
tmMathemati
al Publi
ations
DOI: 10.2478/v10127-011-0015-3

Tatra Mt. Math. Publ. 48 (2011), 153–163

OSCILLATORY CRITERIA FOR

TWO-DIMENSIONAL SYSTEM OF DIFFERENCE

EQUATIONS

Zdeněk Opluštil

ABSTRACT. Some oscillation criteria are established for two-dimensional sys-
tems of first order linear difference equations.

1. Introduction and notation

This paper is devoted to the oscillatory properties of two-dimensional system
of linear difference equations

∆uk = qkvk ,

∆vk = − pkuk+1,
(1)

where
∆xk = xk+1 − xk, pk, qk ∈ R for k ∈ N.

System (1) is one of the possible discrete analogies of the linear Hamiltion system
of differential equations

u′ = q(t)v,

v′ = − p(t)u,

where p(t), q(t) are continuous functions defined on [t0,+∞).

By a solution of system (1) we understand a vector sequence
{

(uk, vk)
}+∞

k=1

satisfying system (1) for every natural k. A nontrivial solution
{

(uk, vk)
}+∞

k=1
of

system (1) is said to be oscillatory if there exists an infinite set N0 ⊆ N such
that

ukuk+1 ≤ 0 for k ∈ N0.
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It is known (see, e.g., [1]) that if

qk ≥ 0 for k ∈ N

and system (1) has at least one oscillatory solution, then all its solutions are
oscillatory. That is why we can introduce the following definition.Definition 1.1. System (1) is said to be oscillatory if all its solutions are
oscillatory, otherwise (1) is said to be non-oscillatory.

Oscillatory properties of system (1) are known in the case where

0 < m ≤ qk for k ∈ N and

+∞
∑

j=1

pj = +∞

hold (see, e.g., [1]) or in the case where following conditions

0 < m ≤ qk for k ∈ N and −∞ = lim inf
k→∞

k
∑

j=1

pj < lim sup
k→∞

k
∑

j=1

pj ,

are fulfilled. System (1) is oscillatory in both mentioned cases.

In this paper sufficient conditions guaranteeing that the system (1) is oscil-

latory are established for cases where the series
∑+∞

j=1 pj converges to a finite
number, i.e.,

∣

∣

∣

∣

∣

+∞
∑

j=1

pj

∣

∣

∣

∣

∣

< +∞ (2)

and

0 < m ≤ qk ≤ M < +∞ for k ∈ N, (3)

where m,M are real positive constants.

In what follows we will suppose that there exists a finite limit

c0 = lim
k→∞

ck,

where

ck =
1

k−1
∑

j=1
qj

k−1
∑

j=1

qj

j−1
∑

i=1

pi for k ∈ N.

Let us introduce following notations

Qk =



c0 −

k−1
∑

j=1

pj





k−1
∑

j=1

qj =

k−1
∑

j=1

qj

∞
∑

j=k

pj for k ∈ N,
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Hk =
1

k−1
∑

j=1
qj

k
∑

j=1

pj

(

j
∑

i=1

qi

)2

for k ∈ N,

Q∗ = lim inf
k→∞

Qk, Q∗ = lim sup
k→∞

Qk,

H∗ = lim inf
k→∞

Hk, H∗ = lim sup
k→∞

Hk.

2. Main results

Below formulated theorems generalize and make more complete previous well-
-known criteria of analogous types. Presented results can be understood as a dif-
ference analogy of oscillatory theorems for ordinary differential equations which
can be found in [3]–[5].Theorem 2.1. Let

0 ≤ Q∗ ≤
1

4
and H∗ >

1

2

(

1 +
√

1− 4Q∗

)

. (4)

Then system (1) is oscillatory.Theorem 2.2. Let

0 ≤ H∗ ≤
1

4
and Q∗ >

1

2

(

1 +
√

1− 4H∗

)

. (5)

Then system (1) is oscillatory.

