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ON SOME SETS
OF ALMOST CONTINUOUS FUNCTIONS
WHICH LOCALLY APPROXIMATE
A FIXED FUNCTION

ANNA LORANTY — RYSZARD J. PAWLAK

ABSTRACT. In this paper, we investigate topological properties of the sets
of almost continuous functions f: [0, 1] — [0, 1] which locally approximate a fixed
function. This approximation is associated with the certain value of entropy
of a function at a fixed point of the primal function.

1. Introduction and notation

The almost continuous (in the sense of Stallings) functions are an important
element of research in the real functions theory. In recent times, they are also
under consideration in the context of discrete dynamical systems (9], [I7]) in-
cluding chaos theory (JI6]). The concept of chaos, in particular this one related
to functions mapping the unit interval into itself, is connected with many defini-
tions, often non-equivalent. Synthetic information on this subject can be found
in [2], [3], [12]. In [II], one can read that it is commonly accepted that positivity
of topological entropy is an evidence of chaos. For this reason, instead of chaos,
we will consider entropy of functions as a measure of chaos.

Although the concept of an entropy of a function is global, one can notice that
sometimes an entropy of a function is focused at a single point (cf. Lemma [2.4)).
In this paper, we will consider an entropy of a function at a point which conforms
to the definitions contained in [9] and [I7]. So far, it has not been decided which
functions have entropy points (i.e., such points that an entropy of a function
at this point is equal to the “global” entropy of a function). However, there are
known many results showing that a function with a fixed point can be approxi-
mated, in different ways, by functions having a “suitable” entropy point at this
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point. Most of these approximations were associated with strong entropy points
and oo-entropy points ([9], [10], [I7]). In contrast to previous papers, in this one,
we will consider for the first time an approximation of a function by functions
with an entropy at a given point lower or higher than the entropy of the primal
function.

A thorough analysis of the approximations signaled above (we will concentrate
on the topology of the uniform convergence) shows that, in some cases, a function
can be approximated even by functions from an open set of functions (each
function “lying near” a function having infinite entropy at a given point also has
this property (JI6]). At the same time, Proposition 3.2 (a) in [9] shows that such
a situation cannot often happen, e.g., for continuous functions.

In this situation, it seemed to be interesting to combine both signaled issues:
analysis of a structure of sets of functions which approximate a given function
in the context of a value of an entropy at a point. Unfortunately, not all the
questions that could be posed with referring to this issue are already answered.
Hence, some open problems will be indicated.

Throughout the paper, the closed unit interval will be denoted by I. Moreover,
we will consider the natural topology in I. From now on, if it will not be stated
otherwise, we will consider only the functions from I into I. The symbol p, will
stand for the metric of uniform convergence, so

pulf,9) = sup{|f(z) — g(z)| : 2 € T}

for functions f and g. If we will write about a space X of functions, we will
consider the set X with the metric p,. The interior (closure) of a set A C X
in the space (X, p,) will be denoted by intx(A) (clx(A)). Moreover, B,(g,r)
will denote an open ball with a center at g and a radius » > 0 in such a space.
The symbol card(A) will stand for the cardinality of a set A. By exp(X) we will
denote the set of all subsets of X.

Let (X,p) be a metric space. We shall say that a set U C X is X-dense
at a point g € X if one can find an open (in (X, p)) set V such that g € V C
cl,(U) (where cl,(U) denotes the closure of the set U in (X, p)).

If f is a function then the set of all fixed points of f will be denoted as
Fix(f). Moreover, we will write Fix.(f) for the set of all fixed points of f being
its continuity points. We shall say that a set U C I is an f-invariant set if
f(U) c U. Moreover, the restriction of f to the set U will be denoted by f [ U.

In our considerations, we will focus on functions which are almost continuous
in the sense of Stallings. Let (X, T'x) and (Y, Ty ) be topological spaces. We shall
say that f: X — Y is almost continuous in the sense of Stallings if for every
open set U C X x Y containing the graph of the function f, the set U contains
a graph of a continuous function g: X — Y. The family of all almost continuous
in the sense of Stalling functions f: 1 — I will be denoted by .A.
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An entropy of a function will also play an important role in our considerations.
Now, we shortly recall definition of a topological entropy (we will formulate this
definition for functions considered in this paper, i.e., functions mapping I into
itself). It is worth adding that this definition given first for continuous function
by R. Bowen [5] and E. Dinaburg [7] was extended to an arbitrary function
by Ciklova [6].

A topological entropy of a function f is the number

h(f) = lim lim sup [% log(sn(a))] ,

e=0 nooo

where

sn(e) = max{card(M) : M C Iis (n,e)-separated set }
and a set M C Tis (n,e)-separated for ¢ > 0 and n € N if, for each x,y € M,
x # y, there is 0 < i < n such that |fi(z) — fi(y)| > e.

