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ON SEMI-OPEN SETS AND
MUTUAL CORRESPONDENCE BETWEEN
PROPERTIES OF FUNCTIONS CONSIDERED
WITH RESPECT
TO DIFFERENT TOPOLOGICAL STRUCTURES
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ABSTRACT. At the end of the twentieth century, A. Csaszar pointed out
the possibility of the transition from topology to generalized topology and vice
versa. One of the tools used for this purpose are semi-open sets. In this paper,
we investigate properties of functions in GTS in the context of semi-open sets,
and problems connected with transfer of properties of functions defined and as-
suming their values in primal spaces to functions considered as mappings in the
spaces generated by primal spaces.

1. Introduction and preliminaries

In [7], A. Csaszar introduced the notion of generalized topological space
(GTS). The issues connected with these spaces became the basis of many sci-
entitic papers, e.g., [3], [8], [I0], [12], [I7], [19], [25]. In [9], generalized topolog-
ical spaces were related, among others, with semi-open sets. It turned out that
it leads to building new GTSs, because the family of all semi-open sets forms
a generalized topology. In this way, if we use a topological space as our primal
space then, by considering the family of all semi-open sets, we will obtain a gen-
eralized topology and a generalized topological space generated by the primal
space. On the other hand, if we have strong generalized topological space, then
the family of all sets, which intersection with any generalized open set is a gen-
eralized open set, forms a topology. Of course, in extreme cases, the topology
consists only of an empty set and the whole space. So, we have a transition
in opposite side: from sGTS to topological space.
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In this paper, we will present results connected with a few issues. First of all,
semi-open sets will be used as a tool to analyse some Baire properties of GTS.
In the second part of the paper, we will deal with various kinds of transitivity
(weakly nomadic, nomadic and transitive functions). Many studies connected
with the problems of transitivity was aimed at determining some conditions
which implies the equivalence of transitivity and nomadic property. Our research
differs from the earlier results because, in one issue, we combine the problem
of equivalence of various kinds of transitivity and the problem of transition from
one topological structure to the second one.

Why are these concepts so important? The answer seems to be simple.
They are closely connected with many interpretations of chaos, e.g., Li-Yorke
chaos, Devaney chaos, Auslander-Yorke chaos, etc.

We will mostly use standard notations. In particular, letters R, Q and N
will denote the sets of all real numbers, rational numbers and positive integers,
respectively. The symbol Ty will stand for the induced topology on Q. Moreover,
for any nonempty set X, we will use the symbol exp(X) to denote the family
of all subsets of X.

In this paper, we will consider, among others, generalized topological spa-
ces. Let X # (). We say that a family v C exp(X) is a generalized topology
(GT, for short) in X if ) € v and (J,c G¢ € v whenever {G;:t € T} C v.
A pair (X,~) will be called a generalized topological space (GTS, for short).
If X € v, then we say that (X,~) is a strong generalized topological space (sGTS,
for short).

We will write int., (A) to denote an interior of a set A in generalized topology -,
and cl, (A) will denote a closure of a set A in ~.

It is worth noting that in GTS an interior and a closure of a set are defined
in the same way as in a topological space. However, they may have different
properties. For example, throughout the paper, we will use the following fact:
cly(0) = 0 if and only if (X,~) is sGTS.

We say that a set AC X is semi-open if AC cl,(int(A)). The family of all
semi-open sets with respect to v will be denoted by o(7), i.e., o(y) = {AC X :
A C cly(int,(A))}. Space (X,0(7)) is sGTS ([7]). As in the case of a topological
space, if (X,~) is GTS, then we say that A C X is v-dense if cl,(4) = X or
equivalently ANU # ) for any U € ~ \ {0}. We will omit the prefix v when
no confusion can arise.

Let P be a family of subsets of a fixed nonempty set X such that ) € P.
By vp we will denote a family of all possible unions of the sets from P. It is easy
to see that yp is a generalized topology.

The issue of functions in the context of semi-open sets was considered in many
papers, e.g., [1], [, [6], [11], [14], [23]. Since the terminology within the scope
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of this issue is not unified, we will present definitions of basic kinds of functions
connected with semi-open sets.
Let (X,vx) and (Y,~vy) be GTSs. A function f: (X,vx) — (Y, vy) is called:

— semi-continuous if for each V' € vy the set f~!(V) is semi-open in (X, yx);

— irresolute if for each set V semi-open in (Y,~y) the set f~1(V) is semi-open
in (X,vx);

— pre-semi-open if for each set V semi-open in (X, vx) the set f(V') is semi-
-open in (Y, vy );

— semi-open if for each set V' € yx the set f(V) is semi-open in (Y, vy ).

