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ASYMPTOTIC ESTIMATE FOR DIFFERENTIAL

EQUATION WITH POWER COEFFICIENTS AND

POWER DELAYS

Petr Kundrát

ABSTRACT. The paper analyzes the asymptotic bounds of solutions of differ-
ential equation with power coefficients, power delays and a forcing term in the
form ẏ(t) =

∑m
j=0

aj t
αj y(tλj ) + f(t), where a0 is a negative real, λ0 = 1 and

0 < λi < 1, i = 1, . . . ,m. Some additional assumptions on power coefficients and
a forcing term f(t) are considered to obtain an asymptotic estimate for solutions
of the studied differential equation. The application of the result is illustrated by

several examples.

1. Introduction

The paper deals with the asymptotic estimate of solutions of the differential
equation with several power delays and a forcing term in the form

ẏ(t) =

m
∑

j=0

ajt
αjy(tλj ) + f(t), t ∈ I := [t0,∞), t0 ≥ 1, (1)

where

a0 < 0, λ0 = 1, 0 < λ1 ≤ λ2 ≤ · · · ≤ λm < 1, ai, αi ∈ R, i = 1, . . . ,m and f

is a continuous function on I.

The asymptotic behaviour of solutions of delay differential equations is still
widely investigated as evidenced by many papers dealing with this topic, see, e.g.,
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I s e r l e s [5], [6], L i u [7] or M a k a y and T e r j é k i [8]. To recall some pa-
pers closely related to the studied problem we mention Č e r m á k [2], where
the equation with power coefficients and a proportional delays have been stud-
ied. Paper [1] gives asymptotic bounds of solutions of differential equation with
a more general form of coefficients and delays and with a forcing term

ẏ(t) =

m
∑

j=0

aj(t)y
(

τj(t)
)

+ f(t), t ∈ [t0,∞),

where a0(t) < 0 and ai(t), i = 1, . . . ,m are continuous functions, τ0(t) = t,
τi(t) < t, i = 1, . . . ,m and some additional assumptions have been considered.
The following analysis of the asymptotics of the equation (1) takes advantage
of the approach utilized in [1].

The main goal of the paper is to formulate the asymptotic estimate of (1)
and discuss the obtained result on several examples. The structure of the paper
is the following: Section 2 introduces some auxiliary statements. In Section 3 is
derived the asymptotic estimate of delay differential equation (1) and Section 4
illustrates the obtained result on several examples and gives some final remarks.

2. Preliminaries

In this section we introduce some fundamentals connected with the studied
problem. First, we recall the notion of solution of (1). Denote

t−1 := tλ1

0 and I−1 := [t−1,∞).

By a solution of (1) we understand a real-valued function y ∈ C(I−1) ∩ C
1(I)

such that y satisfies (1) on I.

Analogously, as in papers [1] or [2], we utilize a system of auxiliary functional
equations, which can be in our special case of power delays rewritten as

ψ(tλi) = ψ(t)− log λ−1
i , t ∈ [1,∞), i = 1, . . . ,m. (2)

One can see that the common solution of the system (2) is

ψ(t) = log log t. (3)

The existence of the common solution of (2) enables us to embed the system of
delayed arguments {tλ1 , . . . , tλm} into an iteration group [ψ]. For more informa-
tion about this topic see, e.g., N e um a n [9].
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3. Asymptotic estimate of the equation (1)

The aim of this section is to formulate and prove the asymptotic estimate of
solutions of the delay differential equation (1).Theorem 1. Let y be a solution of (1), where −a0t

α0 ≥ K(log−η t), 0 <
∑m

i=1 |ait
αi | ≤ −Ma0t

α0 for all t ∈ I and suitable real constants K > 0, M > 0,
η < 1. Let f(t) ∈ C(I) be such that f(t) = O(logν t) as t → ∞ for a suitable

real ν. Then

y(t) = O(logγ t) as t→ ∞, γ > max

{

η + ν,
logM

log λ−1
1

, . . . ,
logM

log λ−1
m

}

. (4)