As in [I], we shall say that f: [a,b] — [c,d] is piecewise linear (piecewise
monotone) if there exists a finite partition of interval [a,b] into closed subin-
tervals {P;}_, such that, for any i € {1,...,n}, the function f [ P; is linear
(monotone).

Let f be a continuous and piecewise monotone. We shall say that f has a con-
stant slop s if on each of its pieces of monotonicity it is affine with the slope
coefficient of absolute value s (see [1]).

The following lemma is a modified form of Corollary 4.3.13 in [I].

LEMMA 1.1. Let P be a non-degenerate closed interval and f: P — P be a con-
tinuous piecewise linear function with constant slop equal to s. Then, h(f) =
max{0, log s}. O

We end this section with a simple remark which will be useful in the next
part of the paper.

Remark 1.2. If P C [ is a non-degenerate closed interval then the family Fp
of all almost continuous functions from P to P has cardinality 2° O

2. An entropy of a function at a point

We start this section with recalling the notion of an entropy of an f-bundle
introduced in [I7].

Let f: I — I. A pair (F,J) = By, where F is a family of pairwise disjoint
(nonsingletons) continuums in I and J C I is a connected set such that J C f(A)
for any A € F, is called an f-bundle. If we additionally assume that A C J for all
A € F then such an f-bundle is called an f-bundle with dominating fiber.
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Lete>0and n € N. Aset M C |JFis (By,n,e)-separated if for each x,y € M,
x # y there is 0 < i < n such that fi(x), fi(y) € J and |fi(z) — fi(y)| > e.
The entropy of an f-bundle By is defined in the following way:
o 1 By
h(By) = g1_1>n hTILIl_>SOl<1Jp [ﬁ log (sn (5))],

where
sut (¢) = max{card(M) : M C Lis (By,n,e)-separated set }.

A sequence of f-bundles {B’J‘é}keN, where B’J‘é = (Fg, Ji) for k € N, converges
to a point xg (B’]? k—) xo) if for any € > 0 there exists kg € N such that
—00

U Fk C B(wo,e) and B(f(x0),£) N Ji, # 0 for any k > ko. Put

E¢(xo) = {limsup h(BY): B} — xo}.

n—00 n—00

It is easy to prove the following fact.

LEMMA 2.1. Let f be a function and [a,b] C I (a < b) be an f-invariant set.
If g € ((1, b), then Ef(xo) = Efr[a’b](xo). O

An entropy of a function f at a point xo € I is the number e(zg) € [0, 400

defined in the following way
ef(xo) = sup E¢(xzo).

Taking into account the properties of the function e;: I — [0, +00] presented
in [I7] and the above terminology, we shall say that zy € T is an entropy point
(a strong entropy point) of f if ef(xo) = h(f) (ef(xo) = h(f) and zo € Fix(f)).
Obviously, these definitions agree with the definitions of an entropy point and
a strong entropy point introduced in [I7]. The set of all entropy (strong entropy)
points of f will be denoted by H(f) (Hs(f))-

In order to ensure the readability of further considerations, we signal two
lemmas. The first one can be proved similarly to Theorem 12 in [I7].

LEMMA 2.2. Let P be a non-degenerate closed interval and ¢: 1— P be a ho-
meomorphism. Let f:1 — 1 and g: P — P be functions such that g = @o fop™L
If zg € Hs(f), then p(xg) € Hs(g). O

Moreover, we see at once

LEMMA 2.3. Let f be a function. If there exists a non-degenerate closed interval
la,b] C 1 such that f(x) = x for x € [a,b], then ef(x) =0 for any x € (a,b). O

The next lemma is used in the proof of Theorem [3:4] (a), and it simultaneously
illustrates the situation when the entropy of a function is focused on one point
of the domain.
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LEMMA 2.4. There exists a continuous function f such that h(f) = oo,

H,(f) = {0} and H(f) N (0,1] = 0.

Proof. Put f(O) =0 and f(1) = 1. Moreover, if n € N, then let f(4(1+
o)) = &= for ke {1,3,...,2"" — 1} and f(&(1+ 5:57)) = =
k€ {0, 1,...,2n+! —2}. The function f is defined as an affine function otherwise.