We say that a surjection f: (X,vyx) — (Y, vy) is:

— a g-homemorphism if f is continuous and open;

— a g-semi-homeomorphism if f is semi-continuous and semi-open.

Since the issues connected with transitivity of functions will also be considered
in this paper, let us adopt the classical notations used in discrete dynamical
systems. If f: X — X then fO(z) = z and fi(z) = f(fi_l(x)), for i € N.
If A C X then f7%(A) = {z € X : fF(z) € A} for k € NU{0}. An orbit
of a point x with respect to a function f (denoted by ©f(x)) is a set (sequence)
{z, f(z), f2(2),...}.

2. Baire spaces and semi-open sets

Let (X,v) be GTS. We say that a set A C X is y-nowhere dense if
int, (ch(A)) = 0. A set A C X is y-strongly nowhere dense if for any nonempty
set V' € v there exists a nonempty set U € v such that U C V and ANU = 0.
It should be mentioned here that the union of two y-nowhere dense sets need
not be y-nowhere dense while the union of two ~-strongly nowhere dense sets is
~-strongly nowhere dense ([18]).

We shall say that A is a y-meager (y-s-meager) set if A =J,_, A, and A,
are y-nowhere dense (y-strongly nowhere dense) for all n € N. We shall say that
A is a y-II-category set (v-s-II category set) if A is not a y-meager (v-s-meager)
set.

Using the above notions, in the further part of the paper, we will omit prefix
when no confusion can arise.

We shall say that (X,~) is a weak Baire space, wBS for short (Baire space,
BS for short) if each nonempty set V' € v is of s-II category (IT category).

LEMMA 2.1. GTS (X,~) is a Baire space if and only if each countable union
of closed and nowhere dense subsets of X has an empty interior.
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Proof. Necessity is obvious.

Sufficiency. Suppose that (X,~) is not a Baire space. Then, there exists a non-
empty meager set U €. Thus U=, .y Ky, where K, is nowhere dense for each
n € N. Clearly, U C |, .y cl(K,,) and hence

int (U cl(Kn)> 2 0. (1)

neN

neN

By Property 2.3 [18], we have that cl(K,) is a nowhere dense set for each n € N.
Thus, the set |J,cycl(K,) is a countable union of closed and nowhere dense
sets, and so it has an empty interior. This contradicts (). O

In the case of topological spaces, it is well-known that a space is Baire if and
only if each intersection of sequence consisting of open and dense sets is a dense
set. In the case of GTS, the necessity of this condition has been only proved.
The following theorem shows that a full generalization of this statement is true.

THEOREM 2.2. Let (X,~) be GTS. (X,~) is a Baire space if and only if each
countable intersection of open and dense subsets of X is dense.

Proof. Necessity is a consequence of Property 2 from [20].
Sufficiency. Let {F, }nen be an arbitrary sequence of closed and nowhere dense
sets. Due to Lemma P11 it suffices to show that

F = |J F, has an empty interior.
neN

First, we will prove that
X \ F,, is an open and dense set, for each n € N. (2)

Obviously, we have X \ F,, € v for each n € N.

Now, we will show that X \ F,, is a dense set for each n € N. Suppose,
contrary to our claim, that there exists ng € N such that X \ F,,, is not a dense
set. Then, there exists a nonempty set U € ~ such that U N (X \ F,,) = 0.
Hence U C F,, C cl(F,,), so int(cl(F,,)) # 0, which is impossible because F,,
is nowhere dense. The proof of (2) is finished.

By the assumption, X \ F=(,.y(X \F},) is dense. Consequently, int(F)={).

O

Our next considerations will regard the problem of preserving Baire property
of sGTS under mappings. We will start with showing that for each Baire sGTS X
a countable sum of X is Baire sGTS such that some continuous image of this
space is not Baire GTS. First, let us introduce the necessary definitions.

Analogously to the notion of a sum of pairwise disjoint topological spaces
(J13]), we can consider a countable sum of pairwise disjoint sGTSs. Let (X, ~)
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be sGTS. For n € N, consider (X,,,7,), where X,, = X x{n} and v, = {Ax{n} :
Ae 7}. Obviously, (X, vn) is SGTS for n € N. Then, @, en(Xp, ¥ ) is sGTS and
Gnen(Xn,Yn) = (Y, vp), where Y = X x N and P = {A x{n}:AeyAn¢€ N}.
In the further part of the paper, we use symbol &(X, ) to denote @pen(Xn, Vn)-

THEOREM 2.3. Let (X,v) be a Baire sGTS. Then, &(X,) is a Baire sGTS
which can be mapped by a continuous function onto the space (Q, 7g).

