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Abstract  

 

 This article deals with self-organizing migrating algorithm (SOMA) for solving 

the vehicle routing problem with time windows (VRPTW). Our interest in VRPTW 

arises from a real-life distribution problem in one of the regions of Slovakia 

(individual customers’ commodities delivering times were restricted by their 

available service time), where the previous distribution was realized on the base of 

solution derived with heuristic Clarke & Wright's savings algorithm with time 

windows. The importance of that problem follows from many practical applica-

tions as well as from its computational complexity, therefore the use of optimiza-

tion techniques seems to be relatively complicated, and nowadays many research-

ers turn their attention to applications of alternative computational techniques that 

are inspired by evolutionary biology. The obtained solution allows reducing the 

total time needed by 16.2%. The presented approach could be used also for solv-

ing various economic problems with time restrictions in the field of distribution.  
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Introduction 
 

 Nowadays, the threat of depletion of non-renewable resources which are nec-

essary for car propulsion is the reason for development and utilization of instru-

ments that take advantage of the optimization. The efficiency may be increased 
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by force of quantitative approaches that are aimed at optimization of physical 

distribution of the commodities. Related optimization problems are routing and 

scheduling problems (e.g. shortest path problem, travelling salesman problem, 

vehicle routing problem, etc.). The management of physical distribution of 

commodities is interesting not only for its practical relevance in the fields of 

transportation, distribution and logistics, but also for theoretical research, be-

cause a lot of related problems belong to the NP-hard problems.  

 This article deals with the real world routing problem that has appeared in 

Slovakia. The distribution centre was situated in the city of Banská Bystrica, 

and the distribution was made to 29 municipalities, in which stores with a daily 

demand for certain number of crates of merchandise were situated. Also a de-

sired “window” of delivery of goods was known for each municipality, i.e. the 

start and end time when it was possible to realize the supply of goods. The 

goal was to determine how many vehicles a day must be used so that the de-

mand of all stores must be met and so that the travelled distance is as low 

as possible. 

 The routing and scheduling problems generally involve the assignment of 

vehicle (fleet of vehicle) to trips such that corresponding costs are as low as pos-

sible. The vehicle routing problem (VRP) is one of the most intensively studied 

problems in optimization. The standard VRP is the generalization of travelling 

salesman problem, where we consider that the capacity of vehicle (fleet of vehi-

cles) is limited and that the non-negative demands of nodes (customers) are 

known. This problem consists in designing the optimal set of routes for a vehicle 

in order to serve a given set of customers. Each customer has a certain demand 

and each vehicle has a certain capacity (the orders of customers have to be deliv-

ered in full, partial fulfilment of orders is not allowed), and they are located in 

a certain depot. Further on, there exist a matrix C that represents the minimum 

distance (length, cost, time) between all the pairs of customers and also between 

the customers and the depot. The goal is to find optimal vehicle routes (usually 

minimum distance). The routes must be designed in such a way that each cus-

tomer is visited only once by exactly one vehicle; all routes start and end at the 

depot and the total demands of all customers on one particular route must not 

exceed the capacity of the vehicle. 

 The practical problems of physical distribution often include the need to re-

spect the time restriction. Frequently we consider time restrictions that are 

a consequence of the earliest possible time of service, the latest possible time of 

service or the need to serve during the given time interval. The above mentioned 

terms are known as time windows and the corresponding problem is known as 

vehicle routing problems with time windows (VRPTW). If it is necessary to 
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consider only the earliest possible time of service or the last possible time of 

service, the problem is known as the problem with soft delivery time windows, if 

we are dealing with time interval with given lower and upper limit, those prob-

lems are known as problems with hard delivery time windows, e.g. Desrosiers et 

al. (1995). Another description of soft window can be found e.g. in Russell and 

Urban (2008), where the violation of time restriction is allowed, although incur-

ring some cost. Garey and Johnson (1979) have shown that VRP is NP-hard 

problem and the NP-harness of the VRPTW demonstrated Savelsbergh (1985), 

and in this work he also proposed the arc interchange heuristic to solve it. Gen-

erally, NP-hard problems could be solved by exact methods (branch and bound 

algorithms, cutting plane method, etc. (e.g. Bard, Kontoravdis and Yu, 2002; 

Achuthan, Caccetta and Hill, 2003), that work well for small-size problem, or 

heuristics with more or less success. The heuristics could be classified into two 

general groups: classical heuristics and metaheuristics. In general, metaheuristics 

consist of general search procedures whose principles allow them to escape local 

optimality with the help of built-in stochastic component. The significant part of 

metaheuristics is the group of evolutionary techniques. Nowadays, evolutionary 

algorithms are considered to be effective tools that can be used to search for 

solutions of optimization problems. Significant advantage over traditional meth-

ods is that they are designed to find global extremes and that no auxiliary infor-

mation, such as convexity, gradients etc. are needed. 

