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ON LOCAL PROBLEM OF ENTROPY

FOR FUNCTIONS FROM ZAHORSKI CLASSES

Ewa Korczak-Kubiak — Anna Loranty — Ryszard J. Pawlak

ABSTRACT. We investigate some properties of functions belonging to the Za-
horski classes. In particular, we answer the question: Is it possible to find close
to a function from ith Zahorski class (i = 1, 2, 3, 4, 5) a function belonging to ex-
actly the same Zahorski class and having a special (local) properties connected

with the entropy?

1. Introduction

Studies on entropies of various functions led to distinguishing the interest-
ing property of functions, which can be described as follows: There exists a fixed
point of a function such that topological entropy is focused on each neighbourhood
of this point. In the case of functions mapping the unit interval into itself, the in-
vestigations related to this issue are closely connected with the considerations
characteristic for real analysis ([4]–[6]).

The Zahorski classes are classical basis for a lot of considerations connected
with real analysis. Therefore, the combination of local aspects of entropy with the
Zahorski classes seems to be fully justified.

Obviously, there exist (even continuous) functions, which have no strong en-
tropy point. So, it is of interest to know whether arbitrarily close to a function
belonging to established Zahorski class one can find another function belonging
to the same Zahorski class and having this property. The aim of this paper is
to answer the above question.

In the theory of discrete dynamical systems, the topics connected with to-
pological entropy have been considered mainly for continuous funcions.
The starting point for investigations related to these topics for Darboux-like
functions (also with a big set of discontinuity points) were papers [3] and [9].
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Combining these directions of investigations and taking into account the well-
known properties of functions belonging to the suitable Zahorski classes, we will
focus our attention on functions having only one discontinuity point, which is
simultaneously a strong entropy point. Continuing the investigations contained,
among others, in papers [5]–[7] we will consider Γ-approximation of functions.
We shall say that a function f : [0, 1] → [0, 1] is Γ-approximated by functions
belonging to a class K of functions from [0, 1] into itself if, for each open set
U ⊂ [0, 1] × [0, 1] containing the graph of f , there exists g ∈ K such that the
graph of g is a subset of U.

Now, we introduce the notation used throughout the paper and briefly recall
the concepts associated with Zahorski classes and strong entropy points.

Let N, Q and R denote the set of positive integers, rational numbers and
real numbers, respectively. We will use the letter λ to denote the Lebesgue
measure on R. The symbol DB1 stands for the family of all Darboux Baire one
functions from [0, 1] to [0, 1]. The distance between a point x and a set A will be
denoted by dist(x,A). We write h(f) for the topological entropy1 of a function
f : [0, 1] → [0, 1]. The symbol Fix(f) stands for the set of all fixed points of f
and Γ(f)—for a graph of f. If A is a nonempty subset of [0, 1] and x ∈ [0, 1],
then

A+x = {z+x : z ∈ A}, A−x = {z−x : z ∈ A} and −A = {−z : z ∈ A}.
Z y gm u n t Z a h o r s k i in [10] introduced a hierarchy of classes of functions

connected with special classes of subsets of R. In this paper, we will consider
the classes of functions associated with subsets of [0, 1]. The class M0 consists
of the empty set and all nonempty sets E ⊂ [0, 1] of type Fσ such that every
point of E is a bilateral accumulation point of E. Obviously, if 0 (1) belongs to E,
it is only a right (left) accumulation point of E. The family of all nonempty sets
E ⊂ [0, 1] of type Fσ such that every point of E is a bilateral condensation point
of E complemented with the empty set, constitutes the class M1. Similarly as
previously, the point 0 and 1 need to be a one-sided condensation point of E.
A set E ⊂ [0, 1] belongs to the class M2 if it is empty or if it is a nonempty set
of type Fσ such that for each x ∈ E \ {0, 1} and any ε > 0 the sets (x, x+ ε)∩E
and (x − ε, x) ∩ E have a positive measure. Moreover, if 0 ∈ E (1 ∈ E),
then λ

(
(0, ε) ∩ E

)
> 0 (λ

(
(1 − ε, 1) ∩ E

)
> 0) for any ε > 0. The class M3

consists of all nonempty sets E ⊂ [0, 1] of type Fσ such that there exists a se-
quence {Kn}n∈N of closed sets such that E =