Proof. Let (X,~) be aBaire sGTS. Adopt the following notation: if A C X xN,
then A, = AN (X x {n}) for n € N. Obviously, 4, C X x {n} (n € N).
Put A, = {x € X : (z,n) € A,}. So, A, = A, x {n}, for each n € N.
It is easy to see that

Ae~p ifandonlyif A, €~, for neN.
Notice first that

if there exists ng € N such that A C X x {ng} then
int., (A) = int,(4,,) x {no} and cl,,(A) = cl,(4,,) x {no}. (3)

Now, we will prove that

if there exists ng € N such that A C X x {ng} then
A is nowhere dense in (X x N, ~vp) if and only if

Ay, is nowhere dense in (X, 7). (4)

Let A C X x {ng} for some ny € N. By (@), condition int,, (cl,,(A)) = 0 is
equivalent to int. (cl, (A,,)) = 0, which gives [@).
In the consecutive step of the proof, we will show that

if AC X x {no} for some ny € N and A, is of second category in (X,~)
then A is of second category in (X x N, ~p). (5)

Suppose, contrary to our claim, that A is a meager set in (X x N,vp).
Then A = {J,on BY where B¥ ¢ X x {ng}, and B* is yp-nowhere dense
for each k& € N. According to () Bfm is y-nowhere dense, so A,, = Uken Bfm
is a meager set in (X, ), which is impossible.

We are able now to prove that (X x N,~p) is a Baire space. Let U € vp \ {0}.
We have U = (J,, . (Uy x {n}) and U, € v for n € N. Obviously, there exists
ny € N such that U, x {ni} # 0. Since (X,~) is a Baire space, we have that
U,, is of second category in (X,7). By @), U, x {n1} is of second category
in (X x N,vp), which gives that U is of second category in (X x N, vp).
Thus, (X x N,~yp) is a Baire space.
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Consider the space (Q,Tp). Obviously, it is not a Baire space. Let {¢, }nen
be a sequence of all rational numbers. Put f(z) = ¢, for z € X x {n}, n € N.
Obviously f: X x N — @, and f is a continuous surjection. O

In the next theorem, we will formulate an assumption under which an image
of Baire sGTS is Baire sGTS.

THEOREM 2.4. Let (X,vx) and (Y,~vy) be sGTSs. If a surjection f: X =Y
is a g-semi-homeomorphism and (X,~vx) is a Baire space then (Y,~y) is a Baire
space.

Proof. Let {W,},en be a sequence of open and dense sets in Y. First, we show
that {intX(f_l(Wn))}neN is a sequence of open and dense sets in X.

Fix n € N. Notice that
the set f~1(W,,) is dense in X. (6)

Indeed, let U € yx\{0}. Since f is semi-open, we have 0 # f(U) C cly (inty (f(U))).
Thus, inty (f(U)) # 0. Since W, is dense, we have inty (f(U)) N W, # 0, so let
yo € f(U)NW,,. There exists z1 € U, such that f(z1) = yo € W,,. Hence, we have
ry € UNf~H(W,), and consequently, U N f~1(W,,) # (). From arbitrariness of U,
we obtain ([@]).

Now, we will prove that intx (f~*(W,)) is dense in X. Since f is semi-conti-
nuous, we obtain that f~*(W,) is semi-open, so f~*(W,,) Cclx (intx (f~(W,))).
Hence, and from (@), we have X = cly (intx (f~*(W,))). Thus, intx (f~1(W,))
is dense in X.

Since (X, vx) is a Baire space, by Theorem 2.2] we have that

T = () intx (f~'(Wy)) is dense in X.
neN

We will show that
f(T) is dense in Y. (7)

Let W € vy \ {0}. Since f is a surjection and semi-continuous, so () # f~1(W) C
clx (intx (f7H(W))). (X,vx) is sGTS, so intx (f~1(W)) # 0. Since T is dense
in X, so intx (f~'(W)) NT # 0. That clearly means that f~'(W)NT # 0,
so there exists zg € f~H(W)NT. Thus, f(xg) € W N f(T), so Wn f(T) # 0.
From arbitrariness of W, we obtain ().

Moreover, we have f(T) C (), ey Wa, so by (@), (,,ey Whn is dense.