3. Auxiliary proposition

We establish some properties of solutions of equation (1) in this section. These
properties are used to prove main results in what follows.Lemma 3.1. Let {(uk, vk)

}+∞

k=k0
be a nonoscillatory solution of system (1). Then

∞
∑

Rj < +∞, (6)

where

wj =
vj

uj

and Rj =
w2

j qj

1 + wjqj
. (7)
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P r o o f. We suppose on the contrary that

∞
∑

Rj = +∞ . (8)

Let us put wk = vk

uk
for k ≥ k0, then we can rewrite system (1) as follows

∆wk + pk +Rk = 0 for k ≥ k0, (9)

where Rk is defined by (7). If we summarize (9) from k0 to k − 1, we get

−wk + wk0
=

k−1
∑

j=k0

pj +

k−1
∑

j=k0

Rj for k > k0.

The multiplication of the last equality by qk and the summarization from k0 to
k − 1 results in

k−1
∑

j=k0

−wjqj =

k−1
∑

j=k0

qj

j−1
∑

i=k0

pi +

k−1
∑

j=k0

qj

j−1
∑

i=k0

Ri − wk0

k−1
∑

j=k0

qj for k > k0. (10)

Hence,
k−1
∑

j=k0

−wjqj

k−1
∑

j=k0

qj

=

k−1
∑

j=k0

qj
j−1
∑

i=k0

pi

k−1
∑

j=k0

qj

+

k−1
∑

j=k0

qj
j−1
∑

i=k0

Ri

k−1
∑

j=k0

qj

+ wk0
for k > k0. (11)

Consequently, in view of the assumptions (2) and (8), we get from (11)

lim sup
k→∞

k−1
∑

j=k0

−wjqj

k−1
∑

j=k0

qj

= +∞. (12)

On the other hand, it is clear that

Rk =
w2

kqk

wkqk + 1
=

w2
k

1
qk

+ wk

≥ 0 for k ≥ k0. (13)

Put

Ak =

{

w2
k
qk

Rk
for kwk 6= 0,

0 for kwk = 0.

Obviously, Ak ≥ 0 for k ≥ k0 and

1 ≥ Ak − wkqk. (14)
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The summarization of latter inequalities from k0 to k − 1 and (3) yield

k − k0
k−1
∑

j=k0

qj

≥

k−1
∑

j=k0

Aj

k−1
∑

j=k0

qj

−

k−1
∑

j=k0

wjqj

k−1
∑

j=k0

qj

for k > k0. (15)

Further, the condition (3) implies

k − k0
k−1
∑

j=k0

qj

≤
k − k0
k−1
∑

j=k0

m

=
1

m
.

Hence, by virtue of (15), we get

1

m
≥

k−1
∑

j=k0

Aj

k−1
∑

j=k0

qj

−

k−1
∑

j=k0

wjqj

k−1
∑

j=k0

qj

for k, k > k0.

In view of Aj ≥ 0 for j ≥ k0 the last inequality yields

lim sup
k→∞

k−1
∑

j=k0

−wjqj

k−1
∑

j=k0

qj

< +∞,

which contradicts (12). �Lemma 3.2. Let 0 ≤ Q∗ ≤ 1
4 and

{

(uk, vk)
}+∞

k=k0
be a nonoscillatory solution

of system (1). Then

lim inf
k→∞

vk

uk

k−1
∑

j=1

qj ≥
1

2

(

1−
√

1− 4Q∗

)

. (16)

P r o o f. Let us put wk = vk

uk
for k ≥ k0. The sum of (9) from k to l results in

wk − wl+1 =

l
∑

j=k

pj +

l
∑

j=k

Rj for k ≥ k0. (17)

According to Lemma 3.1, it is clear that limj→∞ wj = 0. Therefore we get

from (17)

wk =

∞
∑

j=k

pj +

∞
∑

j=k

Rj for k ≥ k0. (18)
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Let us denote

A = lim inf
k→∞

wk

k−1
∑

j=1

qj . (19)

Obviously, if A = +∞, then (16) holds.

Let us assume that A < +∞. Now if Q∗ = 0, then, in view of (13) and (18),
the inequality (16) holds.

