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AN OPTIMAL DESIGN WITH RESPECT TO

A VARIABLE THICKNESS OF A VISCOELASTIC

BEAM IN A DYNAMIC BOUNDARY CONTACT

Igor Bock — Mária Kečkemétyová

ABSTRACT. We deal with the optimal control problem governed by a hyper-
bolic variational inequality describing the perpendicular vibrations of a beam

clamped on the left end with a rigid obstacle at the right end. A variable thick-
ness of a beam plays the role of a control parameter.

1. Introduction

The dynamic contact problems are not frequently solved in the framework of
variational inequalities. The inner dynamic obstacle problem for a viscoelastic
plate with moderately large deflections has been solved in [2]. We deal here
with an optimal design problem for a viscoelastic cantilever beam in a dynamic
contact on one part of the boundary. A variable thickness of a beam plays the role
of a control variable. A similar problem has been solved in [3] for the stationary
elastic case. In contrast to it there is no uniqueness result in the dynamic case
and hence the minimum will depend both on the thickness as the control and the
deflection as the state variable. In order to achieve a priori estimates of solutions
in a minimizing sequence of a cost functional we assume the bounded admissible
set of solutions. Solving the state hyperbolic variational inequality we apply the
method of penalization in a similar way as in the case of Mindlin–Timoshenko
model considered in [1].
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2. Solving of the state problem

2.1. Setting of the state problem

We consider a short memory viscoelastic beam of the length L > 0. Its vari-
able thickness is expressed by a positive function x 7→ e(x), x ∈ [0, L], the
constants di > 0, i = 0, 1, involve the material and geometrical characteris-
tics. For simplicity we assume ρ = 1 the density of the material. The beam is
clamped on the left end and free on its right end. Moreover the right end is
unilaterally supported. If f : (0, T ] × (0, L) 7→ R is a perpendicular load acting
on the beam, u0 : (0, L) 7→ R, v0 : (0, L) 7→ R the initial displacement and veloc-
ity respectively, then its vertical displacement u : (0, T ]× (0, L) 7→ R solves the
following hyperbolic initial-boundary value problem with an unknown contact
force g : (0, T ] 7→ R and the complementary conditions in the point L.

e(x)utt +
[

e3(x)(d1utxx + d0uxx)
]

xx
= f(t, x) in (0, L)× (0, T ], (1)

u(t, 0) = ux(t, 0) = 0, t ∈ (0, T ], (2)

uxx(t, L) = 0, t ∈ (0, T ], (3)

u(t, L) ≥ 0,
[

e3(x)(d1utxx + d0uxx)
]

x
(t, L) = g(t) ≥ 0, u(t, L)g(t) = 0, (4)

u(0, x) = u0(x), (5)

ut(0, x) = v0(x), x ∈ (0, L). (6)

In order to solve the problem (1)–(6) we formulate its weak solution as a solution

of a hyperbolic variational inequality.

We set I = (0, T ), Q = I × (0, L) and introduce the following spaces:

L2(0, L) =







y : (0, L) 7→ R;

L
∫

0

y2 dx < ∞







,

Hk(0, L) =
{

y ∈ L2(0, L) : y
(k) ∈ L2(0, L)

}

, k > 0,

V =
{

y ∈ H2(0, L) : y(0) = y′(0) = 0
}

.

The spaces L2(0, L) and V are the Hilbert spaces with the inner products and
the norms

(y, z) =

L
∫

0

y(x)z(x) dx, |y|0 = (y, y)1/2, y, z ∈ L2(0, L),
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(

(y, z)
)

=

L
∫

0

y′′(x)z′′(x) dx, ‖y‖ =
(

(y, y)
)1/2

, y, z ∈ V.

Further, we set the Hilbert space

V := H1(I;V ) =
{

y ∈ L2(I;V ) : ẏ ≡ yt ∈ L2(I;V )
}

with the inner product and the norm

(y, z)V =

T
∫

0

[(

(y, z)
)

+
(

(ẏ, ż)
)]

dt, ‖y‖V = (y, y)
1/2
V

.