 Popularity of applications of various metaheuristics for solving the routing 

and scheduling problems is documented in numerous articles. From all, we can 

mention the application of self-organizing migration algorithm to vehicle routing 

problem (Čičková and Brezina, 2008), differential evolution to travelling sales-

man problem (Peško, 2006), ant colony optimization to vehicle routing problem 

(Yu, Yang and Yao, 2009), ant colony optimization to vehicle routing problem 

with soft time windows and stochastic travel times (Russell and Urban, 2008) or 

to open vehicle routing problem (Li, Tian and Leung, 2008), Tabu search to the 

heterogeneous vehicle routing problem (Tarantilis, Zachariadis and Kiranoudis, 

2008) or to open vehicle routing problem (Derigs and Reuter, 2009).  

 A lot of work has been done to develop both exact and heuristic algorithm 

for VRPTW. Branch and bound algorithm and application of dynamic pro-

gramming are developed in Christofides, Mingozzi and Toth (1981a; 1981b) or 

in Baker (1983), where the authors reported problems up to 50 vertices, but 

current research still focuses on heuristic approaches due to the computational 

complexity of VRPTW. Generally, heuristic approaches can be divided into 

two areas: classical heuristics (that belong to the class of deterministic methods) 

or metaheuristics (that belong to the class of combined methods that include 
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deterministic and also stochastic components). For example, well-known Solo-

mon’s insertion heuristics that is presented (Solomon, 1987) belongs to the 

classical heuristics. Solomon proposes a benchmark problem set for the vehicle 

routing problem with time windows and conducts a computational study of 

several heuristic algorithms using the set. While Solomon’s insertion heuristic 

builds a route in a serial manner, in Potvin and Rousseau’s (1993) the routes 

are built in parallel. Weigel and Cao (1999) present a case study of application 

of VRPTW algorithms for sears home delivery problem and technician dis-

patching problem with the use of a cluster-first-route-second method and an 

algorithm called multiple-insertion. Campbell and Savelsbergh (2005) introdu-

ced optimization models of the home delivery problem, which is more closely 

related to real-world applications. In Poot, Kant and Wagelmans (2002) several 

non-traditional constraints (among others also multiple time windows) are pre-

sented and the authors propose a savings-based method for solving correspond-

ing problems. Tung and Pinnoi (2000) modified Solomon’s insertion algorithm 

and applied it to a waste collection problem with time constraints. Also the 

popularity of metaheuristics utilization for solving the VRPTW is documented 

in a number of works. From all we mention the following: Rochat and Taillard 

(1995) present a probabilistic Tabu search method. The use of simulated an-

nealing and Tabu search for the VRPTW is given in Thangiah (1999), the par-

ticle swarm optimization is presented in Ai and Kachitvichyanukul (2009), ant 

colony optimization is used in Russell and Urban (2008). Illustration of using 

neural network to this problem is given in Zhang and Tang (2007). Also the 

use of genetic algorithm remains popular as is documented e.g. Chang and 

Chen (2007), Ghoseiri and Ghannadpour (2010), Ombuki, Ross and Hanshar 

(2006), etc.  

 

 

1.  Problem Formulation 
 

 The classical version of VRPTW is defined on graph  
 

G = (Vc Vd, A) 
 

where  

 Vc = {v1, v2… vn}  – represents set of customers,  

 Vd = {v0}  – represents the origin, 

 A = {(vi, vj): vi, vj  Vc Vd, i  j} – the arc set of G.  

