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ON J-CONTINUOUS FUNCTIONS

JACEK HEJDUK — ANNA LORANTY — RENATA WIERTELAK

ABSTRACT. This paper presents the properties of continuous functions equip-
ped with the J-density topology or natural topology in the domain and the range.

1. Introduction

Let R be the set of real numbers, N — the set of positive integers and
L — the family of Lebesgue measurable sets in R. By A(A) we shall denote
the Lebesgue measure of A € £ and by |I| — the length of an interval I. Further-
more, T4 Will denote the natural topology on R and 74 — the density topology
on R. Moreover, if A, B C R and z € R then

AAB=(A\B)U(B\A),
A+z={a+z:a€ A},
zA={z-a:a€ A}.
It is well known that a point zg € R is a density point of A € L if
lim MAN[zg — h,xo + h])
h—0+ 2h

=1.

An equivalent form of this condition is the following one:
lim )\(Aﬂ[.’l]o*hl,.'lfo‘FhQD

hy — 0%, ho — 01 hi + ho
h1+h2>0

=1.

Sometimes it is written in the form (see [0]):

AAN (Jy

neN nree ‘Jn‘

where {.J,, }nen is a sequence of non-degenerate closed intervals.
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By J we will denote a sequence of non-degenerate and closed intervals {.J,, } nen
tending to zero, that means diam{J, U{0}} — 0. To shorten the notation,
we will write J instead of {J,, }nen. e

From now on, the family of all sequences of intervals tending to zero will be
denoted by . Moreover, we will consider sequences which differ in only a finite
number of their terms to be identical.

DEFINITION 1. Let J€ <. We shall say that a point zg €R is a J-density point
ofaset Ae Lif AN (2o + 1))
lim =

N0 ||
If Ae L and J €S, then
®7(A):={x € R:xis a J-density point of the set A}.
PROPERTY 2 ([5]). If A€ L and J € S, then &4 (A) € L.

1.

Moreover, this operator fulfills the following property.

PROPERTY 3 ([5]). For any sets A, B € £ and J € ¥ we have:

(1) 25(0) =0, 27(R) =R;

(2) M(AAB)=0=27(4) = 25(B);

(3) 27(ANB) =25(A) NPy (B).

It turned out that the analogue of the Lebesgue Density Theorem does not
hold for every sequence of intervals J tending to zero. Studying paper [2], we can
find a construction of a sequence J € & and a set A € L of positive measure

such that A(®7(A) N A) = 0. However, if we consider a subfamily <, C S such

that for any sequence J € &, we have
diam(.J,, U {0
a(J) ;= limsup diam(J» U{0}) < 00,

then the analogue of the Lebesgue Density Theorem holds.
THEOREM 4 ([f]). If J € S, and A € L, then A\(D7(A) & A) =0.

Property Bl and Theorem [l mean that an operator ®;: L — L is a lower
density operator for every J € S,. Therefore the family

Tr={AeL:ACPs(A)}
is a topology on R such that Ty C 77 (see [5]).

Obviously, one can ask what will happen if we consider any sequence J € 3.
In this case, we can prove the following fact.

THEOREM 5 ([0]). For every sequence J € & and every set A € L we have
A(@7(A)\ A) =0.
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ON J-CONTINUOUS FUNCTIONS

By Property Bl and Theorem [l we obtain that an operator ® 7: £L — L is
an almost lower density operator. Theorem 10 in [5] says that the family

Tr={AcL:ACds(A)}

is a topology on R such that T,a: C T7 and Tpat # T7.

It is easy to see that if J = {[—%, %]}neN, then z¢ is a J-density point
of a set A € L if and only if x is a density point of A (see [6]). Moreover, if we
consider an unbounded and nondecreasing sequence (s) = {sy}nen of positive
numbers and a sequence J = {[7317, i} }neN, then the notion of a J-density

point of a set A € L is equivalent to the notion of an (s)-density point of A

(see [3]).
From the definition of a J-density point and a [J-density topology it is easy
to conclude the following property.

PROPERTY 6. For every J € & and every set A € L the following proper-
ties hold:

(1) sz ale‘ c q)j(A) = (z—l—a) (S @J(A—Fa),

(ii) mzR meﬂg\{o}x €y (A) & mz e O,,7(mA),

(i) ¥ AeTy e (Ata)eTy,

i v A AeTns.
(iv) meR\{0) eTremAeThs

Since for any J € S, the operator ® 7 is an almost lower density operator,
so, by [4, Theorem 25.27], we obtain immediately the following claim.
THEOREM 7. Let J € .

(i) (R,T7) is neither a first countable, nor a second countable, nor a separable,
nor a Lindeldf space,

(ii) MA) = 0 if and only if A is a closed and discrete set with respect to
a topology T,

(iii) a set A C R is compact with respect to a topology Tz if and only if A is
finite.

