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SOME ALGEBRAIC PROPERTIES

OF FINITE BINARY SEQUENCES

Ma�lgorzata Filipczak — Tomasz Filipczak

ABSTRACT. We study properties of differences of finite binary sequences
with a fixed number of ones, treated as binary numbers from Z (2m). We show that
any binary sequence consisting of m terms (except of the sequence (1, 0, . . . , 0))
can be presented as a difference of two sequences having exactly n ones, whenever
1
4
m < n < 3

4
m.

1. Introduction

In the paper, we consider algebraic differences and sums of sets. It is well-
-known that the sets A − A and A + A have nonempty interiors for any set
A⊂Rn of positive Lebesgue measure and for any second category set with Baire
property. The Cantor ternary set has this property, too.

R. G e r (see [1] and later T. B a n a k h [6]) have stated the following prob-
lems:

Do there exist compact sets A’s of reals such that A − A has a nonempty
interior and A+A or even A+A+A has Lebesgue measure zero?

This question was partially answered by M. C r n j a c, B. G u l j a š and
H. I. M i l l e r in 1991. In the interesting paper [6], they defined a compact set

S :=

{ ∞∑
i=1

ai
7i

: ai ∈ {0, 2, 6}
}

such that S − S = [−1, 1] and S + S is a null set.

It is very surprising that the R. G e r and T. B a n a k h problem was fully
resolved by British mathematicians T. H. J a c k s o n, J. H. W i l l i a m s o n,
D. R. W o o d a l l , D. C o n n o l l y and J. A. H a i g h t in the early seventies.
They started from an interesting property of subsets of groups Z (p). In the series
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of papers [4], [7] and [8], they proved that for any positive integer k there exist
a number p and a set E ⊂ Z (p) with E −E = Z (p) and a k-sum E + · · ·+E �=
Z (p). In [5], D. C o n n o l y and J. H. W i l l i a m s o n proved that this property
leads to the statement that for any positive integer k there exists a compact
subset A of reals such that A−A contains an interval, and a k-sum A+ · · ·+A
is a null set. Their results are really impressive and almost forgotten.

In this paper, we look for sets with large differences and small 3-sums which sa-
tisfy some additional conditions. Our construction is strictly connected with the
notion of statistical density of subsets of N. We focus on finite binary sequences
with small amount of ones. We also consider sets of real numbers which binary
expansions have fixed density of ones. Theorem 1 leads us to a useful observation
concerning the sets Ap which are natural supports of Bernoulli-like measures.

For any x ∈ [0, 1), 0.x1x2x3 . . .(2) denotes the binary expansion of x with
infinite many zero terms. It is well-known that the set of numbers with density
of ones equal to 1

2

A 1
2
:=

{
x ∈ [0, 1) : lim

n→∞
x1 + · · ·+ xn

n
=

1

2

}

has full Lebesgue measure on the interval [0, 1) (see for example [3]). Therefore,
for any t ∈ [0, 1), the set A 1

2
∩ (

A 1
2
+ t

)
is nonempty, and consequently each

number t from [0, 1) can be represented as a difference of two numbers from A 1
2
.

Analogously, since the set A 1
2
∩ (

t−A 1
2

)
is nonempty, each t from [0, 1) can be

represented as a sum of two numbers with density of ones equal to 1
2
. In other

words,
[0, 1) ⊂ A 1

2
− A 1

2
and [0, 1) ⊂ A 1

2
+A 1

2
.

In [3], P. B i l l i n g s l e y describes the family of probability measures µp which
are distributions of the sums

∑∞
k=1

1
2kXk, where (Xk) is a sequence of inde-

pendent random variables with Pr (Xk = 1) = p and Pr (Xk = 0) = 1 − p.
The set

Ap :=

{
0.x1x2x3 . . .(2) : lim

n→∞
x1 + · · ·+ xn

n
= p

}

is a support of µp. It turns out that for some p the set Ap +Ap is much smaller
then Ap −Ap. It can be shown (see [2]) that for any p ∈ (

1
4 ,

1
3

)
, the set Ap +Ap

(and even Ap +Ap +Ap) has an empty interior, although [0, 1) ⊂ Ap −Ap.