⋃
n∈N

Kn and a sequence {ηn}n∈N

of numbers such that 0 ≤ ηn < 1 (n ∈ N), and for each n ∈ N, each x ∈ Kn and

1The notion of entropy is used in the definition of strong entropy point, but to obtain all the
results presented in this paper, it suffices to use Lemma 2.8, which is an obvious consequence
of the results contained in [7]. For these reasons, we do not recall a formal definition (it can be

found, for example, in [3]).
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each c > 0 there exists a number ε(x, c) > 0 such that if h and h1 satisfy
conditions h · h1 > 0, h

h1
< c, |h+ h1| < ε(x, c), then

λ(E ∩ (x+ h, x+ h+ h1))

|h1| > ηn. (1)

Obviously, if x = 0 (x = 1), then we consider h, h1 greater (smaller) than 0.
In addition, we assume that the empty set belongs to the class M3. A slight
change in the definition of the class M3 leads us to the class M4. More specifi-
cally, in this case, we replace the above condition 0 ≤ ηn < 1 (n ∈ N) with the
condition 0 < ηn < 1 (n ∈ N). We say that E ⊂ [0, 1] belongs to the class M5 if
it is empty or if it is a nonempty set of type Fσ such that for each x ∈ E \ {0, 1}
we have

lim
h→0+

λ(E ∩ [x− h, x+ h])

2h
= 1, (2)

that is every point of E is a density point of E. Moreover, if 0 (1) belongs to E,

then limh→0+
λ(E∩[0,h])

h = 1 (limh→0+
λ(E∩[1−h,1])

h = 1).

Using the above hierarchy of sets, we can define some classes of functions. Let
i ∈ {0, 1, . . . , 5}. We say that a function f : [0, 1] → [0, 1] belongs to the class
Mi, if the sets Ef,α =

{
x ∈ [0, 1] : f(x) > α

}
and Ef,α =

{
x ∈ [0, 1] : f(x) < α

}
belong to the class Mi for any α ∈ R. Moreover, to shorten some notations,
we will use the symbol M6 to denote the family of all continuous functions
f : [0, 1] → [0, 1].

Now, we will briefly recall the notion of a strong entropy point introduced
in [7]. As in the case of Zahorski classes, we will limit our considerations to the
functions having [0, 1] as the domain and as the range.

Let f : [0, 1] → [0, 1]. A pair (F, J) = Bf , where F is a family of pairwise
disjoint (nonsingletons) continuums in [0, 1] and J ⊂ [0, 1] is a connected set such
that J ⊂ f(A) for any A ∈ F, is called an f -bundle. Moreover, if we additionally
assume that A ⊂ J for all A ∈ F then such an f -bundle is called an f -bundle
with dominating fibre.

Let ε>0 and n∈N. A set M⊂⋃F is (Bf , n, ε)-separated if for each x, y∈M ,
x �= y there is 0 � i < n such that f i(x), f i(y) ∈ J and ρ

(
f i(x), f i(y)

)
> ε.

The entropy of an f -bundle Bf is defined in the following way:

h(Bf ) = lim
ε→0

lim sup
n→∞

[
1

n
log
(
s
Bf
n (ε)

)]
,

where

s
Bf
n (ε) = max

{
card(M ) : M ⊂ [0, 1] is (Bf , n, ε)-separated set

}
.

A sequence of f -bundles
{
Bk

f

}
k∈N

, where Bk
f = (Fk, Jk) for k ∈ N, converges

to a point x0 (Bk
f −→

k→∞
x0), if for any ε > 0 there exists k0 ∈ N such that
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⋃Fk ⊂ B(x0, ε) and B
(
f(x0), ε

) ∩ Jk �= ∅ for any k � k0. Let

Ef (x0) =

{
lim sup
n→∞

h(Bn
f ) : B

n
f −→

n→∞
x

}
.

We shall say that a point x0 ∈ X is a strong entropy point of the function
f : [0, 1] → [0, 1] if h(f) ∈ Ef (x0) and x0 ∈ Fix(f). The symbol ED

s stands for
the family of all functions f : [0, 1] → [0, 1] such that f has the only one point
of discontinuity and this point is simultaneously a strong entropy point of f.