By Theorem [222] we have that (Y, ~y) is a Baire space. O

In [7], A. Csaszar noticed that, having sGTS (X,~v), one can consider
new sGTS (X, 0(v)). In particular, if a classical topological space (X, T) will be
a starting point, then one can consider a derived GTS (X,0(7)). The natural
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question arises whether an (X,o(7)) is a Baire GTS whenever (X, 7)) is a Baire
space. In the case of GTS, the situation is more complicated because different
kinds of nowhere density lead to distinguishing at least three kinds of Baire
GTSs ([18]). However, in many considerations, weak Baire spaces are the most
important.

LEMMA 2.5. Let (X,T) be a topological space, and K C X. The set K is
T -nowhere dense if and only if K is o(T)-strongly nowhere dense.

Proof. Necessity. Let U € o(T)\{0}. Then U Ccly (int7(U)), so int7(U) # 0.
Since K is T-nowhere dense, there exists a nonempty set V € T C o(T) such
that V C int+(U) C U and VNK = (). Thus, K is o(T)-strongly nowhere dense.

Sufficiency. Let U € T \ {0}. Clearly, U € o(T). Since K is o(T)-strongly
nowhere dense, there exists a nonempty set V' € o(T) such that V C U and
VNK = 0. We have ) # V C cly(int7(V)), so int7(V) # 0. Moreover,
int7(V) C U and int7(V) N K = . Thus, K is T-nowhere dense. O

THEOREM 2.6. Let (X,T) be a topological space. (X, T) is a Baire space if and
only if (X, J(T)) 1s a weak Baire space.

Proof. Necessity. Suppose, contrary to our claim, that (X, U(T)) is not a weak
Baire space. Then, there exists a nonempty set U € o(7) such that U =], oy Kn,
where K, are strongly nowhere dense sets in (X, 0 (7)). By Lemmal[ZF] the sets
K, are T-nowhere dense. Moreover, () # int7(U) C U, ey Kn, so int7r(U) is
nonempty 7-open and T-meager set, which contradicts the fact that (X,7) is
a Baire space.

Sufficiency. Suppose that (X,7) is not a Baire space. Then, there exists
a nonempty set U €T Co(T) such that U=,y K, where K,, are T-nowhere
dense. By Lemma [Z5] the sets K, are strongly nowhere dense in (X,0(7)).
Thus, U is nonempty o (7 )-s-meager set which belongs to o(7). This contradicts
the fact that (X,o (7)) is a weak Baire space. O

The fact of considering weak Baire GTS in the above theorem justifies
the more detailed examining of these spaces. The possibility of combining con-
siderations concerning topological spaces and generalized topological spaces sug-
gests another interesting problem. The starting point is the known theorem say-
ing that, in the case of topological spaces, the open subspace of a Baire space is
a Baire space. The basic question is whether this relationship is also true in the
case of weak Baire GTS. A simple corollary from the next theorem is a negative
answer to this question. However, the theorem contains much stronger result.

THEOREM 2.7. For each topological space (Y,T) there exists a weak Baire
sGTS (X,7) such thatY € y and T =~ Y ={ANY : A€ ~}.
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Proof. First, discuss briefly a special case 7 = {Y,0}. Then, (Y,T) is a Baire
space and therefore a weak Baire space. So, it is sufficient to put X =Y and
v="T.

In other cases, we assume that card(7) > 3.

Now, consider the case card(Y) > 8,. Denote card(Y) = n and card(7) = m.

Put Z =Y UT (notice that Z contains elements of Y as well as sets consisting
of elements of Y'). We will define the set S taking into account the relation
between the numbers n and m.
If n < m, then put S = T, and we have card(S) = card(7) = m > n = card(Y).
If n > m, then put S =Y, and we have card(S) = card(Y) = n > m = card(7).
Thus, in both cases, the following inequalities are true: card(S) > card(Y),
card(S) > card(7) and card(S) < card(Z).

Let Xy = 2%\ Z. Then, card(X3y) > card(S) and X» N Z = .

Let (2¢)¢<o be a transfinite sequence consisting of all elements of the set X»,
where « is an ordinal number. Create a set X1 = {{z¢, weq1}: { <a} if ais
a limit ordinal or X1 = {{z¢,zeq1} 1 € < a— 1} U {{za-1,21}}, if a is not
a limit ordinal. Clearly, card(X;) = card(Xsy) > card(S) > card(7). To simplify
further notation, we assume that if a is not a limit ordinal, writing {z¢, z¢41}
for £ = a — 1, we will mean {z,_1,21}. Let Xg C X; be a set such that
card(Xg) = card(T). Let ¢ : T — X, be an injection. Adopt the following
notation: if U € 7T, then £y will denote an ordinal number less than «, such that
CU) = {xSUﬂxSU-H}-

Put X =Y UUper vyizer: 2ep 41} Let P = {Y, 0} U {UU{ze,, 2ep 11}
UeT\{Y}}. It is easy to see that (X,vp) is sGTS and vp [ Y = T.