We say that a sequence of intervals J = {[an,by]},cy € S is right-side
(left-side) tending to zero if there exists ng € N such that b, > 0 (a, < 0)

for n > ng and
min{0, a,} —0 (lim max{0, b, } _ 0> .

n—00 A,

lim
n—oo n

Obviously, if for a sequence J €  there exists ng € N such that J,, C [0, 00)
(Jn C (—00,0]) for n > ng, then J is right-side (left-side) tending to zero.
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A sequence of intervals J € & is one-side tending to zero if it is right-side
or left-side tending to zero.

THEOREM 8. If J is a sequence of intervals tending to zero, then [0,b) € T7
for b > 0 ((a,0] € Ty for a < 0) if and only if the sequence J is right-side
(left-side) tending to zero.

Proof. We give the proof only for the case when the sequence J is right-
-side tending to zero; the second case is left to the reader. Sufficiency. Let
J = {lan, bn]}nen be asequence of intervals right-side tending to zero and b > 0.
Without the loss of generality we may assume that 0 < b, < b for n € N. It is suf-
ficient to show that 0 € ® 7([0,b)). We prove that for every increasing sequence
{nr} ey there exists subsequence {ng,, },,cn such that

lim M —1. (1)

m— 0o |Jnkm |

Let {ny}ren be an increasing sequence of natural numbers. If a,, > 0 for
infinitely many & € N, then we choose subsequence {ny,, },,y such that a,, >0
for m € N. Hence, J,, C [0,b) for m € N. Therefore, condition () is fulfilled.

Now, we assume that a,, > 0 only for finite numbers k € N. Then, there is
a k1 € N such that for k > k; we have a,, < 0 and

A([0,0) N Jnk) _ |Jnk| - )‘([ankvo)) —1_ —Ony, > 1+ aﬂ.

The above and the assumption that the sequence 7 is right-side tending to zero
implies condition ().
We conclude that, in both cases, 0 € @ 7([0,b)).

NECESSITY. Let J = {[an, by]}nen € Sand [0,0) € Tz, where b > 0. Obviously,
0 € ®7(]0,b)) and b,, < 0 only for finitely many n € N. Without loss of generality
we may assume that b, > 0 for n € N. Suppose that 7 is not right-side tending
to zero. Then,

in{0
lim sup 0@ g
neN bn
So, there exists subsequence {ny}xen such that
lim |min{0, ay,, }| _5
k—o00 bnk

and also that a,, < 0 for k € N. Moreover, there exists ky € N such that

1 3
§5bnk <lan,| < §5bnk for k> ko.
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Then,
/\([O?b)ﬁ‘]’ﬂk) _ /\(Jnk) _)\<[ank’0)> - 1_ |ank|
|| || by, + @, |
2, B
- bn, +3/2Bby, 2+38°
It implies that 0 ¢ ®7([0,b)). This contradiction finishes the proof. O

A direct consequence of the above theorem is

THEOREM 9. If a sequence of intervals J is tending to zero then [a,b) € T7
((a,b] € T7) for a < b if and only if the sequence J is right-side (left-side)
tending to zero.

2. Continuous functions

For J € & we consider four families of continuous functions defined as follows:
Crat, nat = {f: (R, Tnat) = (R, That) and f is Continuous},
Crat 7 = {f: (R, Tnat) = (R, T7) and f is continuous},
C7 nat = {f: (R, 77) = (R, That) and f is continuous},
Cq7={f R, T7) = (R, T7) and f is continuous}.
ProPERTY 10. For J €  the family C,q 7 consists of constant functions.
Proof. Let f € Chat 7 and a,b € R be such that a < b. Then f([a,b]) is
a nonempty and compact set with respect to the topology 77. By Theorem [

f([a,b]) is finite. Moreover, it is a connected set in Tpq¢, so f([a, b]) is a singleton.
Hence, f(a) = f(b), and the function f is constant. O

PROPERTY 11. For J € S, the following inclusions hold:
(1) Cnaif7 J Q Cnat7 nat C Cj, nat;
(ii) Chat g & Cg,7 C Cg, nat-

Proof. All the inclusions are the consequence of the fact that 7,4+ C T7. The in-
clusions Cpat 7 C Crat, nat and Crar 7 C Cg 7 are proper because the identical
function is a member of Cp4¢, nat and Cz, 7 but not Crat 7. O

PROPERTY 12. If 7 is a sequence of intervals one-side tending to zero then:

<i> Cnat,nat \CJ,J 7’5 @,
(ii) CJ,J \ Cnat,nat 7§ 0.
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Proof. We give the proof only for the case when the sequence 7 is right side-
-tending to zero; the second case is left to the reader. To show the first condi-
tion, we consider the function f(x) = —a2. Obviously, f € Crnat,nat C Cg nat-
By Theorem [, [-1,1) € 77 but f~!([-1,1)) = [-1,1] ¢ T7. Thus, f ¢ C7 7,
and condition (i) is proved.