The aim of our paper is to prove an interesting property of finite binary
sequences which is the key point of the proof that the difference Ap−Ap contains
the interval [0, 1) for p ∈ [

1
4 ,

3
4

]
. Namely, we demonstrate a way to present

a binary sequence of length m as a difference of two sequences, each of which
has exactly n ones, whenever 1

4m < n < 3
4m.
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Throughout the paper, unless otherwise stated, we assume that all numbers
are positive integers. The set [k,m] := {n ∈ N : k ≤ n ≤ m} is called an inter-
val (in N). By Xm we denote the set of all binary sequences with m elements,
and by X0

m the set of sequences starting from zero.

For a fixed sequence x=(x1, . . . , xm)∈Xm, the sets J (x) :=
{
i∈ [1,m] : xi=1

}
and Z (x) :=

{
i ∈ [1,m] : xi = 0

}
are called the set of ones and the set of

zeros of the sequence x, and we denote their cardinality by j (x) and z (x),
respectively. If A ⊂ N, then we write JA (x) := J (x) ∩ A, ZA (x) := Z (x) ∩ A,
jA (x) := |JA (x)| and zA (x) := |ZA (x)|. By 1 we denote the sequence (1, . . . , 1),
and by 1A the sequence satisfying J (x) = A.

Sequences from Xm can be treated as binary numbers from Z (2m) :=
{0, 1, . . . , 2m − 1}. We identify the sequence (x1, . . . , xm) with the number
x1 × 2m−1 + · · ·+ xm−1 × 2 + xm, and define addition x+ y in Xm as addition
modulo 2m in Z (2m).

Let x, y ∈ Xm. It is easy to check

• j (x+ y) ≤ j (x) + j (y).

• If J (x) ∩ J (y) = ∅, then j (x+ y) = j (x) + j (y).

• If J (y) = J (x) ∩ [1, k], then

j (x+ y) =

{
j (x) if x1 = 0,

j (x)− 1 if x1 = 1.

In particular, j (x+ x) = j (x) or j (x+ x) = j (x)− 1.

• If J (y) ⊂ J (x), then j (x+ y) ≤ j (x).

• If x := (0, 1, 0, 1, . . .) (i.e., xi = 0 for add i, and xi = 1 for even i), then
j (x+ y) ≥ j (x)− j (y) + 1.

2. The main result

The following theorem is the main goal of our paper.

������� 1� Suppose that 1
4m<n< 3

4m.For any sequence x∈Xm\
{
(1, 0, . . . ,0)

}
,

there exist sequences a, b ∈ Xm such that x = b− a and j (a) = j (b) = n.

Remark 1� We can formulate the assertion using only a sequence a instead
of two sequences a and b: “there is a sequence a such that j (a) = j (x+ a) = n”.

Before starting a proof of Theorem 1, we discuss the assumptions.

Remark 2�

(1) Equality j (a) = j (x+ a) does not hold for x := (1, 0, . . . , 0). Indeed,
j (x+ a) = j (a) + 1 if a1 = 0 or j (x+ a) = j (a)− 1 if a1 = 1.
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(2) It suffices to prove the assertion when 1
4m < n ≤ 1

2m. Indeed, if x = b− a
and j (a) = j (b) = n, then taking a′ := 1 − a and b′ := 1 − b, we obtain
x = a′ − b′ and j (a′) = j (b′) = m− n.

(3) It is sufficient to prove theorem for x ∈ X0
m. Indeed, if x1 = 1 than

−x ∈ X0
m (because x �= (1, 0, . . . , 0)), so there are sequences with n ones

such that −x = b− a, and consequently, x = a− b.

If j (x) ≤ n ≤ 1
2m and x ∈ X0

m, it is easy to choose a suitable sequence a.

����	 1� Suppose that n ≤ 1
2m. For any sequence x ∈ X0

m satisfying j (x) ≤ n,

there exists a sequence a ∈ X0
m such that j (a) = j (x+ a) = n.