Clearly, the function f is continuous We will show that 0 € H,(f). Obviously,
0 € Fix(f). Put a}) = 3% (1+ 55—) forn € Nand k € {0,1,2,...,2" " —1}.
For any n € N we define the family F,, and the set .J,, in the following way:
Fo={la},a,,]: ke€{0,2,....,2" =2} } and J, = [, &)

Of course, card(F,) = 2" for n € N. Moreover, we have J, C f([a},a},,])
and [a},af,,] C J, for n € N and k € {0,2,...,2""! — 2}. Putting B} =
(Fn, Jn) for n € N, we obtain f-bundles with dominating fiber. Lemma 3.1 [17]
implies that h(B}) > log2™ = n for n € N so,

for

limsup h(B¥) > hm n = 00. (1)

n—o0

It is easy to show that B — 0. Hence, and from (IJ), we obtain that

n—o0

oo € Ef(0). Lemma 3.6 [I7] gives that h(f) = oo, and, in consequence, we have
e4(0) = h(f). Finally, 0 € H,(f).
Now, we will show that

if x € (0,1], then =z ¢& H(f). (2)
We start with proving the following fact
2
foranynGNwehaveh(f[[4n,1]> 0. (3)
Fix n €N and consider the function g=f | [4%, 1] : [fn , 1] [4,” ] Obviously,
n—1 n
2 1 2 2 1
|:4n’ :| lL;J |:4z’4z:|ug|:4z’4z—1:|’
and, for any i € {1,.. — 1}, the sets [41, 411 1] and [41 , 42] are g-invariant.
The set [4,” =T 1] is also g-invariant. It is obvious (see, e.g., Lemma 4.1.10 [I])
that

h(g):max{{h <g | {4143]) :ie{1,2,...,n—1}}u
{h (g r {434—1_1]> e {1,2,...,n}}}. (4)
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Since for any i € {1,2,...,n} the functions g | [%, =] and g | [F, Z]

are piecewise linear and have a constant slop, so, by Lemma [[.T], we obtain
h(g ! [421,41 r]) =0and k(g | [, &]) = max{0,log(27"! — 1)} < log(2t!) =
i+1forie{1,2,...,n}. From this and (@] we conclude that h(g) <n+1 < oc.
So, [B) has been proved.

Let us now turn to the basic part of the proof of (). Suppose, contrary to our
claim, that there is zo € (0,1] such that o € H(f). It means that there exists
no €N such that ;% <o and co="h(f) € E¢(x). Thus, one can find a sequence

of f-bundles B} = (Fj, Ji) such that B’]ﬁ — %o and limsup,,_, ., h(Bf) = oo

Without loss of generality, we can assume that Uren(UFr) C [4n0 1]

Consider g = f | [MO , ] It is easy to see that for any k € N the pair (Fy, Jx)
is a g-bundle. Moreover, for any k£ € N and z € |J Fj, we have

fi(x)e{fTo,l] and  g'(z) = fitz) for icN. (5)

Therefore, for any k,l € N and ¢ > 0,

M is (B’}”,l,s)—separated set < M is (B¥,1,¢)-separated set. (6)

g Y
k
Thus, for any k € N, we obtain that sff (e)=s, By (e) for any I €N and & >0,
which gives that h(Bk) = h(B%). Hence,

lim sup h(Bk) = hm sup h(Bf)
k—o0
Lemma 3.6 [I7] gives that h(g) = oo. On the other hand, by (@), we obtain
h(g) < oo. This contradiction implies that (2] is true, and, in consequence, f has
the required properties. O

3. A local approximation of a function

In many papers dealing with the issues discussed here, an approximation
of a function had a global nature. However, due to the fact that we are study-
ing mainly a “local” entropy, it seems appropriate to consider also a local ap-
proximation. So, in this section, we will concentrate on a local approximation
of a function.

Let 2o € [0,1] and ¢ > 0. We shall say that a function f is e-approzimated
at a point xo by a function g if g(z) = f(x) for z € [0,1] \ (zo — &, 29 + €) and
pu(f,g) < e. Clearly, if £* € (0,¢) and f is e*-approximated at a point zg by g,
then f is also e-approximated at a point x( by g.

Let f € A, 29 € I and ¢ > 0. We will consider the following families of func-
tions:
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e A(f e,x0) — the family of all functions g € A which e-approximate a func-
tion f at a point xg.
e A(f &) — the family of all functions g € A such that there exists zg € 1
such that g € A(f, e, x0).
o Ap(f,e,m0) — the family of all functions g € A(f,¢,x¢) such that
eg(wo) = h(f)-
o Ar(f,e,x0) — the family of all functions g € A(f, ¢, xo) such that
eg(wo) < h(f) or eg(x0) = h(f) = 0.
o Aq(f,e,x) — the family of all functions g € A(f, e, x¢) such that
eq(xg) > h(f) or eg(xo) = h(f) =
Clearly, for any € > 0, 2o € I and f € A we have A(f,¢e,x0) C A(f,e). More-
over, Ar(f,e,x0)NAg(f,e,20) = 0. If h(f) = 0 then Ag(f,e,x0) = AL(f, &, z0).
It is obvious that Ag(f,&,20) = Ac(f,e,z0) if h(f) = co. Obviously, if h(f) €
(0,00), then Ag(f,e,20) N AL(f,e,20) = 0 and Ag(f,e,2z0) N Ac(f,e,x0) = 0.
One can ask how “big” or “small” these sets are? We will start the answer
to this question from the set A(f,e) considered in the space (A, py,).