 

 A cost or travel time cij is associated with every arc of the graph. A fleet of 

r vehicles of the same capacity V is located at v0. Denote in our case: 

http://www.inderscience.com/search/index.php?action=basic&wf=author&year1=1995&year2=2007&o=2&q=%20Voratas%20Kachitvichyanukul
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 1,  2... N n  – set of served nodes; n – number of nodes except the origin; 

 0 0N N   – set of all nodes; 0 – origin; 

 1,  2... H r   – set of vehicles; r – number of vehicles; 

 1,  2... 2 1K n – order of arc in sequence of h-th vehicle h H ; 

 2n + 1 – maximal number of arcs in a sequence. 
 

 Each customer has a certain demand (gi, i N ) and a service duration 

(ti, i N ). Further on, there is the known time window of each customer: as the 

earliest possible start of service in different nodes (fi, i N ) and the last ac-

ceptable time of service in different nodes (li, i N ). The demand is fulfilled 

from initial node (i = 0) – origin. The goal is to determine the minimal number of 

vehicles so that the total travelled time or distance is as low as possible (we sup-

pose that there is known the shortest time distance between all nodes cij, 

0,i j N ) with respect to the following restrictions: the origin represents initial 

node and also the final node of every route, from the origin the demand gi, i N  

of all the other nodes is met within their time windows (the earliest possible start 

of service fi, i N , the last acceptable time of service li, i N , each node (ex-

cept central node) is visited exactly once and total demand on route must not 

exceed the capacity of the vehicle (V). The total time of the route of a vehicle 

could not exceed the given time (T). 

 Further on, we suppose that the service time at the centre is set to t0 (this time 

is added to the total time only in case that the vehicle returns to the origin due to 

violation of capacity limit, and it is able to serve the nodes on the next route). 

The model takes into account the waiting time so that the vehicle is allowed to 

wait for service if it arrives before the earliest possible start of service. 
 

 Decision variables: 
 
 

ijkhx  – a binary variables equal to one if the edge between node i and node j is used by 

vehicle h as k-th in sequence and zero otherwise, where 
0,  ,  ,  i j N h H k K ; 

 
jw   – non-negative variables that indicates waiting time at node j,  j N ; 

 
jb   – variables that indicates real starting time of service at node j, 

0 j N ; 

 
ju   – variables that represents remaining capacity of vehicle at the node j, 

0 j N . 
 

 Mathematical formulation of the model is given below: 
 

0 0

0 0 0 1

1

min ij ijkh i i jkh j h

i N j N h H k K i N i N j N k K h H i N h H

c x w t t x M x    (1) 

 

 Subject to: 
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0

1ijkh

j N k K h H

x , i N , i j          (2) 

 

0

1ijkh

i N k K h H

x , j N , i j          (3) 

 

0 0

1ijkh ji k h
i N i N

x x , j N , h H , k K , i j            (4) 

 

0i i j ij j ijkhb t w c b x , ,  ,  ,  1 ,  i j N h H k K i j          (5) 

 

0 0 0 0 0 1
0i i j i j j i kh j k h

b t w c t c b x x , ,  ,  ,  ,  i j N h H k K i j  (6) 

 

0 0 1 0j j j j hw c b x , ,  j N h H                (7) 

 

0 0j j j j khb t d x T , ,  ,  j N h H k K           (8) 

 

0i j j ijkhu g u x ,
0 ,  ,  ,  ,  i N j N h H k K i j       (9) 

 

00 1 j khj k h
i N i N

x x , j N , h H , k K     (10) 

 

0 1 1j h

j N

x , h H         (11) 

 

0 1 0j h jkhx x  ,  ,  j N h H k H          (12) 
 

0 0u              (13) 
 

iu V , i N        (14) 
 

0 0b              (15) 
 

i if b , i N          16) 
 

,
i i i

b t l  i N          (17) 
 

0,  1
ijh

x , 
0,  ,  i j N h H        (18) 

 
0iw , 0iu  i N             (19) 

 

 The objective function (1) minimizes the total duration travelled and also the 

number of vehicles (M is a big positive number). Equations (2) and (3) ensure 

that a vehicle leaves each node and vehicle enters each node except the origin 

exactly ones. Equation (4) and (10) ensures the connectivity of the route. Equation 
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(5) calculates the real starting time of service for the next node on the route (ex-

cept the origin) on the base of previous node. Equation (6) ensures the calcula-

tion of starting time of service for the next node on the route, in case that the 

route goes through origin. Equation (7) calculates the real starting time of service 

of the first node on the route of the vehicle. Equation (8) ensures that the total 

vehicle time travelled must not exceed the given time (T). Equations (9), (13) 

and (14) ensure that all demands on the route must not exceed the capacity of the 

vehicle. Equations (11) and (12) ensure that each route starts at the origin exactly 

once. Equations (15), (16) and (17) ensure that the time windows of all nodes on 

the route are met. 

