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ON A SOLUTION OF MONOTONE TYPE

PROBLEMS WITH UNCERTAIN INPUTS

Luděk Nechvátal

ABSTRACT. The paper deals with a nonlinear weak monotone type problem
and its solution with respect to uncertain coefficients in the equation. The so-
-called worst scenario method is adopted. The formulation of suitable conditions
and a proof of the existence of a solution of the worst scenario problem is pre-
sented.

1. Introduction

Mathematical modelling of the physical phenomena usually exhibits a sort of
error due to neglecting or simplifying some factors in a model, working with un-
certain input parameters, approximate numerical solution, etc. The paper deals
with the second mentioned issue, i.e., discusses how to proceed with problems,
where an exact description of the input data is not available—we talk about
the problems with uncertain input data. By input data we mean coefficients
in the equations/variational inequalities, right-hand sides, functions from ini-
tial/boundary conditions, etc.

We shall investigate a nonlinear elliptic monotone type boundary value prob-
lem in dimension one with the equation

−
(
a(u′)

)′
= f.

Contrary to the usual approach, the coefficient a is assumed to be uncertain,
however ranging in some bounds and still satisfying certain hypothesis on con-
tinuity and monotonicity.

The motivation for studying such a problem is the following. Imagine a sit-
uation when we model some physical phenomena set in a highly heterogeneous
medium like some composite material or perforated/porous body. If a structure
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is too fine we can expect problems from the numerical point of view—to catch
the structure we would need very fine meshes and thus the resulting system
of equations can exceed the computer capabilities. To overcome this problem,
the natural idea is to consider a homogeneous medium (i.e., described by con-
stant parameters in the spatial variable) instead of heterogeneous one having
the same properties from the macroscopic point of view. It remains to answer
the question, how to determine such effective (homogeneous) properties from
the knowledge of the microstructure (we note that it is not just an average of
particular components of the structure). To this end, the mathematical method
of homogenization was developed, for introduction see, e.g., [1]. It is quite easy
and powerful tool, however its practical use is restricted to the case of periodic
structures. In the real world we encounter rather almost periodic and sometimes
even completely stochastic structures. In these cases the evaluation of the effec-
tive parameters by the homogenization method fails, although we assume that
certain bounds can be guessed. In other words, we arrive at the problem with
uncertain input data mentioned above.

To solve such a problem, we adopt a deterministic method called the worst
scenario method introduced by H l a v á č e k, see [3]. The main idea consists in
defining a functional over a suitable set of admissible data serving as a criterion
that evaluates some state/physical quantity from certain point of view. Then
the optimization (here we should say antioptimization) of the functional yields
the worst state. In other words, the strategy of the method is to be on a safe
side, since the knowledge of the “critical” data can help to adjust a technological
process properly.

The presented results are based on the author’s recent research [5], [2]. The
paper is intended rather as an introduction to the topic for readers that are not
familiar with the topic than a rigorous mathematical study (we restrict ourselves
to the one-dimensional problem only). However, formulation of conditions under
which the corresponding worst scenario problem has a solution and its proof
seems to be new. The text is structured as follows. After some preliminaries, the
model problem is introduced in Section 2. Here we recall some known results
and therefore the proofs are omitted here. Section 3 is devoted to the worst
scenario method containing the main result on solvability of the corresponding
worst scenario problem. Some concluding remarks in Section 4 close the paper.

2. Model problem

Let us start with some preliminaries. Throughout the paper, I = (bℓ, br) is
an open and bounded interval in R. For a subset Ω ⊂ R we denote by |Ω| its
Lebesgue measure. We employ the Lebesgue space L2(I) of integrable functions
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on I equipped with the standard norm ‖u‖L2(I) =
∫
I
u2 dx and the Sobolev space

H1
0 (I) of all functions u ∈ L2(I) with the integrable (distributive) derivative such

that u(bℓ) = u(br) = 0. The norm is taken as

‖u‖H1

0
(I) =

(
‖u‖2L2(I) + ‖u′‖2L2(I)

)1/2
.