2. Auxiliary statements

In order to facilitate the reading of this paper in this section, we will present
a few statements (some new with not very difficult proofs and some well-known)
which are useful in the main parts of this paper.

One can observe that in order to prove that a nonempty set E of type
Fσ belongs to the class M3 or to the class M4, we should find a sequence
of sets and a sequence of numbers satisfying condition (1). It is worth adding
that to check whether a nonempty set E of type Fσ belongs to the class M3,
it is sufficient to show the following condition: for each x ∈ E and each se-
quence {In}n∈N of closed intervals contained in [0, 1] converging to x (i.e.,
limn→∞ dist(x, In) = 0) and not containing x such that λ(In ∩ E) = 0 for each

n ∈ N, we have limn→∞
λ(In)

dist(x,In)
= 0.

Moreover, we have

����� 2.1 ([2])� If E ∈ M4 and x ∈ E \ {0, 1}, then

d(E, x) = lim inf
h→0+

λ(E ∩ [x− h, x+ h])

2h
> 0.

����� 2.2� There exist decreasing sequences {an}n∈N and {bn}n∈N of positive
numbers such that bn+1 < an < bn for n ∈ N, limn→∞ bn = 0 and the set⋃

n∈N
(−an,−bn) ∪ {0} ∪ ⋃n∈N

(an, bn) belongs to the class M2 and does not

belong to the class M3.

The above lemma is possibly known. However, we are not able to give a ref-

erence. For the proof, it is sufficient to put an = 2n+2−1
22n+2 and bn = 1

2n for n ∈ N.

The following technical lemma will also be useful in the proof of the main
theorem of this paper.

����� 2.3� Let Lk
n =

[
1
2k+

n
22k ,

1
2k+

n+1
22k

]
for k∈N\{1} and n∈{0, 1, . . . , 2k−1}.

Then, for any c > 0 and any k0 ∈ N, there exists k1 ∈ N such that k1 ≥ k0 and
for any h, h1 ∈ (0,∞) such that h

h1
< c and h + h1 < 1

2k1
there are two points
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α and β (α < β) in the interval (h, h+h1) being endpoints of some intervals Lk
n

for some k > k1 and some n ∈ {0, 1, . . . , 2k − 1} such that β−α
h1

> 1
2 .

P r o o f. Let c > 0 and k0 ∈ N. Obviously, one can find k1 ∈ N such that k1 ≥ k0
and 1

2k1
< 1

4(c+1) . Note further that if k > k1, n ∈ {0, 1, . . . , 2k − 1} and J is

an interval such that J ⊂ Lk
n then

λ(J)

dist(0, J)
≤ λ(Lk

n)

dist(0, Lk
n)

≤ 1

2k
<

1

4(c+ 1)
. (3)

Let h, h1 ∈ (0,∞) be such that h
h1

< c and h+h1 < 1
2k1

. Suppose, contrary to our

claim, that no endpoint of no interval Lk
n (for k > k1 and n ∈ {0, 1, . . . , 2k − 1})

belongs to (h, h+h1). Thus, there is k∗ > k1 and n∗ ∈ {0, 1, . . . , 2k∗−1} such that

[h, h+h1] ⊂ Lk∗
n∗ . Clearly, h+h1 < 1

2k1
and dist(0,[h,h+h1])

λ([h,h+h1])
= h

h1
< c, which contra-

dicts (3). Therefore, there is at least one point belonging to (h, h+ h1) and being
an endpoint of some interval Lk

n for some k > k1 and some n ∈ {0, 1, . . . , 2k − 1}.

Now, we will prove that there are at least two different points having required
properties. Conversely, suppose that there is only one such point. Let us denote
it by w. Obviously, there are k′, k′′ ∈ {k1 +1, k1+2, . . . }, n′ ∈ {0, 1, . . . , 2k′ − 1}
and n′′ ∈ {0, 1, . . . , 2k′′ − 1} such that [h,w] ⊂ Lk′

n′ and [w, h + h1] ⊂ Lk′′
n′′ .

Condition (3) implies that

λ([h,w]) <
h

4(c+ 1)
and λ([w, h+ h1]) <

w

4(c+ 1)
,

so, in consequence, we obtain that

h1 = λ([h, h+ h1]) = λ([h,w]) + λ([w, h+ h1]) <
2h+ h1

4(c+ 1)
,

so, 2h > 4h1c+ 3h1. Hence,
h
h1

> 2c, which is impossible.