What is left to do is to show that (X, ~yp) is a weak Baire space. It is sufficient
to prove that there are no nonempty strongly nowhere dense sets in the space
(X,yp). In order to prove this fact, we will show that

no singleton is strongly nowhere dense. (8)

Let z € X and consider the set {}. Assume first that
v e |J {mev,mep}
UeT\{Y}
Then, there exists U € T \ {Y'} such that

v € {@ey, ey 1} C U U{aey, g4}
From the facts that ¢ is an injection and X5 N'Y = (), one can easily conclude
that the set U U {x¢,,x¢,+1} does not contain any nonempty proper subset
belonging to yp. Now, assume that x € Y. Since Xo N Y = () and all the sets
from vp except of Y and () have nonempty intersection with X5, we conclude
that Y has no nonempty proper subset belonging to «p. Thus, we obtain ().
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Obviously, () implies that there are no nonempty strongly nowhere dense sets
in (X,yp), so (X,vyp) is a weak Baire space.

Now, we consider the case card(Y) < Ny. Clearly, card(7) < Xo. Put 7 =
{U1,...,Ui}. Let Xy be a set of real numbers z1,zs,..., 2%, k1 such that
z; € Y fori =1,2,...,k+1and z; # z; for i # j. Put X = Y U X,.
Let ¢ : T — {{xi,xi_l,_l} Dio= 1,2,...,k} be a function defined as follows
C(Uz) = {ZEi,CEH_l} for i = ]., ey k. Let P = {@,Y} U {Uz U {ZEi,CEH_l} : Uz 75 Y}
It is easy to see that (X,yp) is sGTS and vp [ Y = T.

Similar to the case card(Y) > Ng, one can show that (X,~vyp) is a weak Baire
space. O

3. Transitivity in the primal and
generated topological structures

The terminology in the area of transitive and nomadic functions is not unified

(see [2], [B], [15], [22], [24], [26], [27]). Therefore, we will start the considerations

in this section with adopting the following definitions.

Let (X,v) be sGTS and f: (X,v) — (X,7). We say that f is a transitive
function if it fulfils the following condition

for every pair of nonempty y-open sets U and V
there is a positive integer n such that f™(U)NV # (. (T)

A function f is called a nomadic function if

there is a y-dense set A C X such that
for each x € A the orbit ©¢(z) is y-dense. (DDO)

If a function f fulfils the condition

there is a point xg € X such that the orbit ©(x() is 7-dense, (DO)

then we call it a weakly nomadic function.
It is not difficult to notice

Remark 3.1.

(a) Every nomadic function is a weakly nomadic function.

(b) Every nomadic function is a transitive function.

However, even in topological spaces, conditions (T), (DDO), (DO) are not

equivalent ([I7], [21]).
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It occurs that in searching for conditions allowing to obtain equivalence of the
above notions, a particular role may be played by the following condition imposed
on the space (X,7):

for each nonempty set U € v and each {x1,...,2,} C X
we have int, (U \ {z1,...,2,}) # 0. (D)

Obviously, there exists sGTS, which does not have property [D)}

It is easy to notice that if (X, ) has property then the notions of weakly
nomadic function and nomadic function become equivalent.

In the previous section of the paper, we have considered interesting transition
from GTS (X,v) to GTS (X, (7)), in particular, transition from a topological
space (X, T) to generated by its GTS (X, J(T)). From the point of view of the
considerations led in this paper, it seems to be interesting to study the problem
of equivalence of transitivity, nomadic property and weakly nomadic property as
well as possibility of mutual transition of these properties for the same function
considered in (X,7) and (X,0(7)). The results concerning this problem are
presented in Theorem and Remark [3.4]

We start our considerations with the following

PROPOSITION 3.2. If sGTS (X,v) has property[(D)} then (X,a('y)) has prop-

erty I@

Proof. Let W € o(7)\{0}. Then, W C cl, (int,(W)). Fix points @1, z2, . .., Zp,.
We will show that

there exists U € o () \ {0} such that U C¢ W\ {z1,x2,...,2m}. (9

Put U=int, (W\{z1, 22, ..., 2m}). We have UC cl, (inty (W\{z1, 22, ..., 2 })) =
cly (inty (inty (W \ {21, 22, ..., 2 }))) = cl, (int, (U)), so U € o (7).