THEOREM 3.1. For any f € A and any € € ( ,;] the set A(f,e) is nowhere
dense in (A, py)-

Proof. Fix h € A and « > 0, and choose hg € A such that p,(h, hy) < %
ho(z) # f(z) for z € {0,1}. Let ap = min{|f(0) — ho(0)],|f(1) — ho( }
Then, B, (ho,a0) C By(h,a) \ A(f,e), because for any zy € I at least
end-point of T does not belong to (xg — &,z + €). D

Notice that the above property gives that for any f € A and zg € I there
is € > 0 such that each of the sets mentioned above is nowhere dense in (A, p,,).

Moreover, it is easy to prove that if ¢ > £, then the interior (in (A, py))
of the set A(f,¢) is non-empty.

As previously announced, let us turn now to the analysis of the local ap-
proximation, i.e., we will consider the space (.A( fie, xo), pu). To simplify further
notation, let us denote the set of all £ € Ag(f,e,x0) (§ € A(f,e,20)) such that

o € Fix(§) by Ag(f, €, x0) (A*(f,€,20)).

THEOREM 3.2. Let f € A and xg € 1. If o € Fix.(f) then for any ¢ > 0
the set A*(f, e, xq) is nowhere dense in (A(f,e,x0), pu)-

Proof. Observe first that the set A*(f,e,x¢) is closed in (A(f,¢e, o), pu), SO
it suffices to show that intA(f7€7mO)(A*(f,5,xo)) = (. Fix g € A*(f,e,x0) and
a > 0. We may assume that a < §. Since f and g are continuous at zo and
f(xo) = x0 = g(xo), there is § € (0,¢) with [f(z) — g(x)| < § for z € (zg — 4,
2o + 9). Let h : T — [0,«) be a continuous function such that h(z) = 0
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for x € T\ (g — d, o + 9) and h(xg) # 0. If 29 # 1 then easily min{g + h, 1} €
(A(f,e,20) \ A*(f,e,20)) N Bu(g,a). If 2o = 1 then it is easy to see that
max{g — h,0} € A(f,&,20) \ A*(f,€,20) N Bu(g, @) .

Previously we indicated that in this paper we will consider sets of approx-
imating functions with an entropy at a given point different from an entropy
of “primal function” for the first time. Clearly, from the above theorem, we ob-
tain immediately

COROLLARY 3.3. Let f € A and x¢ € 1. If ¢ € Fix.(f) then for any ¢ > 0
the sets AL(f,e,2z0) and A} (f,e,20) are nowhere dense in (A(f, e, x0), pu). O

Now, we will present the statement describing the structure of sets
A%L(f,e,x0) and Ag(f,¢e,x0) in spaces A*(f,e,z0) and A(f,¢e,x0), respectively.
THEOREM 3.4. Let f € A and o € Fix.(f). Then, for any e > 0,

(a) card(AE(f,e,xo)) = 2°, intA*(f’E’xO)(AE(f,s,:co)) =0 and the set

(AL(f,e,20), pu) is dense in (A*(f,e,x0), pu) (and consequently,
it is not nowhere dense in (A*(f, €,T0), pu));

(b) card(Ac(f,e,20)) =2 and int a(f ¢ +,) (Ac(f, €, 30)) #0. Moreover,

® int4(f.ca0)(Ac(fr€,70)) N Bu(f,0) # 0 for any o > 0;
e there is an open (in (A(f,e,x0),pu)) set U such that
UcC Ag(f,e,20) and xg € H(g) for any g € U.

Proof. Let f € Aand xg € Fix.(f). We will only consider the case zo € (0,1).
The proofs in other cases run similarly.
(a) First, we will show that

card(AG(f,e,x0)) = 2°. (7)
Let ¢ > 0 and f;: I — I be a continuous function such that h(f;) = oo,

Hy(f1) = {0} and H(f1) N (0,1] = 0 (the existence of such a function follows
from Lemma 2.7)).

Since zg € Fix.(f), there is 6 € (0,%) such that |f(z) — 20| < § whenever
x € [xg — 6,20 + 0]

Let ¢: [0,1] — [zo, 20 + g] be a linear function such that ¢(0) = zy and
e(1) = x0+g. Obviously, the function t = po fiop™!: [xo, x0+g] — [:Jco, x0+g]
is continuous and h(t) = h(f1) = co. Moreover, Lemma 22 implies that ¢(0) =
xog € Hy (t)

Let Fp be a family of functions from Remark for P = [xo — %, To — %],
and let § € Fp.