P r o o f. First we transform the equation (1). Utilizing the substitution (arising
from the common solution of the auxiliary system (2))

s = ψ(t) = log log(t), z(s) = exp
{

−γ log log(t)
}

y(t) (5)

we obtain

z′(s) =
[

a0
(

h(s)
)α0

h′(s)− γ
]

z(s)

+

m
∑

i=1

ai
(

h(s)
)αi exp

{

−γ log λ−1
i

}

h′(s)z
(

µi(s)
)

+ f
(

h(s)
)

exp{−γs}h′(s),

where ”′” means the differentiation with respect to s, h(s) = ψ−1(s) = exp exp(s)
and µi(s) = s− log λ−1

i on ψ(I), i = 1, . . . ,m. We reorganize the equation into
the form

d

ds






exp











γs−

h(s)
∫

s0

a0u
α0 du











z(s)







=

m
∑

i=1

ai
(

h(s)
)αi

exp
{

−γ log λ−1
i

}

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0 du











z
(

µi(s)
)

+ exp











γs−

h(s)
∫

s0

a0u
α0 du











f
(

h(s)
)

exp{−γs}h′(s), (6)

where s0 ∈ ψ(I) is such that

γ > a0
(

h(s)
)α0

h′(s) for all s ≥ s0.
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Denote

sk := s0 + kλ−1
m , Jk := [sk−1, sk], k = 1, 2, . . .

Let s∗ ∈ Jk+1. The integration of (6) over [sk, s
∗] gives

exp











γs−

h(s)
∫

s0

a0u
α0du











z(s)

∣

∣

∣

∣

∣

∣

∣

s∗

sk

=

m
∑

i=1

s∗
∫

sk

ai
(

h(s)
)αi

exp
{

−γ log λ−1
i

}

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0du











z
(

µi(s)
)

ds

+

s∗
∫

sk

exp











γs−

h(s)
∫

s0

a0u
α0du











f
(

h(s)
)

exp{−γs}h′(s) ds .

We express the value of z in the instant s∗ ∈ Jk+1 as

z(s∗)

= exp











γ(sk − s∗) +

h(s∗)
∫

h(sk)

a0u
α0 du











z(sk)

+ exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

m
∑

i=1

s∗
∫

sk

ai
(

h(s)
)αi

exp
{

−γ log λ−1
i

}

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0 du











z
(

µi(s)
)

ds

+ exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

s∗
∫

sk

exp











γs−

h(s)
∫

s0

a0u
α0 du











f
(

h(s)
)

exp{−γs}h′(s) ds.
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Denote

Mk := max
{

|z(s)|, s ∈ ∪k
p=1Jp

}

, k = 1, 2, . . .

Then the value of z(s∗) can be estimated as

|z(s∗)|

≤Mk exp











γ(sk − s∗) +

h(s∗)
∫

h(sk)

a0u
α0 du











+Mk exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

s∗
∫

sk

m
∑

i=1

∣

∣ai
(

h(s)
)αi

∣

∣ exp
{

−γ log λ−1
i

}

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0 du











ds

+ exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

s∗
∫

sk

exp











γs−

h(s)
∫

s0

a0u
α0 du











∣

∣f
(

h(s)
)∣

∣ exp{−γs}h′(s) ds. (7)

Further, considering the relations

m
∑

i=1

∣

∣ai
(

h(s)
)αi

∣

∣ exp
{

−γ log λ−1
i

}

≤M exp
{

−γ log λ−1
i

}

(

−a0
(

h(s)
)α0

)

≤ −a0
(

h(s)
)α0

and

∣

∣f
(

h(s)
)
∣

∣ exp{−γs} ≤ K1 exp
{

(ϑ− γ)s
}

, K1 > 0
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the estimate (7) can be rewritten as

|z(s∗)|

≤Mk exp











γ(sk − s∗) +

h(s∗)
∫

h(sk)

a0u
α0 du











+Mk exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

s∗
∫

sk

[

−a0
(

h(s)
)α0

]

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0 du











ds

+K1 exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

s∗
∫

sk

exp











γs−

h(s)
∫

s0

a0u
α0 du











h′(s) exp
{

(ϑ− γ)s
}

ds.