P r o o f. If j (x) = n, then we set a := x. Suppose that j (x) < n and write
k := j (x). Thus j (x+ x) = j (x) = k < n, and since

m− |J (x) ∪ J (x+ x)| ≥ 2n− 2k > n− k,

there exists a set A ⊂ [2,m] \ (J (x) ∪ J (x+ x)
)
with n − k elements. Taking

a := x+ 1A, we obtain the desired sequence. �

In the proof of Theorem 1, we will use several lemmas. We first prove that
a fixed sequence is a difference of two sequences each of which has exactly n ones
if it can be presented as a difference of two sequences with at most n ones.

����	 2� Let n ≤ 1
2m and x ∈ X0

m. If there exists a sequence b ∈ X0
m such

that j (b) ≤ n and j (x+ b) ≤ n, then there is a sequence a ∈ X0
m such that

j (a) = j (x+ a) = n.

P r o o f. We can require that j (x) > n because otherwise, the assertion follows
from Lemma 1. We consider four cases.

(I) k := j (b) = j (x+ b) ≤ n.

Of course, we can assume that k < n. Since

|[2,m] \ J (b) \ J (x+ b)| ≥ m− 1− 2k ≥ 2 (n− k)− 1 ≥ n− k,

there exists a set B ⊂ [2,m]\J (b)\J (x+ b) consisting of n−k elements. Taking
a := b+ 1B , we obtain j (a) = j (b) + |B| = n and

j (x+ a) = j
(
(x+ b) + 1B

)
= j (x+ b) + |B| = n .

(II) j (b) < n and j (x+ b) = n.

Let r := n−j (b). We will define disjoint sets B,C⊂J (x) such that j (1B∪C)=
j (x+ 1B∪C) ≤ n. If J (b) ∩ J (x) = ∅, then we put B := ∅. If J (b) ∩ J (x) �= ∅,
we define B := {p1, . . . , pk0

} ⊂ J (b) ∩ J (x) by recursion. As p1, we set the last
common one of b and x, i.e., p1 := max

(
J (b) ∩ J (x)

)
. Suppose that numbers
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p1 > · · · > pi are chosen, and that J (b) ∩ J (x+ 1p1
+ · · ·+ 1pi

) �= ∅. As pi+1,
we take the last common one of b and x+ 1p1

+ · · ·+ 1pi
, i.e.,

pi+1 := max
(
J (b) ∩ J (x+ 1p1

+ · · ·+ 1pi
)
)
.

Let x′ := x+ 1B . Of course, x′ and b have no common one. Thus, from x+ b =
x′ + 1J(b)\B , it follows that

j (x′) = j (x+ b)− |J (b) \B| = n− (j (b)− k0) = r + k0 .

We look for a set C disjoint with B, and such that each of the sequences 1B∪C

and x+ 1B∪C has r + k0 ones. Write C := J (x′) ∩ J (x), i.e., C is a set of “old
ones” in x′. Clearly, B∩C = ∅. Since the set J (x′)\J (x) of “new ones” satisfies
|J (x′) \ J (x)| = |B| = k0, we have

|C| = j (x′)− |J (x′) \ J (x)| = (r + k0)− k0 = r .

Note that zero is a successor of any “new one” in x′. Thus, zero is a predecessor
of any series of “old ones”. Consequently,

j (x+ 1B∪C) = j (x′ + 1C) = j (x′) = r + k0 = |B ∪ C| .
Since r + k0 ≤ n, the assertion follows from (I).

(III) j (b) = n and j (x+ b) < n.

Let us set up ones from b in increasing order J (b) = {p1, . . . , pn}. We consider
sequences x+ 1Ai

where A0 = ∅ and Ai = {p1, . . . , pi} for i = 1, . . . , n. Since

j (x+ 1A0
) = j (x) > n > j (x+ b) = j

(
x+ 1An

)
,

there is t ∈ {0, . . . , n− 1} such that

j (x+ 1At
) ≥ n > j

(
x+ 1At+1

)
.