All that is left is to show that U # (. Obviously, int. (W) # 0, so using
the assumption that (X,~) has property we conclude that there exists
B € v\ {0} such that B C int, (W) \ {z1,22,....2m} C W\ {z1,22,...,2,}.
Therefore, U = int (W \ {z1,z2,..., 2y }) # 0. O

~—

We now turn to our main problem.

First, we pay the reader’s attention to the fact that the proofs of Theorems[3.3]
and are close to the proofs of analogous theorems considered also in the con-
text of GTS (e.g., [20]). However, in these theorems, we aimed to obtain as weak
assumptions as possible which led to concerning property in Theorem
and [(D)] and (TOP) properties in Theorem B8 Therefore, even analogous con-
siderations contain subtle differences. For that reason, we present these proofs
in their entirety.
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THEOREM 3.3. Let (X,~) be sGTS with property[(D)] and such that (X, 0(7))
is a Baire space with a countable base. Let f: (X,v) — (X,v) be irresolute.
Then, the following conditions are equivalent:

(i) f:(X,7y) = (X,7) is transitive;

(ii) f:(X,v) — (X,7) is nomadic;

(iii) f:(X,v) = (X,7) is weakly nomadic;
(iv) f:(X,0(7)) = (X,0(7)) is transitive;
(V) f:(X,0(7)) = (X,0(7)) is nomadic;

(vi) f:(X,0(7)) = (X,0(7)) is weakly nomadic.

Proof. The schema of the proof is as follows: (i) = (iv) = (v) = (ii) = (iii) =
(vi) = (i).

(i) = (iv) Let U,V €o(v)\{0}. Then, UCcl, (int,(U)), and V Ccl, (int- (V).
Clearly, int., (U) # (0 # int.,(V'), which follows from the fact that (X,~) is sGTS.
By (i), there exists k such that f*(int,(U)) N int, (V) # 0, and hence, f*({U)N
V % 0, which gives (iv).

(iv) = (v) Notice first that the assumption of f: (X,v) — (X,v) being
irresolute implies that f: (X, o(v)) — (X, 0(v)) is continuous.

Let {V1, V4, ...} be a base of the space (X, a(fy)) consisting of nonempty sets.
For i € N put W;=U,—, f~™(V;). From continuity of f: (X,U(v)) — (X,a('y))
and from the fact that (X,a(v)) is GTS, we conclude that for any ¢ € N
we have W; € o(v). Fix ip € N. We will show that the set W;, is o(v)-dense.
Let U € o(v) \ {0}. By (iv), there exists k;, € N such that f*o (U) NV;, # 0.
Hence, f~%i0 (V;,)NU # 0, so W;, NU # (), and thus the set W;, is o(v)-dense.
By Theorem 22 the set [);.y Wi is o(y)-dense.

Now, consider a point z € (),c Wi. We will show that the orbit of z is
o(y)-dense. Let U € o(y) and U # (). There exists i1 € N such that V;, C U.
Obviously, x € W;, and there exists ng € N U {0} such that z € f~"(V;)),
so fr(x) € V;, C U. We have shown that each point of o(y)-dense set [, .y Wi
has a o(7)-dense orbit.

(v) = (ii) Let W € ~v\ {0}. We will show that the set W contains a point
with a v-dense orbit. Clearly, W € o(y). By (v), there exists a point zy €
W such that Of(xw) is o(y)-dense. We will show that ©f(xy ) is 7-dense.
Let Ve v\ {0} C o(y). Then, VN Of(zw) # 0. To finish the proof of this
implication, it is sufficient to notice that the set {zy : W € v\ {0}} is y-dense.

(ii) = (iii) This implication is formulated above as Remark B] (a).

(iii) = (vi) Let 29 € X be such a point that the orbit © () is y-dense. We will
show that ©(z) is o(7)-dense. Let W € o(v) \ {0}. Then, W C cl, (int, (W)).
Obviously, int~ (W) € v\ {0}. Since ©(x¢) is y-dense, there exists k € N such
that f*(z) € int, (W) C W.
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(vi) = (i) Let 2o € X be a point with o(~y)-dense orbit ©¢(zo). Since v C o (7),
O (o) is y-dense. Let U,V €~ \ {0}. Then, the sets U and V contain points
of the orbit ©f(zg). Let mo = min{m € NU {0} : f™(z0) € U} and ng =
min{n € NU{0} : f"(z0) € V}.