Let E be a set of all endpoints of intervals Lk
n (for k > k1 and n ∈ {0, 1, . . .

. . . , 2k−1}) belonging to the interval (h, h+h1). Put α = min E and β = maxE .
Clearly, h < α < β < h+h1. Moreover, one can find k′, k′′ ∈ {k1+1, k1+2, . . . },
n′ ∈ {0, 1, . . . , 2k′ − 1} and n′′ ∈ {0, 1, . . . , 2k′′ − 1} such that [h, α] ⊂ Lk′

n′ and

[β, h+ h1] ⊂ Lk′′
n′′ . Condition (3) gives that λ

(
[h, α]∪ [β, h+ h1]

)
< h+h1

2(c+1) <
h1

2 .

Thus,

β − α

h1
=

λ([h, h+ h1] \ ([h, α] ∪ [β, h+ h1]))

h1
>

1

2
.

�
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Now, we will focus our considerations on the functions from Zahorski classes.
Let us recall the known relations between these classes:

DB1 = M0 = M1 ⊃ M2 ⊃ M3 ⊃ M4 ⊃ M5 ⊃ M6.

It is well-known that all the above inclusions are proper ([2], [10]). In [10], one
can also find the property saying that the class M5 coincides with the family
of all approximately continuous functions. Moreover, it is known that the family
of all functions f : [0, 1]→ [0, 1] which are almost continuous (i.e., Γ-approximated
by continuous functions) and Baire class one is equal to the family DB1 (see [1]).
This gives

���	�
���� 2.4� Let i ∈ {0, 1, . . . , 6}. If f ∈ Mi, then f is almost continuous.

The above proposition and result contained in [8] permit us to write:

���	�
���� 2.5� If f ∈ Mi (i ∈ {0, 1, . . . , 6}), then Fix(f) �= ∅.
From Proposition 2.4 we immediately obtain that each function from Mi

(i ∈ {0, 1, . . . , 6}) is Γ-approximated by continuous functions ξ : [0, 1] → [0, 1].
Furthermore, one can prove the following theorem, useful in various considera-
tions.

������� 2.6� If f ∈ Mi

(
i ∈ {0, 1, . . . , 6}), then f is Γ-approximated by con-

tinuous functions ξ : [0, 1] → [0, 1] such that Fix(ξ) ∩ (0, 1) �= ∅.
P r o o f. Let i∈{0, 1, . . . , 6}, f ∈Mi and U be an open set containing the graph
of f . Proposition 2.4 implies that there exists a continuous function ζ : [0, 1] →
[0, 1] whose graph is contained in U. If Fix(ζ) ∩ (0, 1) �= ∅, then we put ξ = ζ.
Otherwise, there is no loss of generality in assuming that 1 ∈ Fix(ζ). Obviously,
one can find δ > 0 such that [1 − δ, 1] × [1 − δ, 1] ⊂ U. Moreover, there is
w ∈ (1− δ, 1) such that ζ(w) ∈ [1− δ, 1]. Fix v ∈ (w, 1). The function ξ defined
in the following way:

ξ(x) =

⎧⎪⎨
⎪⎩
v if x = v,

ζ(x) if x ∈ [0, w],

linear in [w, v], [v, 1]

is the required function. �

Moreover, we have

������� 2.7 ([2])� Let E be any subset of [0, 1] such that

(1) E is an Fσ set,

(2) E is a bilaterally dense set.

Then, there exists a function f belonging to the class DB1 such that

f(x) = 0 for x ∈ [0, 1] \ E and f(x) ∈ (0, 1] for x ∈ E.
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We will finish this section with the lemma related to strong entropy points.
Taking into account Lemma 3.1, 3.6 and 3.9 [7], we can immediately show

����� 2.8� Let x0 ∈ [0, 1], f : [0, 1] → [0, 1] be an arbitrary function and for
any k ∈ N let Bk

f = (Fk, Jk) be an f -bundle with dominating fibre such that Fk

is infinite. If x0 ∈ Fix(f) and Bk
f −→

k→∞
x0, then x0 is a strong entropy point of f.

3. Main result

Suppose that we consider a suitable property of functions. The natural ques-
tion arises whether there is a possibility of approximation a function without
this property by functions having the considered property.