We will define a sequence c for which

j (c) ≤ n = j (x+ c) . (1)

If j (x+ 1At
)=n, we put c := 1At

. Suppose that j (x+ 1At
)>n. Adding 1pt+1

to 1x+At
, we reduce a number of ones from j (x+ 1At

) to j(x+ 1At+1
). Hence,

in the sequence x + 1At
, there is a series of j (x+ 1At

) − j(x + 1At+1
) ones

immediately before pt+1. It is easy to see that for u := pt+1−
(
n− j(x+ 1At+1

)
)
,

the sequence c := 1At
+ 1u satisfies (1). Thus, the assertion of lemma follows

from (II).

(IV) j (b) < n, j (x+ b) < n and j (b) �= j (x+ b).

Using (II) or (III) for n′ := max
{
j (b) , j (x+ b)

}
, we find a sequence c such

that j (c) = j (x+ c) = n′. By (I), we get the assertion. �

In Lemma 2, we have proved that the assertion of Theorem 1 holds when
j (x) ≤ n. The next lemma shows that, if j (x) = n+k, then it is sufficient to find
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a subinterval of [2,m] which contains at least k + 1 ones from a sequence x, or
two disjoint subintervals which together have at least k + 2 ones from x.

����	 3� Suppose that n ≤ 1
2m, x ∈ X0

m and j (x) = n + k for some k ∈ N.

If there is an interval U ⊂ [2,m] such that

jU (x) ≥ k + 1 and zU (x) ≤ n− 1, (*)

or there are disjoint intervals U, V ⊂ [2,m] such that

jU (x) + jV (x) ≥ k + 2 and zU (x) + zV (x) ≤ n− 2, (**)

then there is a sequence a ∈ X0
m satisfying j (a) = j (x+ a) = n.

P r o o f. We will find a sequence b ∈ X0
m such that j (b) ≤ n and j (x+ b) ≤ n.

Let us suppose that there exists an interval U satisfying (*). Write

u := minJU (x) , v := maxJU (x) , B := Z[u,v] (x) ∪ {v} and b := 1B.

It is easily seen that

j (b) = z[u,v] (x) + 1 ≤ zU (x) + 1 ≤ n

and
j (x+ b) ≤ j (x)− jU (x) + 1 ≤ (n+ k)− (k + 1) + 1 = n.

Thus, the assertion follows from Lemma 2. The proof in the case (**) is similar.
�

In the proof of Theorem 1, we will use Lemma 3 several times. To find in-
tervals satisfying conditions (*) or (**), we will often need the following easy
combinatorical property, similar to the pigeonhole principle.

����	 4� Suppose that s ∈ N, T is an interval in N, A∪B = T and A∩B = ∅.
If |T | ≥ 2s and |A| − |B| ≥ s+ 1, then there exists an interval U ⊂ T such that

|U | = 2s and |U ∩A| ≥ s+ 1.

P r o o f. We can assume that T = [1, k]. Suppose, contrary to our claim, that
|A ∩ U | ≤ s for any interval U ⊂ T with 2s elements. In particular, we have
|A ∩ U | ≤ |B ∩ U |. Let p be a positive integer satisfying 2sp < k ≤ 2s (p+ 1).
Let us consider a partition of T into subintervals:

[1, 2s] , [2s+ 1, 4s] , . . . ,
[
2s (p− 1) + 1, 2sp

]
, [2sp+ 1, k] ,

and let Ai, Bi denote intersections of these intervals with A and B (i = 0, . . . p).
Then |Ai| ≤ |Bi| for i = 0, . . . , p− 1 and |Ap| ≤ s and consequently

|A| − |B| ≤ |Ap| − |Bp| ≤ |Ap| ≤ s

contrary to our assumptions. �

98



BINARY SEQUENCES

We are ready to prove Theorem 1. In the proof, we will often use a partition
of interval [2, 4n− 1] into two or three subintervals: L (left), R (right) and M
(middle).

P r o o f o f T h e o r e m 1. In the beginning, assume that

m = 4n− 1 and x ∈ X0
4n−1.

If n = 1, the proof is obvious. Suppose that n ≥ 2 and fix a sequence x ∈ X0
4n−1.

We consider four cases.

(I) j (x) ≤ n.