The Friedrichs’ inequality

‖u‖L2(I) ≤ C‖u′‖L2(I)

(see, e.g., [4]) makes this norm equivalent with the seminorm, i.e., we have

‖u′‖L2(I) ≤ ‖u‖H1

0
(I) ≤ c‖u′‖L2(I).

Both spaces are Hilbert spaces. Further, the space of continuous functions on
the real line, C(R), equipped with the norm ‖u‖C(R) = supx∈R

|u(x)| is used (the
convergence in this norm corresponds to the uniform convergence).

We consider a class of nonlinear Dirichlet boundary value problems in the
form

−
(
a(u′)

)′
= f in I, (1)

u(bℓ) = u(br) = 0,

where the function a is assumed to be uncertain from the set of admissible data
Uad defined as

Uad :=
{
g ∈ S(r, α, β, γ) : amin(ξ) ≤ g(ξ) ≤ amax(ξ)

}
,

where amin, amax are given functions from the set S(r, α, β, γ) of all functions
g : R → R satisfying the properties: For a fixed r, α, β, γ > 0 (γ ≤ β)

|g(ξ1)− g(ξ2)| ≤ β|ξ1 − ξ2|, for all ξ1, ξ2 ∈ [−r, r], (2)

α|ξ1 − ξ2|
2 ≤

(
g(ξ1)− g(ξ2)

)
(ξ1 − ξ2), for all ξ2, ξ2 ∈ [−r, r] (3)

g(ξ) = g(r) + γ(ξ − r), ξ > r,

g(ξ) = g(−r) + γ(ξ + r), ξ < r. (4)

Then the weak formulation of the problem (1) reads:

Problem 1. Let a ∈ Uad. Find u ≡ u(a) ∈ H1
0 (I) such that

∫

I

a(u′)v′ dx =

∫

I

fv dx, for all v ∈ H1
0 (I).

The solvability of the problem is based on the following abstract theorem. Let
A : V → V ′, where V is a Hilbert space and V ′ its dual, be an operator such that:

(1) ‖A(u1)−A(u2)‖V ′ ≤ β‖u1−u2‖V, for all u1, u2 ∈ V (Lipschitz continuity),

(2) α‖u1 − u2‖
2
V ≤ 〈A(u1)−A(u2), u1 − u2〉 (strong monotonicity),

where 〈·, ··〉 denotes the duality pairing between V and V ′. Then the operator
equation A(u) = b has a unique solution for each b ∈ V ′.

147
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These two properties are fulfilled under the conditions (2)–(4). More precisely,
directly from the construction of the set S(r, α, β, γ), it can be seen that each
function from Uad satisfies

|a(ξ1)− a(ξ2)| ≤ β|ξ1 − ξ2|, for all ξ1, ξ2 ∈ R, (5)

α|ξ1 − ξ2|
2 ≤

(
a(ξ1)− a(ξ2)

)
(ξ1 − ξ2), for all ξ1, ξ2 ∈ R. (6)

While the Lipschitz continuity of the function a ∈ Uad (5) ensures also the
Lipschitz continuity of the operator A, the condition (6) yields the strong mono-
tonicity of the operator A. To summarize above considerations, we can state:Theorem 1. Let a ∈ Uad and f ∈ L2(I). Then there exists a unique solution of

Problem 1.

We note that the existence of the solution can be obtained also under much
weaker assumptions, however the introduced conditions are needed in the fol-
lowing section. Details on theory of monotone operators can be found, e.g.,
in [6].