To prove the second condition, we define the function

hz)=x—k for zelk,k+1), keZ.

It is easy to see that for every set A C R

) =Y ((A n[0,1)) + k)
kEZ
holds.

Thus for every set A € Tz, by Theorem [ and Property [, we have that
h='(A) € T7. Hence, h € C7. 7 C C7 pat- Since

ht ((1 %)) :k:LeJZ {k k+ %) ¢ Toat,

we get that h & Cpar, net and condition (ii) is satisfied. O

A direct consequence of this proof is the following property.

PrOPERTY 13. Let J be a sequence of intervals one-side tending to zero.
Then the inclusions

(1) Cnat,nat - Cj, nat,
(i) C7,5 C C7 nat

are proper.

The subsequent terminology is needed in the reminder of this section.

Either of the sets
U (@n,bn), | [an, bn]
neN neN

is a right interval set at a point z( if 29 < by41 < a, < b, for n € N and
lim,, voo @y, = To.

In the case when a,, < b, < an+1 < 2o for n € N and lim,,_, o a, = x¢ it is
called a left interval set at a point xg.

We will call the union of a right interval set and a left interval set at the
same point xy a both interval set at a point zy. A set A is an interval set
at a point z if it is a right interval or a left interval or a both interval set at
a point xg. An interval set at a point 0 is simply called an interval set.
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THEOREM 14. For every sequence of intervals J € S there exists an interval
set B consisting of open intervals such that 0 is an J-density point of B.

Proof. Let J, = [ay, b,] for n € N and define
M, ={neN:b,>0}, M, ={neN:a,<0}.

Clearly, at least one of these sets is infinite. There are three possibilities:

1% The set M, is infinite and the set M; is finite. We can assume that the
set M is empty, hence a, > 0 for n € N. Let ¢; = % and

I(1) :{keN: Ji N G,l);&@},

j(1) = max({1}U {k € 1(1)}),
- mm({%} U{ i (;1)‘ ke I(l)}),

di =c1 + 2_j(1)21.
If we define ¢, I(k), j(k), zi and dj for k = 1,2,...,n — 1, then there exists
a natural number i(n) such that 287" < |[¢,,_1, dy,—1]|. We put ¢, = 27" and

I(n) ={k € N: Jp N (cn,2¢,) # 0},

j(n) = max({n} U {k € I(n)}),
2y = min({cn} U {1k M (Cn, 260)]: & € I(n)}),
dp = cp +277 M,

Notice that
dn < 2¢, < ch—ladn—lﬂ < Cp-1 <2>

and
[en, dn]] <279 || < 27F|J,|  for ke N. (3)
Putting

B = U (dn—i-lycn),

neN
we obtain that B is a right interval set. Moreover,

(Ju \ B) C J 0 ([0, dis(ny+1] U [Crny» digmy]) 5
where k(n) = min{k € N: J,, N [y, di] # 0} for n € N. From (@) we obtain
|Jn O [ern)s dem)]| < lekny> deey ]l < 277l
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In addition, from (@) and (B we have
| Jn N[0, diny 1]l < dieny+1 < lern)s drmyll < 277l

Hence, for every n € N we have

A\ B) < 217, (4)
Therefore,
lim /\(B N Jn) — lim ‘Jn‘ — )‘<Jn \ B)
n—00 |Jn| n—00 |Jn|
__9l—n
> lim nl = 2" Jn| > lim 1-2'"=1.

T n—oo ‘Jn‘ n—o00
For that reason, 0 is an J-density point of B.

29 The set M; is infinite and the set M, is finite. In this case we consider
sequence of intervals —7 = {—J,, }nen. From the first part of the proof, there
exists a right interval set C' consisting of open intervals such that 0 is an (—J)-
-density point of C'. Putting B = —C, we obtain a left interval set B composed
of open intervals such that 0 € ® 7(B).

3% Both sets, M; and M, are infinite. Let M; = {l,,: n € N} and M, =
{rn: n € N}. We then consider sequences of intervals J;, = {L, }nen and Jr =
{Ry}nen, where

L, =J,N(—0,0] for n € M;,
L, =(—J,)N(—00,0] forn ¢ M,
R, = J,NJ[0,00) for n € M,,

R, =(=J,)N[0,00) forn¢ M,.

As in the first part, we define B,.. It is a right interval set consisting of open
intervals such that it is an Jr-density point of B,. Similarly we define a left
interval set B; consisting of open intervals such that 0 is an Jp-density point
of B;. Then, the set B = B; U B, is the interval set composed of open intervals.
We must show that 0 is an J-density point of B.