(II) n+ 1 ≤ j (x) ≤ 2n− 2.

(III) 2n− 1 ≤ j (x) ≤ 3n− 2.

(IV) 3n− 1 ≤ j (x).

Ad (I) The assertion follows from Lemma 1.

Ad (IV) Let p := maxJ (x), A :=
(
Z (x)\{1})∪{p} and a := 1A. Then j (a) =

z (x) ≤ n, x+a =
(
1, 0, . . . , 0

p
, 1, . . . , 1

)
, and consequently, j (x+ a) = 4n−p ≤ n.

This completes the proof by Lemma 2.

Ad (II) j (x) = n+k where 1 ≤ k ≤ n− 2. Let us divide the interval [2, 4n− 1]
into three subintervals such that each of the left and the right of them has n+ k
elements (and the middle interval has 2n− 2k − 2 elements):

L := [2, n+ k + 1] , M := [n+ k + 2, 3n− k − 1] and R := [3n− k, 4n− 1] .

(II.1) jL (x) ≥ k + 1 or jR (x) ≥ k + 1.

We can assume that jL (x) ≥ k + 1. Since zL (x) = n+ k − jL (x) ≤ n− 1, L
fulfills condition (*) from Lemma 3, which finishes the proof of the case (II.1).

(II.2) jL (x) ≤ k, jR (x) ≤ k and 1 ≤ k < n
2 .

The assertion follows again from Lemma 3, because M fulfills condition (*) :

jM (x) = j (x)− jL (x)− jR (x) ≥ (n+ k)− 2k = n− k > k,

zM (x) = |M | − jM (x) ≤ (2n− 2k − 2)− (n− k) = n− k − 2 < n− 1.

(II.3) jL (x) ≤ k, jR (x) ≤ k and n
2 ≤ k ≤ n− 2.

Note that

jL∪M (x) = j (x)− jR (x) ≥ n = (k + 2) + (n− k − 2) ,

zL∪M (x) = |L ∪M | − jL∪M (x) ≤ (3n− k − 2)− n = (n− 2) + (n− k) .

From L ∪M , we will remove a subinterval U with 2n− 2k − 2 elements, which
has more zeros than ones. In this way, we will obtain a set which fulfills one
of conditions (**) or (*) from Lemma 3.
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Let s := n− k − 1. Since

zL (x)− jL (x) = |L| − 2jL (x) ≥ (n+ k)− 2k = n− k = s+ 1,

|L| = n+ k > n ≥ n+ (n− 2k) > 2s,

Lemma 4 shows that there is an interval U ⊂ L such that

zU (x) ≥ s+ 1 = n− k,

jU (x) ≤ s− 1 = n− k − 2.

The set A := L ∪M�U is an interval or a union of two disjoint intervals, and

jA (x) = jL∪M (x)− jU (x) ≥ k + 2,

zA (x) = zL∪M (x)− zU (x) ≤ n− 2.

Thus, the assertion follows from Lemma 3.

Ad (III) j (x) = 2n+ h where −1 ≤ h ≤ n− 2.

Let us divide the interval [2, 4n− 1] into two subintervals each of which has
2n− 1 elements:

L := [2, 2n] and R := [2n+ 1, 4n− 1] .

(III.1) jL (x) = jR (x). Thus, h = 2p for some p ≥ 0, and jL (x) = jR (x) = n+p.

(III.1.1) {2n, 2n+ 1}∩J (x)=∅. Taking L′ := [2, 2n− 1] andR′ :=[2n+2, 4n− 1],
we obtain

jL′ (x) = jR′ (x) = n+ p,

zL′ (x) = zR′ (x) = 2n− 2− (n+ p) = n− p− 2,

and consequently,

jR′ (x)− zR′ (x)− 1 = 2p+ 1 ≥ p+ 1 ≥ 1,

|R′| = 2n− 2 ≥ 2 (h+ 2)− 2 = 4p+ 2 ≥ 2 (p+ 1) .

By Lemma 4, there exists an interval U ⊂ R′ such that

jU (x) ≥ p+ 2 and zU (x) ≤ p.