3. Worst scenario method

In this section we solve the worst scenario problem related to Problem 1. As
mentioned in the introduction, the basic idea consists in a suitable choice of a cri-
terial functional that can be generally dependent on both the input (admissible)
data as well as the solution of the model problem. This functional is chosen with
respect to the aim of interest/expert decision. Although we have quite a lot of
freedom in the definition of the criterion, certain continuity conditions must be
fulfilled, for details see [3]. In our case we introduceDefinition 1. The functional

Φ: Uad ×H1
0 (I) → R

is called criterial if the following convergence is satisfied: taking an, a ∈ Uad,
vn, v ∈ H1

0 (I) such that an → a in C(R), vn ⇀ v in H1
0 (I) as n → ∞, then

Φ(an, vn) → Φ(a, v).

One of the easiest examples is the functional

Φ
(
a, u(a)

)
= |Ĩ |−1

∫

Ĩ

u(a) dx,

where Ĩ is a suitable subinterval of I and u(a) is the solution of the Problem 1.
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This choice represents the average value of the solution (e.g., the temperature)

over Ĩ. This choice is motivated by the question “what data give the highest/the
most danger solution (temperature) in some crucial place of the material?” Sim-
ilarly, the solution can be replaced by its gradient or the generalized gradient as
it is often the aim of interest.

Now, the set of admissible data and the criterial functional with respect to the
model problem are given, so that we can introduce the worst scenario problem:

Problem 2. Find â ∈ Uad such that

Φ(â, u
(
â)
)
≥ Φ

(
a, u(a)

)
, for all a ∈ Uad,

where Φ is a criterial functional and u(a) is the solution of the Problem 1.

Before we prove the existence theorem of the worst scenario problem, we
present the following two lemmas.Lemma 1. The set Uad is compact in C(R). In other words, every sequence

{an} ⊂ Uad contains an uniformly convergent subsequence converging to an ele-

ment a ∈ Uad.

P r o o f. Let U r
ad be the set of all functions from Uad restricted on the interval

[−r, r]. The Lipschitz continuity condition (2) implies the uniform boundedness
and equicontinuity of the functions from U r

ad. By the Arzelà-Ascoli theorem, for
each sequence {an} ⊂ U r

ad there exists a uniformly converging subsequence. The
set U r

ad is closed, thus the limit belongs to U r
ad. Since the set Uad is the continuous

extension of U r
ad with the lines of the same slope that differ by a constant only,

the uniform convergence on the whole real line follows immediately. �Lemma 2. Let an, a ∈ Uad be such that an → a in C(R) as n → ∞. Then

u(an) → u(a) in H1
0 , where u(an) and u(a) are the solutions of the Problem 1

with the coefficient an and a, respectively.

P r o o f. For lucidity, let us denote un ≡ u(an) and u ≡ u(a). First, let us
prove that the sequence {un} is bounded in H1

0 (I). By the strong monotonicity
condition (6) and the inequality |an(0)| ≤ c, c = max

{
|amin(0)|, |amax(0)|

}
,

we have

α‖u′

n‖
2
L2(I) ≤

∣∣∣∣∣

∫

I

(
an(u

′

n)− an(0)
)
u′

n dx

∣∣∣∣∣

=

∣∣∣∣∣

∫

I

fun dx−

∫

I

an(0)u
′

n dx

∣∣∣∣∣

≤
(
C‖f‖L2(I) + c|I|1/2

)
‖u′

n‖L2(I) ,

where C is the constant from the Friedrichs’ inequality.
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This and the equivalence of the norm and seminorm imply that ‖un‖H1

0
(I) ≤ M ,

where the constant M depends on α, c, C, ‖f‖ and |I| only.

Using again (6) and the definition of the solutions un and u we can write

α‖u′

n − u′‖2L2(I) ≤

∫

I

(
an(u

′

n)− an(u
′)
)
(u′

n − u′) dx

=

∫

I

f(un − u) dx−

∫

I

an(u
′)(u′

n − u′) dx

≤

∣∣∣∣∣

∫

I

f(un − u) dx−

∫

I

a(u′)(u′

n − u′) dx

+

∫

I

(
a(u′)− an(u

′)
)
(u′

n − u′) dx

∣∣∣∣∣

≤

∣∣∣∣∣

∫

I

f(un − u) dx−

∫

I

f(un − u) dx

∣∣∣∣∣

+sup
ξ∈R

|a(ξ)− an(ξ)|

∫

I

|u′

n − u′| dx

≤ |I| · sup
ξ∈R

|a(ξ)− an(ξ)| · ‖u
′

n − u′‖L2(I).