We define the function gg : I — I in the following way: gg(z) = f(z) if
z €1\ (zg — 6,20 + 0), ga(z) = t(z) if € [xo, 20 + 3], gs(x) = B(z) if z € P.
Moreover, g3 is an affine function otherwise.
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It is easy to prove that gg €A, xo €Fix.(gs), eg,(20) =00 and f is e-approx-
imated at the point xzo by gg. Therefore, g5 € A;(f,e,x0). Moreover, we see
at once that if 31, 82 € Fp and 31 # P2, then gg, # gs,. Thus,

2¢ = card(Fp) = card({gs : B € Fp}) < card(A&(f, e, 20)),

and the proof of ([7) is complete.

Now, we will show that intA*(f’g’xO)(.Ag(f,e,xo)) = (). Suppose, contrary
to our claim, that intA*(f@mD)(Ag(f,s,xo)) # (). Tt means that there are gg €
A& (f,e,20) and a > 0 such that

Bu(g(),Oé)ﬂA*(f,€,CUO) CAE(f,E,-T()). (8)

Obviously, go € Bu(go, @) N A*(f,e,z0). Moreover, xy € Fix.(go) N Fix.(f).
Thus one can find v € (0,min{%,5}) such that [go(z) — 20| < min{%,%}
and |f(xz) — xo| < § if | — x| < 7. Therefore, go(zo — ), go(zo +7) €
(w0 = §. @0 + 5)-

Let us consider the function g; : I — I defined in the following way:
g1(z) = go(x) if x € I\ (g — 7,20 +7) and g1(z) =z if x € [500 — 3,0 + %]
Moreover, g; is an affine function otherwise. Clearly, g; € A. Moreover,

91 € Bu(go,a) NA*(f, €, o). (9)

Indeed. It is easy to see that [go(x)—g1(z)| < 2a for x € I. Hence, pu (g1, 90) < o,
which means that g1 € B, (go, «). Similarly, we show that p, (g1, f) < €.

Moreover, g1(z) = go(x) = f(z) for x € I\ (xg — €, 20 +¢) and xo € Fix.(¢1).
Thus, g1 € A*(f,e,x0), and (@) is proved.

On the other hand, Lemma 23] implies that e, (z9) = 0, so g1 &€ AL(f, €, zo),
contrary to (8). This contradiction gives that intA*(f’g’xo)(Ag(f,e, xo)) = (.

Now, we will prove that Ag(f,e,z0) is dense in (A*(f,e,20), pu). For this
reason, we will show that B, (g,a) N AL(f,e,x0) # 0 for any g € A*(f,e,x0)
and a > 0. So, let g € A*(f,e,20) and o > 0.

Since zo € Fix.(f)NFix.(g), thereis 6 € (0, min{¢,$
and |g(x) — xo| < min{%, 5} for x € (g — &,z + 4]

) such that | f(z)—zo| < £

Let ¢ : [0,1] — [zo, 20 + g] be a linear function such that ¢(0) = zy and
e(1) = x0+g. Obviously, the function t = po fiop™! : [xo, x0+g] — [xo, x0+g]
is continuous and h(t) = h(f1) = co. Moreover, by Lemma [Z2] we obtain that
©(0) = xo € Hy(t).

Put g.(z) = g(z) for x € I\ (x4, zo+6) and g, (z) = t(z) for x € [0, x0+g].
Moreover, let g, be an affine function otherwise. Clearly, g, : I — I, g. € A and
zo € Fixc(g«). Moreover, |g(z) — g«(z)] < § for 2 € I. Hence, p.(g+,9) < a,
which gives that g. € B, (g, ).
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Since z¢ € H(t), it follows that xg is a strong entropy point of the func-
tion g, | [96'0,96'0 + g] Therefore, there exists a sequence of g, | [mo,xo + g]—
-bundles BZJ[mo,moJr%] = (Fk,Jx) (for k € N) converging to zy and such that
0o = h(gs | [zo,20+3]) = limsup,_, h(B];*r[mo,moJr%])' Obviously, |JFi C
[:Jco, x0+g] Since the set [xo, x0+g] is g.-invariant and h(g* i [xo, xxﬁ%]) = h(g«),
we have that for any k£ € N the pair (Fj,Ji) is a g.-bundle and ey, (z9) >
lim supy,_, oo h((Fk, Ji)) = cc. Finally, we get that e, (zo) = oo.

Let e1 € (0,¢) be such that p,(f,g) < e1 < e. Obviously, f(x) = g(z) = g«(x)
for x € I\ (w9 —€,20 +€), 50 |f(x) —gu(2)] < 5. Mz € I\ (w9 —€,0 — SJU
[zo+0, zg+¢) then g.(x) = g(x), thus | f(x) —g«(x)| < &1. For z € (xo—9, x9+9)
we have g, (z), g(z) € (z0—%,20+5), which gives that |g(2)—g.(2)| < 5. Finally,
we have p,(f,g.) <min{ey, £} < e. Therefore, g, e-approximates f at .