Let Q∗ > 0. Obviously, for every ε ∈ ]0, Q∗[ there exists k[ε] > k0 such that

Qk > Q∗ − ε for k ≥ k[ε]. (20)

Hence, by virtue of (18), we get

wk

k−1
∑

j=1

qj > Q∗ − ε for k ≥ k[ε].

and A ≥ Q∗. Now we can choose k
[ε]
0 ≥ k[ε] such that the inequalities

wk

k−1
∑

j=1

qj ≥ A− ε, |wkqk| ≤ ε for k, k ≥ k
[ε]
0 (21)

are fulfilled. Further, we can rewrite equality (18) as follows

wk

k−1
∑

j=1

qj =

∞
∑

j=k

pj

k−1
∑

j=1

qj +

∞
∑

j=k

Rj

k−1
∑

j=1

qj for k, k ≥ k0. (22)

The inequalities (20)–(22) yield

wk

k−1
∑

j=1

qj ≥ Q∗ − ε+
(A− ε)2

1 + ε
for k, k ≥ k

[ε]
0 ,

hence

A ≥ Q∗ − ε+
(A− ε)2

1 + ε
.

Since ε > 0 was arbitrary we can rewrite the last inequality in the form

A2 −A+Q∗ ≤ 0,

i.e.,

A ≥
1

2

(

1−
√

1− 4Q∗

)

.

�Lemma 3.3. Let 0 ≤ H∗ ≤ 1
4 and

{

(uk, vk)
}+∞

k=k0
be a nonoscillatory solution

of system (1). Then

lim sup
k→∞

vk

uk

k−1
∑

j=1

qj ≤
1

2

(

1 +
√

1− 4H∗

)

. (23)
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P r o o f. Let us put wk = vk

uk
for k ≥ k0. We get from (9)

∆wk





k
∑

j=1

qj





2

= −pk





k
∑

j=1

qj





2

−Rk





k
∑

j=1

qj





2

for k ≥ k0.

The summation of the last equalities from n to k − 1, where n ≥ k0, implies

k−1
∑

j=n

∆wj

(

j
∑

i=1

qi

)2

= −

k−1
∑

j=n

pj

(

j
∑

i=1

qi

)2

−

k−1
∑

j=n

Rj

(

j
∑

i=1

qi

)2

for k > k0.

(24)

Obviously,

k−1
∑

j=n

∆wj

(

j
∑

i=1

qi

)2

(25)

=





k−1
∑

j=1

qj





2

wk −





n−1
∑

j=1

qj





2

wn −

k−1
∑

j=n

wjqj

(

2

j−1
∑

i=1

qi + qj

)

, for k > k0.

By virtue of (25), the equality (24) yields




k−1
∑

j=1

qj





2

wk = −

k−1
∑

j=n

pj

(

j
∑

i=1

qi

)2

+





n−1
∑

j=1

qj





2

wn

+
k−1
∑

j=n



wjqj

(

2

j−1
∑

i=1

qi + qj

)

−Rj

(

j
∑

i=1

qi

)2


 for k > k0.

Hence

wk





k−1
∑

j=1

qj



 = −Hk +
1

k−1
∑

j=1

qj

k−1
∑

j=n

DJ + Pk,n for k > k0, (26)

where

Dj = wjqj

(

2

j−1
∑

i=1

qi + qj

)

−Rj

(

j
∑

i=1

qi

)2

(27)

and

Pk,n =
1

k−1
∑

j=1

qj





n−1
∑

j=1

qj





2

wn +
1

k−1
∑

j=1

qj

n−1
∑

j=1

pj

(

j
∑

i=1

qi

)2

.
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Obviously, Dj ≤ qj for j ≥ k0. Thus, it follows from (26) that




k−1
∑

j=1

qj



wk ≤ −Hk + 1 + Pk,n for k > k0, (28)

Further,

lim sup
k→∞

Pk,n = lim sup
k→∞











1
k−1
∑

j=1
qj





n−1
∑

j=1

qj





2

wn +
1

k−1
∑

j=1
qj

n−1
∑

j=1

pj

(

j
∑

i=1

qi

)2











= 0.

(29)
Hence, on account of (28), we get

B ≤ 1−H∗,

where

B = lim sup
k→∞

vk

uk

k−1
∑

j=1

qj. (30)

If H∗ = 0 or B ≤ 0, then inequality (23) holds.

Let now we suppose that H∗ > 0 and B > 0. We can rewrite Dj as follows

Dj = qj



wj

j−1
∑

i=1

qi

(

2− wj

j−1
∑

i=1

qi

)

+
wjqj

1 + wjqj

(

wj

j−1
∑

i=1

qi − 1

)2


 for k, j ≥ k0,

then (26) transforms into




k−1
∑

j=1

qj



wk = −Hk + Pk,n (31)

−
1

k−1
∑

j=1
qj

k−1
∑

j=n



qj



wj

j−1
∑

i=1

qi

(

2− wj

j−1
∑

i=1

qi

)

+
wjqj

1 + wjqj

(

wj

j−1
∑

i=1

qi − 1

)2






.