 

 
2.  Self-Organizing Migrating Algorithm 
 

 Self-organizing migrating algorithm (SOMA) belongs to the class of optimi-

zation techniques. It can be classified as evolutionary algorithm, despite the fact 

that no new individuals are created during simulations, because it is based on the 

self-organizing behaviour of individuals in a social environment (e.g. a herd of 

animals looking for food, a group of animals such as wolves or other predators 

may be a good example). If they are looking for food, they usually cooperate and 

compete so that if one member of the group is successful, the other animals of 

the group change their trajectories towards the most successful member. It is 

repeated until all members meet around one food source. SOMA, as well other 

evolutionary algorithms, is working on a population of individuals (np – number 

of individuals in the population). Each individual represents one candidate solu-

tion for the given problem, i.e. a set of arguments of objective function (d – 

number of arguments). Associated with each individual is also the fitness, which 

represents the relevant value of objective function. A population is usually ran-

domly initialized at the beginning of evolutionary process. And the first iteration 

(1
st
 migration loop) begins. So, an individual with the highest fitness (called 

Leader) is chosen and the others begin to move towards him. Geometrically 

speaking, sequences of the new positions are generated in the d dimensional 

hyperplane (but some parameters of an individual could be frozen depending on 

one of the control parameters prt). At the end of jumping, the individual returns 

to the position with the highest fitness and this is its position for the next migra-

tion loop. The detailed steps how SOMA actually works are described below.  

 SOMA was introduced by Zelinka in 1999 and has been successfully tested 

on various types of test functions (e.g. Rosenbrock’s saddle, De Jong functions, 

Schwefel’s function etc.). Self-organizing migration algorithm, as well as other 

evolutionary techniques, works well on solving non-constrained problems that 
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contain continuous variables, but nowadays there were developed few approaches 

that involve the solving of constrained problems with integer or binary variables.  

 The principle of basic version of SOMA
2
 can be described by following 

pseudocode: 
 
BEGIN 

SETTING of control parameters;  

INITALIZATION of population; 

EVALUATION of each individual; 

       WHILE (STOPPING CRITERION is not satisfied) DO (MIGRATION LOOPS) 

       SELECT leader  

           FOR (each individual of the population except leader) DO  

                  JUMPING individual toward the leader 

                 EVALUATE fitness of individual after each jump 

                MOVE individual on the position with the best fitness  

       ENDFOR 

       ENDWHILE 

       EVALUATE process of calculating 

END 
 

 The steps of the algorithm can be briefly summarized as follows (according 

to Onwubolu and Babu (2004); Zelinka (2002), where it is also possible to find 

recommended values for different parameters): 

 Setting of the control parameters. A disadvantage of SOMA, as well as other 

evolutionary techniques, is that the efficiency of SOMA has a dependence on the 

setting of control parameters. The control parameters are described below:  
 
 d  – dimensionality; number of parameters of individual. 

 np  – population size; number of individuals in population. 

 mig  – migrations; represent the maximum number of iteration.  

 mass – path length, mass 1.1,3 ; represents how far an individual stops behind the 

leader, recommended value is 3. 

 step  – step 0.11,  mass ; defines the granularity with what the search space is sam-

pled, recommended value is 0.11. 

 prt  – perturbation, prt 0,1 ; determines whether an individual travels directly to-

wards the leader or not.  
 

 Initialization. The population is usually randomly initialized at the beginning 

of evolutionary process and the fitness is calculated for each individual.  

 The test of stopping condition. In its canonical form, the most used stopping 

criterion is to reach the maximal number of migration loops (represented by pa-

rameter mig).  

                                                 
 2 In literature (Onwubolu and Babu, 2004) could be found also another variations of SOMA. 
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 Migration loop. SOMA works in migration loops (ml), where no new indi-

viduals are created and only existing ones are moving over the search space. 