Since L′ and U are disjoint intervals satisfying

jL′ (x) + jU (x) ≥ (n+ p) + (p+ 2) = (n+ h) + 2,

zL′ (x) + zU (x) ≤ (n− p− 2) + p = n− 2,

it is sufficient to use Lemma 3 for k = n+ h.

(III.1.2) {2n, 2n+ 1} ∩ J (x) �= ∅. We can assume that 2n + 1 ∈ J (x). Writing

L′ := [2, 2n+ 1] and R′ := [2n+ 2, 4n− 1] we get

jL′ (x) = n+ p+ 1 and zL′ (x) = n− p− 1,

jR′ (x) = n+ p− 1 and zR′ (x) = n− p− 1.
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If p = 0, then j (x) = n+ n, jL′ (x) = n + 1, zL′ (x) = n− 1, and the assertion
follows from Lemma 3 (for k = n). Thus, we can require that p ≥ 1. Since

jR′ (x)− zR′ (x)− 1 = 2p− 1 ≥ p and |R′| = 2n− 2 ≥ 2h+ 2 > 2p,

Lemma 4 guarantees that there is an interval U ⊂ R′ such that

jU (x) ≥ p+ 1 and zU (x) ≤ p− 1.

Thus L′ and U are disjoint intervals satisfying

jL′ (x) + jU (x) ≥ (n+ p+ 1) + (p+ 1) = n+ h+ 2,

zL′ (x) + zU (x) ≤ (n− p− 1) + (p− 1) = n− 2,

and we obtain the assertion using Lemma 3 again (for k = n+ h).

(III.2) jL (x) �= jR (x). We can assume that jL (x)>jR (x). Taking p :=jL (x)−n,
we obtain p ≥ 0,

jL (x) = n+ p and zL (x) = n− p− 1,

jR (x) = n− p+ h and zR (x) = n+ p− h− 1.

Note that 1 ≤ jL (x)− jR (x) = 2p− h. Moreover, p = 0 yields h = −1 < p, and
consequently, h ≥ p gives p ≥ 1.

(III.2.1) h < p. We have

jL (x) ≥ (n+ h) + 1 and zL (x) ≤ n− h− 2 ≤ n− 1,

which implies the assertion by Lemma 3 (with k = n+ h).

(III.2.2) h > p ≥ 1. Setting s := h− p+ 1, we get

jR (x)− zR (x)− 1 = 2h− 2p ≥ s ≥ 1 and |R| = 2n− 1 ≥ 2 (h+ 2)− 1 > 2s.

By Lemma 4, there exists an interval U ⊂ R such that

jU (x) ≥ s+ 1 = h− p+ 2 and zU (x) ≤ s− 1 = h− p.

Since L and U are disjoint intervals satisfying

jL (x) + jU (x) ≥ (n+ p) + (h− p+ 2) = n+ h+ 2,

zL (x) + zU (x) ≤ (n− p− 1) + (h− p) = n+ h− 2p− 1 ≤ n− 2,

it suffices to use Lemma 3 for k = n+ h.

(III.2.3) h = p ≥ 1. We have

jL (x) = n+ h and zL (x) =n− h− 1,

jR (x) = n and zR (x) =n− 1.

If 2n+ 1 ∈ J (x), then the interval L′ := [2, 2n+ 1] satisfies

jL′ (x) = (n+ h) + 1 and zL′ (x) = n− h− 1 < n− 1,

and we obtain the assertion using Lemma 3 again.
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If 2n+ 1 /∈ J (x), then the interval R′ := [2n+ 2, 4n− 1] satisfies

jR′ (x)− zR′ (x) = 2.

Thus, there is a number i such that i, i + 1 ∈ R′ ∩ J (x). Since, L and [i, i+ 1]
are disjoint intervals and

jL (x) + j[i,i+1] (x) = (n+ h) + 2,

zL (x) + z[i,i+1] (x) = n− h− 1 ≤ n− 2.

Using Lemma 3 once more, we complete the proof in the case m = 4n− 1.

Now, assume that
1

4
m < n ≤ 1

2
m and x ∈ X0

m.