Let 0 < ε < min{H∗, 1−B} be arbitrary. We can choose k[ε] > k0 such that

k−1
∑

j=1

qjwj < B + ε, Hk > H∗ − ε and

∣

∣

∣

∣

qkwk

1 + wk

∣

∣

∣

∣

≤ ε for k ≥ k[ε]. (32)

Since the function f(x) = x(2 − x) + ε(x − 1)2 is nondecreasing in ]ε, 1[ and
B + ε ∈ ]ε, 1[, it follows from (31) and (32) that
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wk

k−1
∑

j=1

qj ≤ −H∗+ε+
[

(B+ε)(2−B−ε)+ε(B+ε−1)2
]

k−1
∑

j=k[ε]

qj

k−1
∑

j=1
qj

+Pk,k[ε] . (33)

Hence, by virtue of (29) and (30), we get

B ≤ −H∗ + ε+
[

(B − ε)(2− B − ε) + ε(B + ε− 1)2
]

.

Since ε > 0 was chosen arbitrary we have

B2 − B +H∗ ≤ 0.

Obviously, latter inequality implies

B ≤
1

2

(

1 +
√

1− 4H∗

)

.
�

4. Proofs of main results

P r o o f o f T h e o r e m 2.1. Let us assume on the contrary, that system (1) is

nonoscillatory, i.e., there exists a solution
{

(uk, vk)
}+∞

k=k0
such that

ukuk+1 > 0 for k ≥ k0.

Now we can rewrite system (1) in the form

∆wk + pk +Rk = 0 for k ≥ k0,

where

wk =
vk

uk

and Rk =
w2

kqk

1 + wkqk
for k ≥ k0.

Let us denote

Ã =
1

2

(

1−
√

1− 4Q∗

)

.

According to Lemma 3.2 there exists k[ε] > k0 such that

wk

k−1
∑

j=1

qj > Ã− ε for k ≥ k[ε] (34)

for arbitrary ε > 0. Now we can show, in the similar way as in the proof of
Lemma 3.3, that (26) and inequality Dj ≤ qj for k ≥ k[ε] hold. Thus,

wk

k−1
∑

j=1

qj ≤ −Hk + 1 + Pk,k[ε] for k ≥ k[ε].
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On account of (34), the latter inequality yields

Hk ≤ −Ã+ ε+ 1 + Pk,k[ε] for k ≥ k[ε],

i.e.,

Hk ≤ −
1

2

(

1−
√

1− 4Q∗

)

+ ε+ 1 + Pk,k[ε] for k ≥ k[ε].

Hence

H∗ ≤
1

2

(

1 +
√

1− 4Q∗

)

+ ε,

which contradicts (4), since ε > 0 was chosen arbitrary. �

P r o o f o f T h e o r e m 2.2. Let us assume on the contrary, that system (1) is

nonoscillatory, i.e., there exists a solution
{

(uk, vk)
}+∞

k=k0
such that

ukuk+1 > 0 for k ≥ k0.

Now we can rewrite system (1) in the form

∆wk + pk +Rk = 0 for k ≥ k0,

where

wk =
vk

uk

and Rk =
w2

kqk

1 + wkqk
for k ≥ k0.

Put

B̃ =
1

2

(

1 +
√

1− 4H∗

)

.

According to Lemma 3.3 there exists k[ε] > k0 such that

B̃ + ε > wk

k−1
∑

j=1

qj for k ≥ k[ε] (35)

for arbitrary ε > 0. Analogously as in proof of Lemma 3.2 we can prove that the
inequality (22) for k ≥ k[ε] holds. Thus, it follows from (35) that

B̃ + ε >

k−1
∑

j=1

qj

∞
∑

j=k

pj +

k−1
∑

j=1

qj

∞
∑

j=k

Rj for k ≥ k[ε].

By virtue of (3) and (7), the latter inequality implies

1

2

(

1 +
√

1− 4H∗

)

+ ε > Qk for k ≥ k[ε],

which contradicts (5), since ε > 0 was chosen arbitrary. �
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