In each migration loop, the individual with the highest fitness – leader ( ml

Lx ) is 

chosen and the other individuals begin to jump towards the leader according to 

the step:  
1

, , , , , ,( ). .ml ml ml ml

i j i j start L j i j start jx x x x t prt , 0,  by  to,  t step mass  

i = 1, 2… np, j = 1, 2… d 
 

where np represents the number of individuals in population and d represents the 

number of parameter of individual.  

 Each individual is evaluated after each jump with the fitness (relevant value 

of objective function fc). The jumping continues, until new position defined by 

the mass is reached. Then the individual returns to that position, where the best 

fitness was found: 
 

1

, , , ,min ( ),  ( )ml ml ml

i j c i j c i j startx f x f x ,   i = 1, 2… np, j = 1, 2… d 

 

  Before individual begins to jump, a random number for each individual com-

ponent is generated and is compared with prt. If the random number is equal or 

less then prt, then the associated component of the individual is set to 0. Let k be 

the number of components that are equal to 0. Hence, the individual moves in 

d – k dimensional subspace. This fact establishes a higher robustness of the algo-

rithm. Vector prt is created before the individual begins to move in the search 

space.   
1, if 0,1  >  

0,  otherwise

j

j

rand prt

prt   j = 1, 2… d 

 

  So that process continues in each generation for all individuals except the 

leader. The result is a new generation with the same number of individuals. 

 Evaluation. The whole process of reproduction continues until the last (users 

specified) number of generations is reached. The value of the best individual 

from each generation is reflected to history vector, which shows the progression 

of an evolutionary process.  
 

 

3.  Self-Organizing Migrating Algorithm for the VRPTW 
 

 SOMA is an algorithm that works well in the case of non-constrained prob-

lems with continuous variables, so if we want to apply it for solving NP-hard 

problems, it is necessary to consider the following factors:  

Figure 1 
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 Selection of an appropriate representation of individual. We chose a natural 

representation of individual that is particularly known from genetic algorithms 

(where it has been often used with success by solving much known travelling 

salesman problem). In response to the vehicle routing problem, each node (city) 

except centre node (depot) is assigned with integer from 1 to d (d represents the 

number of nodes except depot), which represents corresponding node in individ-

ual. Each individual is then represented by d-dimensional vector of integers, 

representing the sequence of visiting of the nodes. Then, the initial population 

P
(0)

 is generated as follows: 
 

0 0

,P randpermi jx d   1,  2... i np 1,  2... j d  
 

where the function randperm(d) ensure the establishment of a random permuta-

tion of d integers, so it is the random permutation of the sequence of nodes. Each 

individual in the population is also assigned with its fitness that represents total 

cost of the route. 

 Formulation of objective function. The computation of objective function va-

lue of an individual is realized in two steps with respect to the following facts: 

 ● The total demand on the route must not exceed the capacity of vehicle. 

 ● All nodes except origin are served within their known time window that is 

given by the range (earliest possible time of service, the last possible time of 

service). 

 ● The information about its service time is known for each node except origin. 

 ● It is a known due for reverse arrival to the origin, which means the total 

time on one route must not exceed this restriction. 

 Goal: to minimize number of vehicles, so that the total distance travelled by 

vehicles is as low as possible.  

 Transformation the parameters of individual to the real numbers. Because 

SOMA was originally designed to solve problems with continuous variables and 

the used natural representation consists of integer variables, it is desirable to trans-

form integers to real numbers. The used method for transformation was present-

ed in (Onwubolu and Babu, 2004) for solving travelling salesman problem.  

 Transformation of unfeasible solutions. The use of SOMA for VRPTW does 

not require the formation of feasible solution in case of natural representation of 

individual; therefore it is necessary to choose an appropriate method of trans-

formation of the unfeasible solutions (see Čičková, Brezina and Pekár, 2008). 

 The algorithms were implemented in MATLAB 7.1. Two functions were crea-

ted: SOMA adapted for solving VRPTW and the function for calculation of ob-

jective function value. All the experiments were run on PC INTEL(R) Core(TM) 

2 CPU, E8500 @ 3.16 GHz, 3.25 GB RAM under Windows XP.  
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 Setting of the control parameters of SOMA. The control parameters were set 

on the base of the article (Čičková, Brezina and Pekár, 2011), which describes 

the possibility of setting the parameters with the help some statistical methods 

e.g. Kruskal-Wallis test, Bartlett's test, Cochran-Hartley’s test.  