Let X be a Banach space. We denote by X∗ the dual Banach space of all linear
continuous functionals over X and by Lp(I;X) the Banach space of all functions
y : I 7→ X such that

‖y(·)‖X ∈ Lp(0, T ), p ∈ [1,+∞].

Further we denote by

C(Ī;X) and Cw(Ī;X)

the spaces of continuous, respectively weakly continuous functions

y : Ī 7→ X, Ī = [0, T ].

We introduce the convex cones

K = {w ∈ V : w(L) ≥ 0}, K =
{

y ∈ V : y(t, L) ≥ 0 for all t ∈ (0, T ]
}

and assume

f ∈ L2(Q), u0 ∈ K, v0 ∈ L2(Ω), e ∈ C2
(

[0, L]
)

, 0 < e1 ≤ e(x) ≤ e2.

We utilize the fact that the set K is a convex cone and formulate a weak
solution of the problem (1)–(6) as a solution of a variational inequality with
a complementarity condition.Definition 2.1. Function u ∈ K is a weak solution of the problem (1)–(6)

if ü ∈
(

L∞(I;V )
)∗
, u̇ ∈ Cw

(

Ī , L2(0, L)
)

, the initial condition (5) holds, the
condition (6) is satisfied in a weak sense and

〈〈ü, ey〉〉+

∫

Q

[

e3(x)(d1u̇+ d0u)xxyxx − f(t, x)y(t, x)
]

dx dt = 〈g, y(·, L)〉I , (7)

for all y ∈ L∞(I;V ),

where g ∈
(

L∞(I)
)∗

is a functional satisfying

〈g, v(·, L)〉I ≥ 0, for all v ∈ K, (8)

〈g, u(·, L)〉I = 0. (9)

17



IGOR BOCK — MÁRIA KEČKEMÉTYOVÁ

We remark that the expression 〈〈·, ·〉〉 means the duality between
(

L∞(I;V )
)∗

and L∞(I;V ) as the extension of the inner product in the space L2(Q) and the

expression 〈·, ·〉I means the duality between
(

L∞(I)
)∗

and L∞(I).

2.2. Penalization

We define for ε > 0 the penalized problem in the variational form:

To find uε ∈ V such that üε ∈ L2(Q) and
∫

Q

[

e(x)üεy + e3(x)(d1u̇ε + d0uε)xxyxx − fy
]

dx dt

=

∫

I

ε−1u−

ε (t, L)y(t, L) dt for all y ∈ L2(I, V ), (10)

uε(0, x) = u0(x), u̇ε(0, x) = v0(x) x ∈ (0, L), with u−

ε = max{0,−uε}. (11)

We verify the existence of a solution to the penalized problem and useful
a priori estimates by the Galerkin method.Theorem 2.2. There exists a unique solution u ≡ uε of the problem (10), (11)
satisfying the estimate

‖u̇ε‖
2
C(Ī,L2(0,L)) + ‖u̇ε‖

2
L2(I,V )

≤ C(d0, d1, e1, e2, u0, v0, f), C(d0, d1, e1, e2, u0, v0, f)

=

(

2

e1
+

1

d1e
3
1

)(

e2|v0|
2
0 + d0e

3
2‖u0‖

2 +
2

e1
‖f‖2L1(I,L2(0,L))

)

. (12)

P r o o f. Let us denote a basis of V by {wi ∈ V ; i ∈ N}. We construct the
Galerkin approximation um of a solution in the form

um(t) =

m
∑

i=1

αi(t)wi, αi(t) ∈ R, i = 1, . . . ,m, m ∈ N,

L
∫

0

(

e(x)üm(t)wi + e3(x)(d1u̇m + d0um)xxwixx

)

dx

=

L
∫

0

f(t)wi dx+ ε−1u−

m(t, L)wi(L), i = 1, . . . ,m, (13)

um(0) = u0m, u̇m(0) = v0m, u0m → u0 in V and v0m → v0 in L2(0, L). (14)