It follows from () that
ML, \ B) <2'""|L,| and X(R,\B)<2'"™R,| for neN.

Therefore,
AT \B) < ML, \B)+A(R,\B) < 2'7"|L,|4+2' "R, | < 2°7"|J,| for n€N.
It implies that

ANBnNJ,
lim MB N Jn) > lim 1-22"=1.
n—o00 ‘Jn‘ n—00
As a result, 0 € @ 7(B). O
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As a simple consequence of the proof of the previous theorem, we obtain the
following;:

THEOREM 15. For every sequence of intervals J tending to zero there exists a se-
quence of intervals IC tending to zero such that topologies generated by J and IC,
respectively, are incomparable.

Proof. The set C = [—1,1]\ (BU{0}), where B is the set from the previous
proof, is an interval set composed of closed intervals. We order them in the
sequence K. Then, 0 € ®7(B), 0 ¢ ®x(B), 0 ¢ &47(C), 0 € O (C). It is easy
to conclude that 77 \ T # 0 and T \ Tz # 0. O

PROPERTY 16. Let J € & and A be an open interval set such that 0 € ® 7(A).
Then, there exists an interval set B C A composed of closed intervals such that
0€ds(B).

Proof. Let A= {J,cy Ak, where Ay are disjoint open intervals. Putting
Np:={ieN: J;N A, #0} forevery k€N,
we obtain a finite set. Then we define
i =max({k} U{i: i € Ny}),
ly, == mln({|Ak|} U {|Jz‘ 1€ Nk})

Let By, be a closed subinterval of Ay such that A(Ay\ By) < 2~ *+7x)], for k € N.
Observe that for any n € N and k£ € N we have

/\(Bk; n Jn) = )\(Ak; N Jn) — )\((Ak; \ Bk) N Jn)
> ANAp N Jp,) — 27k,

> MAR N J,) =27 FF) |
Hence, the following holds for B = J,cy Bx and any n € N:

ABNJ,) :A(UBkan>:ZA(BmJn)

kEN keN
>Z( (A (1 Jy) — 2~ 0+m)| 1 |)
kEN
=D AMAN ) =Y 27 EE L = NAN T,) = 27" ).
keN keN
Therefore,
n A n) o n . A n —
lim )\(BﬁJ)_hm AMANJ,) —2 |J|:hm A( ﬁJ)_2 n
Since 0 € ® 7(A), we have 0 € & 7(B). O
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PROPERTY 17. Let J € . Then, there exists £ €  such that 77 # Tk,
CJ,J 7é CIC,IC and CJ, nat7'é ClC,nat-

Proof. 1° Suppose that the sequence J is left-side tending to zero. Then, as
a sequence IC, we put any sequence right-side tending to zero and we define
the function f: R — R in the following way: f(z) = X[0,00)- Obviously, Theo-
rem [0 implies that 77 # Tx. Moreover, it is easy to see that f ¢ Cz nat. SO,
we obtain that

f c CIC,IC C CIC,nat and f ¢ Cj,nat D) Cj)j.

2° Suppose that the sequence J is not left-side tending to zero. Then, as
a sequence K, we put any sequence left-side tending to zero and we define func-
tion f: R — R in the following way: f(x) = X(0,00). Arguments similar to those
above show that

fEC;Q;CCC;C,mzt and fgéCjnatDC],]. O

Let J = {Jn}tneny and K = {K,, },en be sequences of intervals. Then, the
sequence ordered in an arbitrary fashion containing all intervals of the sequences
J and K, and denoted by J U K, is called the union of sequences J and K.

PRrROPERTY 18. The sequences of intervals J and K are tending to zero if and
only if the sequence J U K is tending to zero.

PrOPERTY 19. If 7 € S and K € S, then
Touk =Tz NTk.
Proof. It is a direct consequence of the following fact:
P guk(A) = 7(A) NP (A). O
PROPERTY 20. Let J € ¥ and K € S. Then,
(i) C,nat NCx nat = CTUK nat;
(ii) Chat 7 NCrat,k = Crat, 70K,
(ili) C7,7 NCkx S Cauk,guK-

Proof. The condition (i) and the inclusion (iii) are evident by Property
The condition (ii) follows from Property [0 Let

L

Then, J is left-side tending to zero and K is right-side tending to zero. It is easy
to observe that T7ux is the density topology. Thus, the function f(x) = —=x
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belongs to the family Cyuk,sux. By Theorem [ we have that [0,1) € Tk,
whereas f71(]0,1)) = (—1,0] ¢ Tx. It implies that

f¢Cex so fé(CqgNCrr) .
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