In our case, one can ask if it is possible to Γ-approximate functions from ith
Zahorski class (i = 1, 2, 3, 4) by using functions from the same Zahorski class
having a strong entropy point and not belonging to i+ 1 Zahorski class. Notice
that the last requirement excludes continuous functions from the set of Γ-ap-
proximating functions (which leads to considerations essentially different from
those regarding entropy of continuous functions). On the other hand, in or-
der to be close to the continuity, we can extend the question requiring Γ-ap-
proximating functions to have a strong entropy point, which is simultaneously
the only one discontinuity point of this function.

First, note that in the case of i = 1, the last demand is impossible. Indeed,
let f ∈ M1, U ⊂ [0, 1] × [0, 1] be a nonempty open set containing the graph
of f and g be a function from M1 \M2 whose graph belongs to U. Without loss
of generality, we can assume that there exist a∈R and a setEg,a=

{
x : g(x) > a

}
such that Eg,a ∈ M1 \M2. There is no loss of generality in assuming that there
are a point x ∈ Eg,a and h > 0 such that λ

(
(x, x + h) ∩ Eg,a

)
= 0. Obviously,

(x, x + h) ∩ Eg,a �= ∅ and each point from (x, x + h) ∩ Eg,a is a discontinuity
point of g. The above considerations and the next theorem show that classes
of functions being close to each other may have completely different properties.

������� 3.1� Let i ∈ {1, 2, . . . , 5}. Each function from the class Mi can be
Γ-approximated by functions belonging to the class Mi\Mi+1and having a strong
entropy point. Moreover, if i �= 1 then each function from the class Mi can be
Γ-approximated by functions belonging to the class (Mi \Mi+1) ∩ ED

s .

P r o o f. Let i ∈ {1, 2, . . . , 5} and f ∈ Mi. To prove the first part of the theo-
rem, it is sufficient to show that for any open set U ⊂ [0, 1] × [0, 1] such that
Γ(f) ⊂ U there exists a function g ∈ Mi \Mi+1 having a strong entropy point
and such that Γ(g) ⊂ U. To prove the second part of the theorem, we additionally
need to show that if i �= 1 then the established strong entropy point is the only
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one discontinuity point of g. Although the proofs connected with individual
Zahorski classes run along similar lines, there are subtle but essential adjust-
ments necessary to fit the argument to each class separately.

Let us first note that if f ∈ M5, then it is easy to see that the function
constructed in the proof of Theorem 3.10 part (b) [5] has the required properties.

The proof in other cases will be divided into two parts. In the first one, we will
construct functions gi : [0, 1] → [0, 1] for i ∈ {1, 2, 3, 4}. In the second one, we will
prove that for i ∈ {1, 2, 3, 4} we have gi ∈ Mi\Mi+1 and gi has a strong entropy
point. Moreover, we will show that gi ∈ ED

s for i ∈ {2, 3, 4}.
So, let f ∈ Mi (i ∈ {1, 2, 3, 4}) and U ⊂ [0, 1] × [0, 1] be an open set

such that Γ(f) ⊂ U. Theorem 2.6 now gives that there exists a continuous
function f∗ : [0, 1] → [0, 1] such that Γ(f∗) ⊂ U and Fix(f∗) ∩ (0, 1) �= ∅.
Fix x0 ∈ Fix(f∗) ∩ (0, 1). Clearly, one can find δ0 > 0 such that

[x0 − δ0, x0 + δ0]× [x0 − δ0, x0 + δ0] ⊂ U.

Moreover, there is δ1 ∈ (0, δ0) ∩Q such that

f∗([x0 − δ1, x0 + δ1]) ⊂ (x0 − δ0, x0 + δ0).

What is more, one can find k0 ∈ N such that 1
2k0−1 < δ1

4 .

Now, assume that i=1 and put

E =

[
0, x0 +

δ1
4

)
∪
(
[x0 +

δ1
4
, x0 +

δ1
2
] ∩Q

)
∪
(
x0 +

δ1
2
, 1

]
.