Assume first that mo < ng and put kg = ng — mg. Then, f*o (me (xo)) =
fre(zo) € Vi so fre(U)NV # 0.

Now, assume mg > ng and put L = {i € NU{0} : ng <i <mgA fi(z0) € V}.
Clearly, L is nonempty finite set. By property there exists a nonempty set
V* € v such that V*C V\ {f%(20) : i € L}. Since O (z() is y-dense, there exists
g € NU {0} such that f(zp) € V* C V. We have ¢ > my. Indeed, if ¢ < my,
then g € L, which contradicts the fact that f9(z¢) € V* Put t = ¢ — mg. Then,
FEf™ (o)) = f(wo) € V, s0 fHU)NV #0.

This completes the proof that f: (X,v) — (X,~) is transitive. O

The authors of the paper have not established yet whether the assumption
of the Baire property in the above theorem could be imposed on the space (X, )
instead of (X, o (7)).

Remark 3.4. Obviously, in Theorem [3.3] we can consider a topological space
instead of sGTS.

In view of the earlier considerations, the converse situation seems to be in-
teresting, i.e., we have a fixed sGTS (X,~) and a topological space (X, T (7))
generated by (X,~) ([9]), where T () ={A C X : Vpe,ANB € ~}. Is it possible
to prove a theorem analogous to Theorem B3l7 We will start our considerations
with formulating two easily seen but useful lemmas and with an example showing
some difficulty in the study of this issue.

LEMMA 3.5. Let (X,v) be sGTS. If A C X is ~y-dense, then A is T(v)-
-dense. 0

Let (X,~) be sGTS. One can easily conclude that if a function is v-transitive,
then it is 7 (y)-transitive. The converse implication is not true, which may be
illustrated by the following example.

EXAMPLE 3.6. Let Tpq) = {AN[0,1]: A € Ty}, where Ty is the natural
topology in R. Put X = [-1,1] x [0,1], Y = [-1,0] x [0,1], Z = [0, 1] x [0, 1],
Yy = {Y\A card(A) < NQ} U {@}, Yz = {U X [0, ].] U e 7-[071]} U {@} and
v={AUB: A€~y and B € vz}. Then, (X,v) is sGTS with property (D).
Let ¢: [0,1] — [0, 1] be given by the formula p(z) = 1 — |22 — 1] and consider
the map ¢: X — X defined in the following way: ¢(z) = (0,0) for z € Y and
Y(x) = (p(21),0) for & = (z1,22) € Z. Then, ¢: (X, T(7)) = (X,T(y)) is
transitive but ¢ : (X, ) — (X, ) is not transitive.
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It occurs that if we impose an additional condition on the space (X,~)
(further called property (TOP)), we obtain equivalence of ~-transitivity and
T (y)-transitivity, which will be shown in Theorem

We will say that sGTS (X, ) has property (TOP), if:

for each nonempty set U € v there exists a nonempty set
V €T(y) suchthat V CU.

Notice that sGTS (X,~) in Example B.6] does not have property (TOP).
Let us note one more theorem important for our considerations.

THEOREM 3.7. If sGTS (X, ) is a weak Baire space and has property (TOP),
then (X, T (7)) is a Baire space.

Proof. Suppose, contrary to our claim, that (X,7(y)) is not a Baire space.
There exists a nonempty set U € T(v) such that U = (J,cy Kn, where K,
are T (y)-nowhere dense. We have U € ~. We will show that the sets K,, are
v-strongly nowhere dense. Let W € ~ \ {(}. By property (TOP), there exists
a nonempty set Wy € T (vy) such that W, C W. Since K,, are T (7)-nowhere
dense, there exists a nonempty set V' € T () such that V-.C Wy and VN K, = 0.
Thus the sets K,, are v-strongly nowhere dense. We have shown that nonempty
set U € v is y-s-meager, which contradicts the assumption that (X, ~) is a weak
Baire space. O

THEOREM 3.8. Let (X, ) be a Baire sGTS with properties (TOP) and (D) and
such that the space (X, T(v)) has a countable base. Let f: (X,v) — (X, T (7))
be a continuous function. Then, the following conditions are equivalent:

(i) f:(X,v) = (X,) is transitive;

(X, ) = (X,) is nomadic;

: (X, v) = (X, ) is weakly nomadic;

X, T(v )) — (X, T(W)) is tranisitive;

X, T(v) = (X, T (7)) is nomadic;

(X T (v )) — (X, T(’y)) is weakly nomadic.