Hence

|z(s∗)|

≤Mk exp











γ(sk − s∗) +

h(s∗)
∫

h(sk)

a0u
α0 du











+

(

Mk +K2 exp
{

(η + ϑ− γ)sk

}

)

exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











×

s∗
∫

sk

[

−a0
(

h(s)
)α0

]

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0 du











ds,

where K2 = K1

/

K.
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Since a0 is negative, the integral on the right-hand side can be estimated as

s∗
∫

sk

[

−a0
(

h(s)
)α0

]

h′(s) exp











γs−

h(s)
∫

s0

a0u
α0 du











ds

≤ exp











γs−

h(s)
∫

s0

a0u
α0 du











∣

∣

∣

∣

∣

∣

∣

s∗

sk

(1 +K3e
−ωsk), K3 > 0, ω = 1− η > 0.

Then we obtain

|z(s∗)|

≤Mk exp











γ(sk − s∗) +

h(s∗)
∫

h(sk)

a0u
α0 du











+
(

Mk +K2 exp
{

(η + ϑ− γ)sk
}

)

exp











h(s∗)
∫

s0

a0u
α0 du− γs∗











× exp











γs−

h(s)
∫

s0

a0u
α0 du











∣

∣

∣

∣

∣

∣

∣

s∗

sk

(

1 +K3 exp{−ωsk}
)

≤Mk

(

1 +M exp
{

−ωsk
}

)

+K2 exp
{

(η + ϑ− γ)sk
}(

1 +K3 exp{−ωsk}
)

≤M∗
k

(

1 +N exp{−κsk}
)

,

where

M∗
k = max (Mk, K2) and κ = min (ω, γ − η − ϑ) > 0 and N > 0

is a constant large enough. Since s∗ ∈ Jk+1 was arbitrary,

M∗
k+1 ≤M∗

k

(

1 +N exp{−κsk}
)

≤M∗
1

k
∏

j=1

(

1 +N exp{−κsj}
)

.

The boundedness of the sequence (M∗
k ) as k → ∞ gives the asymptotic estimate

(4) with respect to the substitution (5). �
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4. Examples and final remarks

First we introduce such a case of differential equation (1) that there are con-
sidered constant coefficients and one delayed term in the equation. Furthermore,
the forcing term is omitted in this case:

Example 1. Consider the equation

ẏ(t) = a0y(t) + a1y(t
λ1), t ∈ [1,∞), (8)

where a0 < 0, a1 are real constants, 0 < λ1 < 1. Then Theorem 1 gives the
asymptotic estimate

y(t) = O(logγ t), as t→ ∞, γ =
log |a1|

−a0

log λ−1
1

.

The above asymptotic estimate coincides with the result of H e a r d [4], which
can be reformulated for equation (8) as follows.Theorem 2 (Heard, 1975). Let a0 < 0, a1 6= 0 be real constants, 0 < λ1 < 1.
Then for every solution of (8) there exists a continuous periodic function g with

period log λ−1
1 such that

y(t) = (log t)ξg(log log t) +O
(

logξr−1 t
)

as t→ ∞,

where ξ is a root of a0 + a1λ
ξ
1 = 0 and ξr = ℜ(ξ).

The next example illustrates the application of the Theorem 1 to the equa-
tion (1) with nonconstant coefficients at delayed terms.

Example 2. Consider the equation

ẏ(t) = a0y(t) +
1

t

[

a1y
(

tλ1

)

+ a2y
(

tλ2

)

]

+ f(t), (9)

where a0 < 0, a1, a2 are real constants, 0 < λ1 < λ2 < 1 and f(t) = O(logν t) as
t→ ∞ for a suitable real ν. Then in accordance with Theorem 1 we obtain the
asymptotic estimate of solution of (9) in the form

y(t) = O(logγ t), as t→ ∞,

where

γ = max

{

ν,
log |a1|+|a2|

−a0

log λ−1
1

,
log |a1|+|a2|

−a0

log λ−1
2

}

.
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