Theorem 2.7 gives that there exists a function h belonging to DB1 such that
h(x) = 0 for x ∈ [0, 1]\E and h(x) ∈ (0, 1] for x ∈ E. Putting w(x) = δ0·h(x)+x0

for x ∈ [0, 1], we obtain that w ∈ DB1, w(x) = x0 for x ∈ [0, 1] \ E and
w(x) ∈ (x0, x0 + δ0] for x ∈ E.

We define the function g1 in the following way:

g1(x) = f∗(x) for x ∈ [0, x0] ∪ [x0 + δ1, 1],

g1(x) = w(x) for x ∈
[
x0 +

δ1
4
, x0 +

δ1
2

]
,

g1(x) = x0 for x ∈
[
x0 +

1

2k0
,
δ1
4

]
∪
{
x0 +

1

2k

}
,

g1

(
x0 +

3

2k+2

)
= x0 + δ0 for k ∈ {k0, k0 + 1, . . . }

and g1 is linear otherwise.

Now, let i = 2 and {an}n∈N, {bn}n∈N be the same as in Lemma 2.2. Without
loss of generality, we can assume that b1 < δ1.

Put g2(x) = f∗(x) for x ∈ [0, x0 − δ1]∪ [x0 + δ1, 1]∪ {x0}, g2(x) = x0 − δ0 for

x∈⋃n∈N

(
[x0+bn+1, x0+an]∪[x0−an, x0−bn+1]

)
, g2(x0−b1)=g(x0+b1)=x0−δ0,
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g2(x0 +
an+bn

2 ) = g2(x0 − an+bn
2 ) = x0 for n ∈ N and g2 is linear otherwise.

Now, we turn to a construction of a function g3. For k ∈ {k0, k0 +1, . . .} and
n ∈ {0, 1, . . . , 2k − 1}, let the set Zk

n be a closed interval concentric with the
interval

[
1
2k + n

22k ,
1
2k + n+1

22k

]
such that λ(Zk

n) =
1

23k .

Set g3(x) = f∗(x) for x ∈ [0, x0 − δ1]∪ [x0 + δ1, 1]∪ {x0} and g3(x) = x0 − δ0

for x ∈ [x0 − 1
2k0−1 , x0 +

1
2k0−1

] \⋃∞
k=k0

⋃2k−1
n=0

(
int(Zk

n + x0) ∪ int(−Zk
n + x0)

)
.

Furthermore, let the value of the function g3 in the center of each interval Zk
n

(k ∈ {k0, k0 + 1, . . .}, n ∈ {0, 1, . . . , 2k − 1}) be equal to x0, and g3 be linear
otherwise.

Now, we construct a function g4. Let lkn denote the center of the interval
Lk
n =

[
x0+

1
2k +

n
22k , x0+

1
2k +

n+1
22k

]
for k ∈ {k0+1, . . . } and n ∈ {0, 1, . . . , 2k−1}.

Put g4(x) = f∗(x) for x ∈ [0, x0 − δ1] ∪ [x0 + δ1, 1] ∪ {x0}, g4
(
x0 +

1
2k0

)
=

g4
(
x0 +

1
2k + n

22k

)
= g4

(
x0 +

1
2k + n+1

22k

)
= x0 and g4

(
lkn
)
= x0 + δ0 for k > k0

and n ∈ {0, 1, . . . , 2k − 1}. Moreover, let g4 be linear otherwise.

Now, we will prove that the constructed functions have the required proper-
ties. We check at once that Γ(gi) ⊂ U for each i ∈ {1, 2, 3, 4}. Moreover, it is
easy to see that for any i ∈ {1, 2, 3, 4} the point x0 is a discontinuity point of gi.
What is more, if i ∈ {2, 3, 4} then gi has the only one point of discontinuity.

It is clear that g1 ∈ DB1. On the other hand, for t0 ∈ (x0 +
δ1
4 , x0+

δ1
2

)
such

that g1(t0) > x0, we have λ
(
Eg1,x0 ∩ (t0, t0+

δ1
8 )
)
= 0, so the set Eg1,x0 does not

belong to class M2 and, in consequence, we have g1 �∈ M2. Furthermore, it is
easy to prove that g2 ∈ M2. However, since the set Eg2,x0−δ0 �∈ M3, so g �∈ M3.