—~

(vi

Proof. The schema of the proof is as follows: (iii) = (vi) = (v) = (iv) =
(i) = (ii) = (iii).

(iii) = (vi) It follows from Lemma B3]

(vi) = (v) Let 9 € X be such that its orbit ©¢(z¢) is T (v)-dense. We will
show that

for any i > 0 the point f’(z¢) has 7 (v)-dense orbit.

Fix ig > 0. We have Of(f"(zo)) = {f(z0), [ (20), f2F?(20),...}. Let
UeT(v)\{0}.We have Ue v\ {0}. Consider the set U\ {zo, f(20),..., fo~ (z0)}.
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By property [(D)]of the space (X, ), there exists a nonempty set Uy € v such that
Uo C U\ {wo,..., o zo)} C U. Property (TOP) of the space (X,v) implies
that there exists Vy € T(7y) \ {0} such that Vi C Up. Since O f(xo) is T (y)-dense,
there exists k € N such that fk(mo) € Vo C Uy C U. Obviously k > ig, because
for j € {0,...,ip — 1}, we have f7(z¢) & Up. Thus f*(z¢) € Of(f"(20)), so
0#VonoOy (fi"(mo)) cUn @f(fi‘)(:co)). We have shown that, for any ¢ > 0,
the orbit ©(f*(xo)) is T(v)-dense. Clearly, the set {f*(zq) : i > 0} is T(7)-
-dense.

(v) = (iv) Let zp € X be a point with 7 (vy)-dense orbit O¢(zg). We will
show that f is 7 (v)-transitive. Let U,V € T (v) \ {0}. Then, the sets U and V'
contain points of the orbit ©f(z¢). Let mg = min{m € NU {0} : f™(z¢) € U}
and ng = min{n € NU{0} : f"(z¢) € V'}.

Assume first that mo < ng and put kg = ng — mg. Then

fR(fmo(z0)) = f™(z0) €V, so  fr(U)NV #0.

Now, let mg > ng and put L = {z e NU{0}:ng <i<mgA fi(zg) € V}.
Obviously, L is a nonempty finite set. By property of the space (X, ~), there
exists a nonempty set V* € v such that V*C V \ {f%(2o) : i € L}. According
to property (TOP) of (X,~), there exists a nonempty set V € T () such that
Vo € V* Since O () is T (7y)-dense, there exists ¢ € N such that f9(xq) € Vp C
V* c V. We have ¢ > mq. Indeed, if ¢ < mg, then ¢ € L, which contradicts
the fact that f?(zg) € V* Put t = ¢ — mo. Then f'(f™ (z0)) = f%(z0) € V,
so fY(U)NV # 0, and the proof of the fact that f is T (y)-transitive is finished.

(iv) = (i) Assume f is T (y)-transitive. Let U,V € ~ \ {0}. By property
(TOP) of (X,7), there exist sets Uy, V4 € T(vy)\ {0} such that Uy CU 1 V3 C V.
Since f is T (v)-transitive, there exists k € N such that V3 N f*(Uy) # 0, and we
have V N f¥(U) # (), because Vi N fF(Uy) € V N f¥(U). Thus, f is y-transitive.

(i) = (i) Let {V1, Va,...} be a base of the space (X, T(v)) consisting of non-
empty sets. For i € N, put W; =J,—, f~"(V;). By continuity of f: (X,v) —
(X, T (7)) and by the fact that v is GT, we conclude that W; €  for any i € N.
Fix ip € N. We will show that W;, is y-dense. Let U € ~\ {0}. By condition (i),
there exists k;, € N such that f*o (U)NV;, # 0. Hence f~*io (V;,)NU # (), and
thus W,;, NU # 0. It means that the set W;, is v-dense. Since iy was chosen
arbitrarily, the set W; is y-dense for any ¢ € N. According to Theorem[2.2] the set
Nien Wi is y-dense.

Consider a point z € (,c Wi. We will show that x has a y-dense orbit.
Let U € v and U # (. By (TOP), there exists a nonempty set Z € T (v)
such that Z C U. Since {Vi,V5,...} is a base of (X, 7 (7)), there existst i1 € N
such that V;, € Z C U. Obviously z € W;,, so there exists ny € NU {0} such
that z € f~"0(V;,), so f*(x) € V;, C U. We have shown that ©(x) is 7-dense.

(ii) = (iii) This implication is formulated above as Remark 3] (a). O
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