From the above we obtain that g. € B,(g, ) N A&(f, €, 20). Since g and «
were arbitrary, we obtain that Ag(f, e, zo) is dense in (A*(f, &, z0), pu)-

(b) Let ¢ > 0. Clearly, A% (f, e, 20) C Ag(f,€,20), so condition (a) gives that
card(Aq(f,e,x0)) = 2

Fix ¢ > 0. Without loss of generality we may assume that o < e. Since
zo € Fix.(f), we have that there exists § € (0, ) such that |f(z) — 0| < &
for x € [zg — d,z¢ + d]. Putting g,(x) = f(z) for € T\ (xo — d,z9 + 0),
go(x) = %Sin(z_lzo) + a0 for x € (mo, o+ g], 9o (o) = xo and linear otherwise,
we obtain that g, € A.

Set V =B, (g,,, g). We will show that
V C Bu(f,e) N Bu(f,0). (10)

Let 7 € V. Thus, 7(z) € [go(x) — %,gg(:p) + g] for z € 1. First, we will prove
that 7 € B,(f,0).
o If x €I\ (g — 0,20 + ) then 7(z) € [f(x)f%,f(x)Jr%],
so |f(z) —1(2)] < 5
o If z € (wo — 6, 20) then go(x) € [zo — 5,20 + ] and, in consequence,
T(z) € [xo — £ — $, 20 + £ + §]. Thus, |f(z) — 7(z)] < § + &.
o Ifx e (9[:0,9(:0 + %] then g,(x) € [9[:0 — %,xo + %] It gives that
() € [wo — 36,20 + 26] C [0 — 1—%5,9(:0 + 1%5] C [wo— 5,20 + 5]
Thus, |f(z) — 7(z)| < 5
o Ifz e (9(:0 + g,xg +5} then g,(z) € [.’Jco - S,mo + %], SO
T(z) € [mg — £ — $, 20+ £ + &]. Therefore, |f(z) — 7(z)| < § + £.
We finally get that |f(z) — 7(x)| < 2e for # € I, so 7 € By(f,¢). Similarly,
we show that 7 € B,(f,0).
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From (I0), we obtain that p,(gs, f) < . Moreover, g,(z) = f(z) for x € T\
(xo —e,x0 +¢€). Thus,
9o GVQA(fagal‘O)' (11)

Now, we will show that
if teV then, xzo€ H(t) and h(t) = oc. (12)

Fix t € V. Clearly, t(z) € [g,(z) — g,ga(x) + %] for x € 1. Let kp € N be such

2 ) : _ 2 _ 2
that m < 1- Puttlng Q. —.’L'(]‘Fm and Bk —x0+m fOI'kEN,

we have that if £ € N, then apt1 < Pr < ap, Bk, o € (.Z'o,.%’() + %], gg(ak) =
o + g and g, (8k) = o — g. Moreover,

klirilo ay = . (13)
Clearly, t(zo) € [zo— %, z0+ 5], t(Br) € [z0 — 30,20 — $0] and t(o) € [xg + 16,
zo + 36| for k € N. Since for any k € N we have ¢(8;) < t(ay) and t € A, one
can find 85, of € [Bg, ax] such that 5} < of, t(5f) = 20— g and t(a)) = xo+ %.
Of course,
|:.%'0 — Z,xo + Z:| C t([ﬂk, ak]) and [Bk,ak] C |:.Z'0,.%'0 + Z:| (14)
for any k € N. Put F, = {[ﬂ;,a,’;] ck=n,n+ 1,...}, Jn = [9(:0 — %,xo + %],
and B} = (Fp,Jn) for n € N. It is easy to see that {B}'},cn is a sequence
of t-bundles with dominating fiber converging to .

Lemma 3.1. [I7] gives that h(B}*) = oo for n € N. Thus, co € Ei(zg), so
et(zg) =00. Moreover, Lemma 3.6 [17] implies that h(t) =co. Hence, e;(xo) =h(t)
which means that zo € H(t).

From (III), we get that V N A(f,e,z0) # (). Moreover, the condition (I2)) im-
plies that VNA(f,e,x0) C Ac(f,¢e,x0). By [I0), we obtain that VNA(f,e,x0) C

By (f,0), 80 int At e 20) (Ac(f,€,20)) N By(f,0) # 0. Furthermore, ([I2) implies
that z( is an entropy point of each function from V N A(f, ¢, xo). O

We will now proceed to the analysis of sets of approximating functions with
an entropy at a given point less or equal to an entropy of “primal function”.

THEOREM 3.5. Let f € A be such that Hs(f) # 0. If there is a point x¢ €
Fix.(f) N (0,1) then for any € > 0 we have that

(a) the set Ar(f,e,xo) has cardinality 2° and it is not A(f, e, xo)-dense at f;

(b) the set Ag(f,e,x0) has cardinality 2°. Moreover, if h(f) < oo, then it is not
A(f,e,x0)-dense at f.
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Proof. Let yoe Hy(f). It means that yo € Fix(f) and ef(yo) =h(f). Fix ¢ >0.