Since ‖u′

n−u′‖L2(I) is bounded, the right-hand side converges to zero due to the
uniform convergence of an ⇉ a and the proof is complete. �

Now we are in a position to formulate the main result.Theorem 2. There exists a solution of the Problem 2.

P r o o f. Let us denote J(a) ≡ Φ
(
a, u(a)

)
and let {an} ⊂ Uad be a maximizing

sequence of the functional J , i.e.,

lim
n→∞

J(an) = sup
a∈Uad

J(a) . (7)

Such sequence surely exists, since the values J(an) form a nonempty set in R

and thus there exists a supremum. From Lemma 1 we know that there exists an
element ã ∈ Uad such that, up to a subsequence,

an′ ⇉ ã on R .

Lemma 2 yields u(an′) → u(ã) in W
1,2
0 (I) and as a consequence of the definition

of functional Φ
J(an′) → J(ã) as n′ → ∞ . (8)
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Combining (7) and (8) we get

lim
n′→∞

J(an′) = J(ã) = sup
a∈Uad

J(a)

and thus ã is a maximizing element, i.e., ã = â in R, which is the desired
result. �

Note that we have the existence of the solution only. Of course, the uniqueness
can be obtained if J(a) is strictly concave on Uad, however, we do not know,
under which assumptions it is true. We remind that J(a) is constructed via
the functional Φ depending generally also on the solution u and we do not have
enough information about the behaviour of the solution u with resect to a ∈ Uad.

4. Remarks

The worst scenario method significantly extends the solvability of problems,
where some uncertain behaviour in the input has to be taken into account. Com-
pared to stochastic methods it can be sometimes too pessimistic—it searches for
critical data even in the case, when the probability of their occurrence is small.
On the other hand, the method does not require any probabilistic information on
the data distribution and another pros is the relative simplicity and wide appli-
cability of the method. For comprehensive guide on the method we refer [3] and
the references therein. This monograph contains also clues to other approaches
to problems with uncertainties.

We have adopted the method in the case of nonlinear one-dimensional prob-
lem of the monotone type, where suitable conditions on the uncertain data (the
coefficient of the equation) were introduced so that we could apply the general
abstract scheme of the method presented in [3]. The method’s keystone is the
compactness of the set of admissible functions Uad. Here we have been success-
ful due to the restriction of the range of uncertainty on the interval of a final
length, so that Arzelà-Ascoli theorem could be applied. Since this interval can
be arbitrarily large, this limitation is not significant from the technical point of
view (the range of possible values of the solution can be usually estimated based
on a concrete physical problem). We note that the reformulation of analogous
conditions to a higher dimension is a more difficult task and is the subject mat-
ter (not in a full generality) of the forthcoming paper [2]. A possible relaxation
of these conditions remains an open problem.

We have not discussed the numerical aspects of the problem. It requires a dis-
cretization of both the space, where the solution is looked for and the set of
admissible data. It means that we reformulate the Problems 1 and 2 on the
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finite-dimensional subsets Vh ⊂ H1
0 (I) and UM

ad ⊂ Uad, where h is the dis-
cretization parameter, e.g., this one from the finite element method and M

means an M -dimensional subset of Uad. The next step would consist in inves-
tigations of the existence and uniqueness of approximate solutions uh, â

M
h . Fi-

nally, the last step deals with the convergence analysis âMh → â, uh(â
M
h ) → u(â),

Φ
(
âMh , uh(â

M
h )

)
→ Φ

(
â, u(â)

)
in relevant function spaces as h → 0 and M → ∞.

This as well as some numerical experiments are subject of further research.
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