The solution um is defined on a certain interval Im = (0, tm), tm < T after apply-
ing the theorem on local existence and the uniqueness of a solution {α1, . . . , αm}
of the 2nd-order system of ordinary differential equations. It can be extended
to the whole interval [0, T ] as a consequence of a priori estimates that we prove
next.
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After multiplying the equation (13) by α̇i(t), summing up with respect to i

and integrating we obtain the estimate

‖u̇m‖2C(Īm;L2(0,L)) + ‖u̇m‖2L2(Im;V ) + ‖um‖2C(Īm;V )

+ ε−1‖u−

m(·, L)‖2C(Īm) ≤ c1,

c1 ≡ c1(d0, d1, e1, e2, u0, v0, f). (15)

As the right-hand side of this estimate does not depend on tm a solution can be
prolonged to the whole interval I with the a priori estimate

‖u̇m‖2C(Ī;L2(0,L)) + ‖u̇m‖2L2(I;V )

+ ‖um‖2C(Ī;V ) + ε−1‖u−

m(·, L)‖2C(Ī) ≤ c2. (16)

Moreover, after multiplying (13) with α̈ summing up and integrating we have
the estimate

‖üm‖2L2(Q) ≤ cε, m ∈ N. (17)

We proceed with the convergence of the Galerkin approximation. Applying
the estimates (16), (17) and the compact imbedding theorem we obtain for
a subsequence of {um} (denoted again by {um}) a function u ∈ V with ü ∈ L2(Q)
and the convergences

üm ⇀ ü in L2(Q),

u̇m ⇀∗ u̇ in L∞

(

I;L2(0, L)
)

,

u̇m(t) ⇀ u̇(t) in L2(0, L) for all t ∈ Ī , (18)

u̇m ⇀ u̇ in L2(I;V ),

um ⇀∗ u in L∞(I;V ),

um(t) ⇀ u(t) in V for all t ∈ Ī .

Let

µ ∈ N, zµ =

µ
∑

i=1

φi(t)wi, φi ∈ D(0, T ), i = 1, . . . , µ.

The convergence process (18) implies
∫

Q

[

e(x)üzµ + e3(x)(d1u̇+ d0u)xxzµxx − fzµ
]

dx dt =

∫

I

ε−1u−(t, L)zµ(t, L) dt.

Functions {zµ} form a dense subset of the set L2(I;V ), hence a function u ≡ uε

fulfils the identity (10). The initial conditions (11) follow due to (14) and the
proof of the existence of a solution is complete. �
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In order to achieve the a priori estimate (12) we put

y =

{

u̇ε for t ≤ s,

0 for t > s

in (10) with an arbitrary s ∈ I.

After performing the integration we obtain the inequalities

1

2
e1|u̇ε|

2
0(s) ≤

1

2
e2|v0|

2
0 +

1

2
d0e

3
2‖u0‖

2 +

s
∫

0

(f, u̇ε)(t) dt

≤
1

2
e2|v0|

2
0 +

1

2
d0e

3
2‖u0‖

2 +
1

e1
‖f‖2L1(I;L2(0,L))

+
1

4
e1‖u̇ε‖

2
L∞(I,L2(0,L)) for all s ∈ I,

1

4
e1‖u̇ε‖

2
L∞(I,L2(0,L)) ≤

1

2
e2|v0|

2
0 +

1

2
d0e

3
2‖u0‖

2 +
1

e1
‖f‖2L1(I;L2(0,L)),

d1e
3
0‖u̇ε‖

2
L2(I,V ) ≤ e2|v0|

2
0 + d0e

3
2‖u0‖

2 +
1

e1
‖f‖2L1(I;L2(0,L))

+
1

4
e1‖u̇ε‖

2
L∞(I,L2(0,L))

and the estimate (12) follows.