 

 

4.  VRPTW Experiments 
 

 The efficiency of discovered set of control parameters (step = 0.9, prt = 0.7 

and f = 200) that is based on the before mentioned article (Čičková, Brezina and 

Pekár, 2011) we also tested on the Solomon's VRPTW benchmark, which are 

100-customer problem sets.
3
 The problems are categorised into six classes, na-

mely C1, C2, R1, R2, RC1 and RC2. Problems which fall into C categories are 

clustered data, meaning nodes are clustered either geographically or in terms of 

time windows. Problems from R categories are uniformly distributed data and 

those from RC categories are hybrid problems that have the features of both 

C and R categories. In addition, C1, R1 and RC1 problem sets have narrower 

time window for the depot, whereas C2, R2 and RC2 sets have wider time win-

dow for the depot. Because of the similarity structure of our above mentioned real-

life problem, we tested the classes C2 (C201.50 – C209.50) and (RC201.50 – 

RC207.50). The control parameter np was set to 10.d (where d represents num-

ber of nodes) and the parameter mig was set to 5000. The results were compared 

with the known optimal solution. The percentage deviation was less than 7.5% 

for the C2 set and it was less than 9.8% for the RC2 set.  

 Based on these results it can be stated that SOMA is able to return the ac-

ceptable solution for the VRPTW and the identified values of the control param-

eters can be used for solving real-life vehicle routing problem with time win-

dows that follows in the next section. 

 

 

5.  Real-life Vehicle Routing Problem with Time Windows 
 

 The problem deals about the real distribution scheduling in the region of 

Banská Bystrica in Slovakia. Distribution centre was situated in the city of 

Banská Bystrica and distribution was made to 29 municipalities, in which were 

situated the stores with a daily calling for certain number of crates of merchan-

dise. Time distances in minutes between the centre and individual citizens them-

selves were known. And also "window" of delivery of merchandise was known 

for each municipality, i.e. start and end time when it was possible to realize the 

                                                 
 3 See <http://web.cba.neu.edu/~msolomon/problems.htm> (12. 12. 2011). 

http://web.cba.neu.edu/~msolomon/problems.htm
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supply. Further on, it was also estimated service time in certain municipalities 

(unloading time of vehicle). The capacity of the available vehicles was set to 80 

crates. The goal was to determine how many vehicles a day must be used so that 

demand of all stores must be met.  

 Input data: number of delivery points d = 29, distribution centre i = 0, the 

shortest time distance between all municipalities and between distribution centre 

and each municipality cij (i = 0, 1, 2... 29, j = 0, 1, 2... 29), service time at the 

centre t0 = 30 min., operating times in different stores t1, t2... t29, the earliest pos-

sible start of delivery of goods in different stores f1, f2... f29, the last acceptable 

time of delivery of merchandise in different municipalities l1, l2... l29, vehicle 

capacity V = 80, the demand of individual stores g1, g2... g29. The whole transpor-

tation of crates had to be realized between 6.00 a.m. (fi = 0, i = 1, 2... 29) and 

9.00 a.m. (li = 180, i = 1, 2... 29). The goal was to minimize the total time and to 

determine the minimal number of vehicles, with respect the following re-

strictions: the origin 0 is the initial node and also the final node for each route, 

the demands of the supply nodes must be met within their time windows, the 

vehicle is allowed to wait for service when a vehicle arrives before the earliest 

limit, each supply node (except origin) is visited exactly once, total demand on 

route must not exceed the capacity of vehicle and the orders of customers have to 

be delivered in full.  

 The distribution was previously made on the basis of the solution that was 

derived with heuristic Clarke & Wright's savings algorithm with time windows
4
 

with the use of four vehicles and the total duration was 555.7 min. Individual 

routes were: Route 1: 0–8–22–27–15–0, duration 133.4; Route 2: 0–3–10–12–9–

17–24–25–18–0, duration 134.3; Route 3: 0–1–6–19–2–11–28–21–26–29–0, 

duration 144.8; Route 4: 0–5–4–13–16–7–14–23–20–0, duration 143.2 min. 

Our solution of presented problem is based on same principles as was mentioned 

above with the setting of control parameters (mass, step and prt) with np = 3 000 

and mig = 5 000. The only difference is in formulation of objective function 

(fitness), where we consider that the final route must satisfy the following: 

 ● If the vehicle arrives earlier than the lower bound of window, the vehicle is 

allowed to wait for service, and the waiting time is added to the total time of the 

corresponding route. 