We check at once that for any α ∈ R the set Eg3,α belongs to M3. Similarly,
it is easy to see that Eg3,α ∈ M3 for α ∈ R \ [x0 − δ0, x0). To prove that
g3 ∈ M3 it suffices to show that Eg3,α ∈ M3 for α ∈ [x0 − δ0, x0). So, let
α ∈ [x0 − δ0, x0). Clearly, E

g3,α =
{
x ∈ [0, x0) ∪ (x0, 1] : g3(x) > α

} ∪ {x0}.
Since the set

{
x ∈ [0, x0) ∪ (x0, 1] : g3(x) > α

}
is open in the natural topology,

it is sufficient to prove that for any c > 0 there exists a number ε(x0, c) > 0 such
that if h and h1 satisfy conditions h · h1 > 0, h

h1
< c, |h+ h1| < ε(x0, c), then

λ(Eg3,α ∩ (x0 + h, x0 + h+ h1))

|h1| > 0. (4)

Without loss of generality, we can assume that h, h1 > 0 (the proof for h, h1 < 0
runs analogously). Let c > 0. Lemma 2.3 gives that there is k1 ∈ N such that
k1 ≥ k0 and for any h, h1 ∈ (0,∞) such that h

h1
< c and h + h1 < 1

2k1
there

are two points h and h∗ in the interval (h, h + h1) being endpoints of some
intervals Lk

n for some k > k1 and some n ∈ {0, 1, . . . , 2k − 1}. There is no loss

of generality in assuming that h < h∗. Put h1 = h∗ − h. Clearly, there exist
k′ ∈ {k1 + 1, k1 + 2, . . .} and n′ ∈ {0, 1, . . . , 2k′− 1} such that Lk′

n′ ⊂ [h, h+ h1].
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Putting ε(x0, c) =
1

2k1
, we obtain that

λ
(
Eg3,α ∩ (x0 + h, x0 + h+ h1)

)
≥ λ

(
(Eg3,α − x0) ∩ Lk′

n′
)

≥ λ
(
(Eg3,α − x0) ∩ Zk′

n′
)

= λ
(
Eg3,α ∩ (Zk′

n′ + x0)
)

=
(x0 − α) · λ(Zk′

n′)

δ0
> 0

for any h, h1 ∈ (0,∞) such that h
h1

< c and h + h1 < ε(x0, c). It means that

condition (4) is fullfiled and, in consequence, we obtain that g3 ∈ M3.

Now, let us consider the set Eg3,x0−δ0. Obviously, x0 ∈ Eg3,x0−δ0. Moreover,
for k > k0 we have

λ

(
Eg3, x0−δ0 ∩

[
x0 − 1

2k
, x0 +

1

2k

])

= 2 · λ
⎛
⎝ ∞⋃

j=k+1

2j−1⋃
n=0

Zj
n

⎞
⎠= 2 ·

∞∑
j=k+1

2j−1∑
n=0

1

23j
=

2

3
· 1

22k
.

Hence,

lim
k→∞

λ(Eg3,x0−δ0 ∩ [x0 − 1
2k , x0 +

1
2k ])

1
2k

= 0.

Thus, d(Eg3,x0−δ0, x0) = 0. Lemma 2.1 now shows that Eg3,x0−δ0 �∈ M4, and

finally, we obtain that g3 �∈ M4.

Note further that the set E
g4,x0+

δ0
2

does not belong to M5. Indeed, clearly

x0 ∈ E
g4,x0+

δ0
2
. Moreover, for k > k0 we have

λ

(
E
g4,x0+

δ0
2
∩
[
x0, x0 +

1

2k

])

=

∞∑
j=k+1

λ

(
E
g4,x0+

δ0
2
∩
[
x0 +

1

2j
, x0 +

1

2j−1

])

=

∞∑
j=k+1

2j−1∑
n=0

λ
(
E
g4,x0+

δ0
2
∩ Lj

n

)

=
1

2k+1
.
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Thus,

lim
k→∞

λ(E
g4,x0+

δ0
2
∩ [x0, x0 +

1
2k ])

1
2k

=
1

2
,

and we obtain immediately that E
g4,x0+

δ0
2
�∈ M5, so g4 �∈ M5.