(a) First, we will show that card(AL(f,e,z0)) = 2 Since zo € Fix.(f) N (0,1),
it follows that there exists § € (0, ) such that for @ € [zg — 8,20 + 8] C (0,1)
we have f(z) € (:Jco j,x0+5) In particular, f(zo—9), f(zo+d) € (xo—5, 20+5).
Let P = [zo — 36,79 — 26] and Fp be as in Remark [2 Fix 8 € Fp and put
fa(z)=[(z) forx¢(x0 8, 20+0), fa(x)=x for € [wo—5,x0+35], fo(z) = B(x)
for x € P. Moreover, let fg be an affine function otherwise. It is easy to see
that fs € A(f,¢e,20). Furthermore, Lemma B3| gives that ey, (zo) = 0. Thus,
fs € AL(f,&,20). Since 8 was arbitrary, we have {fs : 8 € Fp} C AL(f,¢,20),
which gives that card(AL(f,e,x0)) = 2

Suppose that AL(f,e,x0) is A(f, e, z¢)-dense at f. Thus one can find o > 0

such that B,(f,0) N A(f,e,z9) C clA(f@mO)(AL(f,e,xo)). Let W be open
n (A(f,e,mo),pu) set such that W N B,(f,0) N A(f,e,z0) # 0. Thus,
W NAL(f,e,00) N Bu(f,0) NA(f,€,20) #0. Hence, int 4(c 4 (Ag(f,a, xo)) N
B.(f,0) =0, in contradiction to Theorem B4 (b).
(b) First, we will show that card(Ag(f, e, o)) = 2% Since zo € Fix.(f) N (O 1),
there is 0 € (0,%) such that [zg — 6,20 + 6] C (0,1) and |f(z) — zo| < £ for
x € [xg—0, 20+ 0]. Assume that yo = 0 (for yo € (0, 1] the proof runs in a s1m11ar
way).

Let p: 1 — [:co,xo + g] be a homeomorphism such that ¢(yg) = xo. Let
P = [z — 20,20 — 26] and Fp be as in Remark [2 Fix g € Fp.

Put gg(z) = f(z) for x € T\ (2o — 6,20 +9), ga(x) = (po fop ') (z)
for x € [:Jco,xo + %], gg(x) =z for x € [.’Jco — %,xo], and gg(x) = f(z) for x € P.
Moreover, let gg be an affine function otherwise.

We see at once that gz € A. Since the intervals [:co - g, xo} and [:co, o +
are gg-invariant sets, Lemma 4.1.10 [I] implies that h(gg [ [xo 2,900 + ])
max{h(g[g [ [xofg, xo]), h(gg i [xo, x0+g])}.0bviously, h(gg [ [9(:0, rot+s ]) h(f
Lemmal[lTlgives that h(glg [ [xo—é 0]):0. Therefore, h(gg [ [:co 2,x0—|— ])
h(f). From the above and Lemma 3.6. [I7], we obtain

€gatlro b0t 3](@0) < h (95 r [xo % wot g]) —n(f).  (19)

On the other hand, Lemma 22 gives that ¢(yo) =0 € Hy(gs | [x0, 20 + 2]),
50 €, 1(ao.ao+51(20) = h(g5 | [0, 20 + 5]) = h(f).

Let o >0.There exists a sequence of gg | [xo, To+5 ] bundles {Bk

!
)

[mo,fﬂo-'r ]}kEN
converging to zo such that limsup,_, ., h(B*

gﬁf[mo,mo—i-g]) > h(f) — 0. Clearly,
for any k € N, the bundle B’f is gg | [:Eo — %,xo + %]—bundle, SO

sl[zo,mo+3]
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lim sup,,_, . h(B* zp). We finally have

98 T[J?o,xo-i-%]) = Egﬁ [[x()—%,$o+%](

egﬁ{[mo—%,mo—k%](‘ro) > h(f) (16)
By ([I3) and (I6)), we conclude that egﬁ”zo_%er%](xo) = h(f). This, the fact
that [zo — §, 20 + 3] is gg-invariant set, and Lemma Tl imply that

€gs(w0) = sup Eg, (x0) =sup E 1203 2043)(20) = € 1292 20431 (X0) = A(f).

