(1)z1.

If we define ck, I(k), j(k), zk and dk for k = 1, 2, . . . , n − 1, then there exists
a natural number i(n) such that 21−i(n)≤ |[cn−1, dn−1]|. We put cn = 2−i(n) and

I(n) =
{
k ∈ N : Jk ∩ (cn, 2cn) = ∅

}
,

j(n) = max
(
{n} ∪

{
k ∈ I(n)

})
,

zn = min
(
{cn} ∪

{
|Jk ∩ (cn, 2cn)| : k ∈ I(n)

})
,

dn = cn + 2−j(n)zn.

Notice that

dn≤ 2cn≤ |[cn−1, dn−1]| < cn−1 (2)

and

|[cn, dn]| ≤ 2−j(n)|Jk| ≤ 2−k|Jk| for k ∈ N. (3)

Putting

B =
⋃
n∈N

(dn+1, cn),

we obtain that B is a right interval set. Moreover,

(Jn \B) ⊂ Jn ∩
(
[0, dk(n)+1] ∪ [ck(n), dk(n)]

)
,

where k(n) = min
{
k ∈ N : Jn ∩ [ck, dk] = ∅

}
for n ∈ N. From (3) we obtain

|Jn ∩ [ck(n), dk(n)]| ≤ |[ck(n), dk(n)]| ≤ 2−n|Jn|.
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In addition, from (2) and (3) we have

|Jn ∩ [0, dk(n)+1]| ≤ dk(n)+1≤ |[ck(n), dk(n)]| ≤ 2−n|Jn|.
Hence, for every n ∈ N we have

λ(Jn \B) ≤ 21−n|Jn|. (4)

Therefore,

lim
n→∞

λ(B ∩ Jn)

|Jn|
= lim

n→∞
|Jn| − λ(Jn \B)

|Jn|

≥ lim
n→∞

|Jn| − 21−n|Jn|
|Jn|

≥ lim
n→∞

1− 21−n = 1.

For that reason, 0 is an J -density point of B.

20 The set Ml is infinite and the set Mr is finite. In this case we consider
sequence of intervals −J = {−Jn}n∈N. From the first part of the proof, there
exists a right interval set C consisting of open intervals such that 0 is an (−J )-
-density point of C. Putting B = −C, we obtain a left interval set B composed
of open intervals such that 0 ∈ ΦJ (B).

30 Both sets, Ml and Mr, are infinite. Let Ml = {ln : n ∈ N} and Mr =
{rn : n ∈ N}. We then consider sequences of intervals JL = {Ln}n∈N and JR =
{Rn}n∈N, where

Ln = Jn ∩ (−∞, 0] for n ∈ Ml,

Ln = (−Jn) ∩ (−∞, 0] for n /∈ Ml,

Rn = Jn ∩ [0,∞) for n ∈ Mr,

Rn = (−Jn) ∩ [0,∞) for n /∈ Mr.

As in the first part, we define Br. It is a right interval set consisting of open
intervals such that it is an JR-density point of Br. Similarly we define a left
interval set Bl consisting of open intervals such that 0 is an JL-density point
of Bl. Then, the set B = Bl ∪Br is the interval set composed of open intervals.
We must show that 0 is an J -density point of B.

It follows from (4) that

λ(Ln \B) ≤ 21−n|Ln| and λ(Rn \B) ≤ 21−n|Rn| for n ∈ N.

Therefore,

λ(Jn\B) ≤ λ(Ln\B)+λ(Rn\B) ≤ 21−n|Ln|+21−n|Rn| ≤ 22−n|Jn| for n ∈ N.

It implies that

lim
n→∞

λ(B ∩ Jn)

|Jn|
≥ lim

n→∞
1− 22−n = 1.

As a result, 0 ∈ ΦJ (B). �
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As a simple consequence of the proof of the previous theorem, we obtain the
following:

���
�� 15� For every sequence of intervals J tending to zero there exists a se-
quence of intervals K tending to zero such that topologies generated by J and K,
respectively, are incomparable.

P r o o f. The set C = [−1, 1] \
(
B ∪ {0}

)
, where B is the set from the previous

proof, is an interval set composed of closed intervals. We order them in the
sequence K. Then, 0 ∈ ΦJ (B), 0 /∈ ΦK(B), 0 /∈ ΦJ (C), 0 ∈ ΦK(C). It is easy
to conclude that TJ \ TK = ∅ and TK \ TJ = ∅. �
	
���
�� 16� Let J ∈ 
 and A be an open interval set such that 0 ∈ ΦJ (A).
Then, there exists an interval set B ⊂ A composed of closed intervals such that
0 ∈ ΦJ (B).