We know that for y := (x1, . . . , xm, 0, . . . , 0) ∈ X0
4n−1 there exists d ∈ X0

4n−1 sat-
isfying j (d) = j (y + d) = n. Writing c := (d1, . . . , dm), we have j (c) ≤ j (d) = n
and j (x+ c) ≤ j (y + d) = n. Thus, by Lemma 2, there is a sequence a ∈ X0

m

such that j (a) = j (x+ a) = n. By Remark 2, we obtain the assertion in the
general case. �

Remark 3� If n ≤ 1
4m, then the sequence x := (0, 1, 0, 1, . . .) ∈ Xm cannot

be written as x = b − a where j (a) = j (b) = n. Indeed, if j (a) = n, then
j (x+ a) ≥ j (x) − j (a) + 1 ≥ 2n − n + 1 > n. By Remark 2, the same is true

when n ≥ 3
4m.

In some applications, it is convenient to use the following obvious consequence
of Theorem 1.


�����	�� 1� Suppose that 1
4m < n < 3

4m. For any sequence x ∈ Xm, there
exist sequences a, b ∈ Xm such that x = b− a and n = j (a) ≤ j (b) ≤ n+ 1.

3. Consequences

The main reason for proving Theorem 1 is a problem connected with sets
Ap mentioned in Introduction. Recall that Ap is the set of numbers from the
interval [0, 1) which binary expansion (with infinitely many zero terms) has
density of ones equal to p. Using Theorem 1, it can be shown (see [2]) that

Ap −Ap ⊃ [0, 1) for p ∈
[
1

4
,
3

4

]
,

i.e., that any x from [0, 1) can be written as a difference x = b−a of two numbers
from Ap. To prove it, the binary expansion of x is devided into finite sequences
x1, x2, x3, . . . with lengths converging to ∞, and such that each sequence xi starts
from zero. Then each xi is presented as a difference xi = bi − ai of sequences
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with the density of ones close to p. Gluing ai together, we obtain a, and from bi,
we obtain b.

Note that all Ap are Borel sets, and that int (Ap +Ap +Ap) = ∅ for p < 1
3

(see [2]). Hence, for any p ∈ (
1
4 ,

1
3

)
, the difference Ap − Ap is much bigger than

3-sum of Ap.

Theorem 1 can also be applied to show that for infinitely many p there is a set
E ⊂ Z (p) with E −E = Z (p) and E +E +E �= Z (p). Let us consider the set

E :=
{
x ∈ X7 : j (x) ≤ 2

}
.

Due to Theorem 1, E−E = X7. On the other hand, for any x, y, z ∈ E, we have
j (x+ y + z) ≤ j (x)+j (y)+j (z) ≤ 6, and consequently, (1, . . . , 1) /∈ E+E+E.
Using notation Z

(
27
)
instead of X7, we see that the set

E :=
{
x ∈ Z (128) : j (x) ≤ 2

}
=

{
2k + 2l : 0 ≤ k ≤ l ≤ 6

} ∪ {
20
}

satisfies E −E = Z (128) and E +E +E �= Z (128).

We can also find analogous sets for m ≥ 7.

���������� 1� For any m ≥ 7, there is a set E ⊂ Xm such that

E −E = Xm and E +E +E �= Xm.

P r o o f. It is easy to check that the set

E :=
{
x ∈ Xm : j[m−6,m] (x) ≤ 2

}
satisfies the required conditions. �

It is worth noting that Theorem 1 is not necessary in the proof of Proposi-
tion 1. The equality E − E = X7 may be easy verified by direct calculations.
However, using methods from the proof of Theorem 1, one can generalize Propo-
sition 1. It can be shown that for k ∈ [

2m−1, 2m
)
with j (k) ≥ 3

4m + 9, there is
a set E ⊂ Z (k) such that E −E = Z (k) and E +E +E �= Z (k).

If n ≤ 1
4m, then the set E :=

{
x ∈ Xm : j (x) ≤ n

}
satisfies E − E �= Xm

(see Remark 2). Thus, using our method, we cannot indicate a set E ⊂ Xm with
E −E = Xm and E +E +E +E �= Xm.
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