Moreover, it is easy to see that gg € A(f,e,20). In consequence, we obtain
95 € Ap(f,&,20). Since B was arbitrary, we have {fz: 8 € Fp} C Ag(f, e, xo).
Thus, card(Ag(f,e,20)) = 2

Assume now that h(f) < oo and suppose that Ag(f,e,x0) is A(f,¢,x0)-
-dense at f. Thus, By(f,0) N A(f,&,20) C cla(fe.my) (Ar(f € 20)) for some
o > 0. Let W be an open in (.A(f,a,xo),pu) set such that W N B,(f,0) N
A(f,e,20) # 0. Thus, W N AL(f,e,20) N Byu(f,0) N A(f,&,29) # 0. Hence,
Nt 4(f,c,20) (.AE(f, €, xo)) NB.(f,o) = 0, in contradiction to Theorem[34(b). O

Considerations connected with a structure of sets of functions which approx-
imate a given function in conjunction with an entropy of a function at a point
are in an introductory stage. Further studies related to the set of approximating
functions which have an entropy at a given point exactly the same as an entropy
of the “primal function” appears to be particularly interesting. It also seems to be
interesting to examine these issues for functions f: I" — I" or, more generally,
for functions defined on a locally Euclidean space (i.e., on such a space that
there exists nonnegative integer n such that each point of the space has a neigh-
bourhood which is homeomorphic with Euclidean space R™) or some compact
manifold. In many issues, the basis of considerations dealing with discrete dy-
namical systems are functions from the unit interval into itself ([I], [], [13]).
Thus, it seems appropriate to start the further research from the issues presented
in this paper.

Acknowledgements. The authors wish to express their sincere thanks to the
referee for all his/her detailed and valuable comments and suggestions which
helped to shorten the paper. The authors are particularly grateful for comments
concerning proofs of Theorems [B.I] and

REFERENCES

[1] ALSEDA, L.—LLIBRE, J.—MISIUREWICZ, M.: Combinatorial Dynamics and Entropy
in Dimension One (2nd ed.), in: Adv. Ser. Nonlinear Dynam., Vol. 5, World Sci., Singapore,
2000.

[2] BLANCHARD, F.: Topological chaos: what this means? J. Difference Equ. Appl. 15
(2009), 23-46.

117



3

[4]
[5]
[6]
[7]
(8]
[9]

[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

ANNA LORANTY — RYSZARD J. PAWLAK

BLANCHARD, F.—HUANG, W.—SNOHA, II: Topological size of scrambled set, Colloq.
Math. 110 (2008), 293-361.

BLOCK, L. S—COPPEL, W. A.: Dynamics in one Dimension. Lecture Notes in Math.,
Vol. 1513, Springer-Verlag, Berlin, 1992.

BOWEN, R.: Entropy for group endomorphisms and homogeneous spaces, Trans. Amer.
Math. Soc. 153 (1971), 401-414; erratum 181 (1973), 509-510.

CIKLOVA, M.: Dynamical systems generated by functions with connected Gs graphs, Real
Anal. Exchange 30 (2004/2005), 617-638.

DINABURG, E. 1.: The relation between topological entropy and metric entropy, Soviet
Math. Doklady 11 (1970), 13-16.

JASTRZEBSKI, J. M.—JEDRZEJEWSKI, J. M.—NATKANIEC, T.: On some subclass
of Darbouz functions, Fund. Math. 138 (1991), 165-173.

KORCZAK-KUBIAK, E—LORANTY, A.—PAWLAK, R. J.: On oo-entropy points
in real analysis, Opuscula Math. 34 (2014), 799-812, http://dx.doi.org/10.7494/
OpMath.2014.34.4.799

KORCZAK-KUBIAK, E—LORANTY, A.—PAWLAK, R. J.: On local problem of en-
tropy for functions from Zahorski classes (to appear).

KWIETNIAK, D.—OPROCHA, P.: Topological entropy and chaos for maps induced
on hyperspaces, Chaos Solitons Fractals 33 (2007), 76-86.

LI, J.—YE, X.: Recent development of chaos theory in topological dynamics,
arXiv:1503.06425 [math.DS].

DE MELO, W.—VAN STRIEN, S.: One-Dimensional Dynamics. Springer-Verlag, Berlin,
1993.

NATKANIEC, T.: Almost continuity, Real Anal. Exchange 17 (1991/92), 462-520.
NATKANIEC, T.: Almost Continuity. Habilitation Thesis, Wyzsza Szkota Pedagogiczna
w Bydgoszczy, Bydgoszcz, 1992.

PAWLAK, R. J.: On points of extreme chaos for almost continuous functions, Tatra Mt.
Math. Publ. 62 (2014).

PAWLAK, R. J—LORANTY, A —BAKOWSKA, A.: On the topological entropy of con-
tinuous and almost continuous functions, Topology Appl. 158 (2011), 2022-2033.

Received November 11, 2015 Lodz University

118

Faculty of Mathematics and

Computer Science

Banacha 22

PL-90-238 Lodz

POLAND

E-mail: loranta@math.uni.lodz.pl
rpawlak@math.uni.lodz.pl


http://dx.doi.org/10.7494/
OpMath.2014.34.4.799

	1. Introduction and notation
	2. An entropy of a function at a point
	3. A local approximation of a function
	REFERENCES