P r o o f. Let A =
⋃

k∈N
Ak, where Ak are disjoint open intervals. Putting

Nk := {i ∈ N : Ji ∩ Ak = ∅} for every k ∈ N,

we obtain a finite set. Then we define

jk := max
(
{k} ∪ {i : i ∈ Nk}

)
,

lk := min
(
{|Ak|} ∪ {|Ji| : i ∈ Nk}

)
.

Let Bk be a closed subinterval of Ak such that λ(Ak\Bk) ≤ 2−(k+jk)lk for k ∈ N.
Observe that for any n ∈ N and k ∈ N we have

λ(Bk ∩ Jn) = λ(Ak ∩ Jn)− λ((Ak \Bk) ∩ Jn)

≥ λ(Ak ∩ Jn)− 2−(k+jk)lk

≥ λ(Ak ∩ Jn)− 2−(k+n)|Jn|.
Hence, the following holds for B =

⋃
k∈N

Bk and any n ∈ N:

λ(B ∩ Jn) = λ

(⋃
k∈N

Bk ∩ Jn

)
=
∑
k∈N

λ(Bk ∩ Jn)

≥
∑
k∈N

(
λ(Ak ∩ Jn)− 2−(k+n)|Jn|

)

=
∑
k∈N

λ(Ak ∩ Jn)−
∑
k∈N

2−(k+n)|Jn| = λ(A ∩ Jn)− 2−n|Jn|.

Therefore,

lim
n→∞

λ(B ∩ Jn)

|Jn|
≥ lim

n→∞
λ(A ∩ Jn)− 2−n|Jn|

|Jn|
= lim

n→∞
λ(A ∩ Jn)

|Jn|
− 2−n.

Since 0 ∈ ΦJ (A), we have 0 ∈ ΦJ (B). �
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���
�� 17� Let J ∈ 
. Then, there exists K ∈ 
 such that TJ = TK,
CJ,J = CK,K and CJ, nat = CK,nat.

P r o o f. 1o Suppose that the sequence J is left-side tending to zero. Then, as
a sequence K, we put any sequence right-side tending to zero and we define
the function f : R → R in the following way: f(x) = χ[0,∞). Obviously, Theo-
rem 9 implies that TJ = TK. Moreover, it is easy to see that f /∈ CJ, nat. So,
we obtain that

f ∈ CK,K ⊂ CK,nat and f /∈ CJ, nat ⊃ CJ,J .

2o Suppose that the sequence J is not left-side tending to zero. Then, as
a sequence K, we put any sequence left-side tending to zero and we define func-
tion f : R → R in the following way: f(x) = χ(0,∞). Arguments similar to those
above show that

f ∈ CK,K ⊂ CK,nat and f /∈ CJ, nat ⊃ CJ,J . �

Let J = {Jn}n∈N and K = {Kn}n∈N be sequences of intervals. Then, the
sequence ordered in an arbitrary fashion containing all intervals of the sequences
J and K, and denoted by J ∪ K, is called the union of sequences J and K.

	
���
�� 18� The sequences of intervals J and K are tending to zero if and
only if the sequence J ∪ K is tending to zero.

	
���
�� 19� If J ∈ 
 and K ∈ 
, then

TJ∪K = TJ ∩ TK.

P r o o f. It is a direct consequence of the following fact:

ΦJ∪K(A) = ΦJ (A) ∩ ΦK(A). �

	
���
�� 20� Let J ∈ 
 and K ∈ 
. Then,
(i) CJ, nat ∩ CK,nat = CJ∪K,nat,

(ii) Cnat,J ∩ Cnat,K = Cnat,J∪K,

(iii) CJ,J ∩ CK,K � CJ∪K,J∪K.

P r o o f. The condition (i) and the inclusion (iii) are evident by Property 19.
The condition (ii) follows from Property 10. Let

J =

{[
− 1

n
, 0

]}
n∈N

, K =

{[
0,

1

n

]}
n∈N

.

Then, J is left-side tending to zero and K is right-side tending to zero. It is easy
to observe that TJ∪K is the density topology. Thus, the function f(x) = −x
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belongs to the family CJ∪K,J∪K. By Theorem 9, we have that [0, 1) ∈ TK,
whereas f−1([0, 1)) = (−1, 0] /∈ TK. It implies that

f /∈ CK,K so f /∈ (CJ,J ∩ CK,K). �
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[6] WILCZYŃSKI, W.: Density topologies, in: Handbook of Measure Theory (E. Pap., ed.),
North Holland, Amsterdam, 2002, pp. 675–702.

Received December 3, 2014 �Lódź University
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