 ● The supply nodes are included in the same route only in case that the sav-

ings sij > 0, the computation of savings is based on heuristic Clarke & Wright's 

savings algorithm so that: sij = c0j + ci0 – cij, i, j = 1, 2… d. 

 ● If the vehicle returns to the origin in the case of: 

                                                 
 4 See <http://www.ise.ncsu.edu/kay/matlog/> (1. 2. 2012). 

http://www.ise.ncsu.edu/kay/matlog/
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  – The capacity of a vehicle is exceeded  the service time in the origin is 

added to the total time of the corresponding route (in practice, the next 

route will be realized with the same vehicle).  

  – Violating of the last possible service time, the objective function is penal-

ized by penalty constant, which represents the fact that the next route is 

realized by another vehicle. The real duration of distribution is calculated 

by subtracting the total of these penalties. 

 The best result obtained from realized simulations allows the use only 3 vehi-

cles with the total duration 465.76 min. The use of heuristic Clarke & Wright's 

savings algorithm with time windows returns the total time of distribution 555.7 

min. with the need of 4 vehicles. Based on those results it can be stated that our 

approach allows decreasing the number of vehicles simultaneously with the sav-

ings in the total time (the saving is 16.2%).  

 The routes are described in Tables 1 – 4: 

 Route A: Customer sequence: 0; 20; 5; 4; 13; 7; 28; 11; 21; 26; 29; 0 (Banská 

Bystrica; Staré Hory; Riečka; Tajov; Králiky; Špania Dolina; Podkonice; Slo-

venská Ľupča; Lučatín; Medzibrod; Brusno; Banská Bystrica), total capacity 74, 

return due to upper time limit of a window, total time of route 154.65 minutes, 

objective value 154.65 minutes  the next route will be realized by another 

vehicle. 
 

T a b l e  1  

Route A 

Number 20 5 4 13 7 28 11 21 26 29 

  
Staré 

Hory Riečka Tajov Králiky Š. Dolina Podkonice S. Ľupča Lučatín Medzibrod Brusno 

Demand qi 9 4 10 3 4 7 15 7 4 11 

Saving ti 5 3 5 3 3 3 8 3 3 5 

Earliest limit li 0 0 0 60 60 0 0 30 120 0 

Latest limit ui 180 120 180 180 120 180 180 150 180 180 

Arrival 12.4 35.27 43.45 51.45 78.55 104.25 113.25 124.85 129.85 134.05 

Start of service 12.4 35.27 43.45 60 78.55 104.25 113.25 124.85 129.85 134.05 
End of service 17.4 38.27 48.45 63 81.55 107.25 121.25 127.85 132.85 139.05 

Capacity 9 13 23 26 30 37 52 59 63 74 

Source: Own compilation. 
 

 Route B: Customer sequence: 0; 23; 14; 0 (Banská Bystrica; Dolný Harmanec; 

Harmanec; Banská Bystrica), total capacity 29, return due to savings = 0, total 

time of route 38.30 minutes, objective value 192.95 minutes  the route C will 

be realized with the same vehicle, service time at the centre is 30 min. 

 Route C: Customer sequence: 0; 1; 2; 6; 19; 15; 22; 27; 8; 0 (Banská Bystrica; 

Kynceľová; Nemce; Selce; Priechod; Môlča; Dolná Mičiná; Čerín; Horná Mičiná; 

Banská Bystrica), total capacity 54, return due to upper time limit, total time of 
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route C 94.22 minutes, objective value 317.17 minutes  the next route will be 

realized by another vehicle. 

 Route D: Customer sequence: 0; 3; 17; 12; 16; 10; 9; 24; 25; 18; 0 (Banská 

Bystrica; Malachov; Hronsek; Badín; Kordíky; Horné Pršany; Vlkanová; Sliač; 

Kováčová; Sielnica; Banská Bystrica), total capacity 77, total time of route 

148.59 minutes, objective value 465.76 minutes. 
 

T a b l e  2  

Route B 

Number 23 14 

  D. Harmanec Harmanec 

Demand qi 12 17 

Saving ti 5 8 
Earliest limit li     0 0 

Latest limit ui 180 180 

Arrival 12.65 20.38 

Start of service 12.65 20.38 
End of service 17.65 28.38 

Capacity 12 29 

Source: Own compilation. 
 