Moreover, it is easy to see that Eg4,α ∈ M4 for any α ∈ R and Eg4,α ∈ M4

for any α ∈ R \ (x0, x0 + δ0]. If α ∈ (x0, x0 + δ0] then x0 ∈ Eg4,α and we check
at once that the set Eg4,α \ {x0} is open in the natural topology. Furthermore,
one can find β > 0 such that (x0 − β, x0) ⊂ Eg4,α. It means that

lim
h→0

λ(Eg4,α ∩ [x0 − h, x0])

h
= 1.

Thus, to prove that Eg4,α ∈ M4, it suffices to show that there exists η ∈ (0, 1)
such that for any c > 0 one can find ε(x0, c) > 0 such that for any h, h1 ∈ (0,∞)
such that h

h1
< c and h+ h1 < ε(x0, c) we have

λ((Eg4,α − x0) ∩ [h, h+ h1])

h1
> η.

Put η = α−x0

2·δ0 . Clearly, η ∈ (0, 1). Let c > 0. Lemma 2.3 implies that there

exists k1 ∈ N such that k1 ≥ k0 and for any h, h1 ∈ (0,∞) such that h
h1

< c

and h+ h1 < 1
2k1

there are two points h and h∗ in the interval (h, h+ h1) being

endpoints of some intervals Lk
n for some k > k1 and some n ∈ {0, 1, . . . , 2k − 1},

such that |h−h∗|
h1

> 1
2 . Obviously, we can assume that h < h∗ and put h1 = h∗−h.

Clearly, we have

λ
(
(Eg4,α − x0) ∩ Lk

n

)
=

α− x0

δ0
· λ(Lk

n)

for any Lk
n ⊂ [h, h+ h1]. Thus,

λ
(
(Eg4,α−x0)∩ [h, h+h1]

)
= λ

⎛
⎝(Eg4,α − x0) ∩

⋃
Lk

n⊂[h,h+h1]

Lk
n

⎞
⎠>

α− x0

δ0
· 1
2
·h1.

Putting ε(x0, c) =
1

2k1
, we obtain that

λ((Eg4,α − x0) ∩ [h, h+ h1])

h1
≥ λ((Eg4,α − x0) ∩ [h, h+ h1])

h1
> η

for any h, h1 ∈ (0,∞) such that h
h1

< c and h + h1 < ε(x0, c). Finally, we get
that Eg4,α ∈ M4. This finishes the proof that g4 ∈ M4.
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To end the proof, it is sufficient to show that for i ∈ {1, 2, 3, 4} the point x0

is a strong entropy point of gi. If k ∈ N then set Sk = {k0 + k, k0 + k + 1, . . . },
J1
k = J4

k = [x0, x0 + δ0], J
2
k = J3

k = [x0 − δ0, x0],

F1
k =

{[
x0 +

3

2m+2
, x0 +

1

2m

]
: m ∈ Sk

}
,

F2
k =

{
[x0 − bm, x0 − am] : m ∈ Sk

}
,

F3
k = {−Zm

0 + x0 : m ∈ Sk} and

F4
k =

{[
x0 +

1

2m
, x0 +

1

2m
+

1

22m

]
: m ∈ Sk

}
.

Putting Bk
gi =

(F i
k, J

i
k

)
for i ∈ {1, 2, 3, 4} and k ∈ N, we obtain sequences{

Bk
gi

}
k∈N

(for i ∈ {1, 2, 3, 4}) of gi-bundles with dominating fibre such that

Bk
gi

−→
k→∞

x0. Clearly, F i
k is infinite for any k ∈ N and i ∈ {1, 2, 3, 4}. Lemma 2.8

gives that x0 is a strong entropy point of gi for i ∈ {1, 2, 3, 4}. �
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Press, 2011, pp. 101–111.

[6] PAWLAK, R. J.: On the entropy of Darboux functions, Colloq. Math. 116 (2009),
227–241.

[7] PAWLAK, R. J.—LORANTY, A.—BA̧KOWSKA, A.: On the topological entropy of con-
tinuous and almost continuous functions, Topology Appl. 158 (2011), 2022–2033.

[8] STALLINGS, J.: Fixed point theorem for connectivity maps, Fund. Math. 47 (2003),
27–41.

34



ON LOCAL PROBLEM OF ENTROPY FOR FUNCTIONS FROM ZAHORSKI CLASSES

[9] SZUCA, P.: Sharkovskii’s theorem holds for some discontinuous functions, Fund. Math.

179 (2003), 249–263.
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