T a b l e  3  

Route C 

Number 1 2 6 19 15 22 27 8 

 Kynceľová Nemce Selce Priechod Môlča D. Mičiná Čerín H. Mičiná 

Demand qi 5 4 12 4 4 10 5 10 
Saving ti 3 3 5 3 3 5 3 5 

Earliest limit li 0 60 30 60 120 0 60 0 

Latest limit ui 120 180 180 150 180 180 180 180 

Arrival 72.96 76.71 83.46 92.96 113.71 132.61 139.79 149.34 
Start of service 72.96 76.71 83.46 92.96 120 132.61 139.79 149.34 

End of service 75.96 79.71 88.46 95.96 123 137.61 142.79 154.34 

Capacity 5 9 21 25 29 39 44 54 

Source: Own compilation. 
 

T a b l e  4  

Route D 

Number 3 17 12 16 10 9 24 25 18 

   Malachov Hronsek Badín Kordíky 
Horné 

Pršany  Vlkanová Sliač  Kováčová Sielnica 

Demand qi 6 5 11 6 4 6 18 16 5 

Saving ti 3 3 5 3 3 3 8 8 3 
Earliest limit li 0 30 0 60 30 60 0 0 120 

Latest limit ui 120 90 180 180 180 120 180 180 180 

Arrival 6 26.31 38.25 63.48 85.99 102.45 112.75 123.45 134.27 

Start of service 6 30 38.25 63.48 85.99 102.45 112.75 123.45 134.27 
End of service 9 33 43.25 66.48 88.99 105.45 120.75 131.45 137.27 

Capacity 6 11 22 28 32 38 56 72 77 

Source: Own compilation. 
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Conclusion 
 

 Distribution is evidently one of the major dimensions of many firms. Logistic 

costs constitute a significant share of the total costs of every organization. This 

amount varies from 10% to 25% of the total costs depending on the given indus-

try and country; that’s why many managers start to pay attention to optimization 

techniques that involve the reduction of logistic cost. Many variants of routing 

and scheduling problems that can be very rewarding are known in the field of 

logistics.  

 This paper deals with a real-data vehicle routing problem with time windows. 

The vehicle routing problem with time windows belongs to NP-hard problems, 

so no algorithm has been known to solve it in the polynomial time, even though 

with the development of information technology the number of problems that 

can be solved by exact algorithms has been increased. The alternative is, except 

for classical heuristics, the use of evolutionary algorithm, which can give after 

finite number of iteration an “effective” solution. 

 Nowadays, we follow the increased interest in methods, which are inspired by 

different biological evolutionary processes in nature. This technology is covered 

by the common name of “evolutionary algorithms”. But their application to con-

strained problems requires some additional modifications of theirs basic ver-

sions. The paper was focused on application of self-organizing migrating algo-

rithm (SOMA) to real-life vehicle routing problem with time windows in Slo-

vakia. The special factors that involve the use of that algorithm were presented 

and the efficiency of calculations has been validated on the basis of publicly 

available instances. The result was also compared with the known solution based 

on heuristic Clarke & Wright's savings algorithm with time windows. Based on 

these results the following can be stated: the number of vehicles was decreased 

(from 4 to 3) and the total time of distribution was improved by 16.2%. 

 This approach can be also applied to a wide variety of distribution problems 

with time restrictions.
5
 The economic impact of optimization of these problems 

can lead to considerable savings in logistics costs and in that way to increase the 

competitive advantage of many companies. 

                                                 
 

5
 E.g. travelling salesman problem with time windows, multiple salesman problem with time 

windows, multi depot travelling salesman problem with time windows, group traveling salesman 

problem with time windows, one of set travelling salesman problem with time windows, travelling 

purchaser problem with time windows, open travelling salesman problem with time windows, 

vehicle routing problem with time windows, multi depot vehicle routing problem with time win-

dows, fleet size and mix vehicle routing problem with time windows, open vehicle routing problem 

period vehicle routing problem with time windows, period vehicle routing problem with simulta-

neous delivery and pickup with time windows, inventory vehicles routing problem with time win-

dows and stochastic vehicle routing problem with time windows, etc. 
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