2.3. The limit process to the original state problem

Let us denote by uε a solution of the penalized problem (10), (11). The a priori

estimates and the convergence process derived in the previous section imply the
estimate

‖u̇ε‖
2
C(Ī;L2(0,L)) + ‖u̇ε‖

2
L2(I;V )

+ ‖uε‖
2
C(Ī;V ) + ε−1‖u−

ε (·, L)‖
2
C(Ī) ≤ c2. (19)

Let us set
y(x) = x2, x ∈ [0, L]

in (10). After performing the integration the estimate (19) implies

0 ≤

T
∫

0

ε−1u−

ε (t, L) dt ≤ c3, (20)

‖üε‖L1(I;V ∗) ≤ c4. (21)

Then there exist a sequence εnց 0, a function u∈V and a functional g∈
(

L∞(I)
)∗

such that

ü ∈
(

L∞(I, V )
)∗
, u̇ ∈ L∞

(

I, L2(0, L)
)

∩ Cw

(

Ī , L2(0, L)
)

,
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and for un ≡ uεn the following convergences hold

ün ⇀∗ ü in
(

L∞(I;V )
)∗
,

u̇n(t, ·) ⇀ u̇(t, ·) in L2(0, L) for all t ∈ [0, T ],

u̇n ⇀ u̇ in L2(I;V ),

u̇n ⇀∗ u̇ in L∞

(

I;L2(0, L)
)

,

un ⇀∗ u in L∞(I;V ), (22)

un(t, ·) ⇀ u(t, ·) in V for all t ∈ [0, T ],

un(·, L) → u(·, L) in C(Ī),

u−

n (·, L) → 0 in C(Ī),

ε−1
n u−

n (·, L) ⇀
∗ g in

(

L∞(I)
)∗
.

Let us define the operators Ai(e) : V 7→ V ∗ by

〈

Ai(e)u, y
〉

∗
= di

L
∫

0

e3(x)uxxyxx dx, u, y ∈ V, i = 0, 1. (23)

The performed convergences imply that the limit function u satisfies in V ∗ the
equation

eü+A1(e)u̇+A0(e)u = f + g, (24)

where eü ∈
(

L∞(I;V )
)∗

is defined by

〈〈eü, y〉〉 = 〈〈ü, ey〉〉 for all y ∈ L∞(I;V ).

The limit functional g represents a contact force acting at the right end of the
beam and fulfils

〈〈g, v〉〉 = 〈g, v(., L)〉I ≥ 0 for all v ∈ K

due to the last convergence in (22).

It remains to prove 〈g, u(., L)〉I = 0. Applying the two last convergences
in (22) we really obtain

〈g, u(., L)〉I = lim
n→∞

∫

I

ε−1
n ‖u−

n (., L)‖
2
C(Ī) dt = 0.

The initial condition (5) is fulfilled in the space V and (6) is satisfied in the
weak sense due to the second limit in (22). Hence we have proved the next
theorem.
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u0 ∈ K, v0 ∈ L2(0, L), f ∈ L2(Q), e ∈ C2[0, L], 0 < e1 ≤ e(x) ≤ e2, x ∈ [0, L].

Then there exists a weak solution of the state problem (1)–(6) fulfilling the esti-

mate

‖u̇ε‖
2
L∞(I,L2(0,L)) + ‖u̇ε‖

2
L2(I,V ) ≤ C(d0, d1, e1, e2, u0, v0, f) (25)

with the constant C(d0, d1, e1, e2, u0, v0, f) defined in (12).

3. Optimal control problem

We consider a cost functional

J : V × C2
(

[0, L]
)

7→ R
+

fulfilling the assumption

un ⇀ u in V, en → e in C2
(

[0, L]
)

⇒ J(u, e) ≤ lim inf
n→∞

J(un, en).

Let

Ead =
{

e ∈ H3(0, L) : 0 < e1 ≤ e(x) ≤ e2 for all x ∈ [0, L], ‖e‖H3(0,L) ≤ e3

}

be the set of admissible thicknesses. We remark thatEad is compact in C2
(

[0, L]
)

.

Before formulating the Optimal control problem we introduce the space of
functions

W =
{

v ∈ L∞

(

I;L2(0, L)
)

: ∃ v̇ ∈ L∞(I;V )∗ and {vn} ⊂ H1
(

I;L2(0, L)
)

such that vn ⇀∗ v in L∞

(

I;L2(0, L)
)

, v̇n ⇀∗ v̇ in L∞(I;V )∗
}

.Optimal ontrol problem P. To find a couple (u∗, e∗) ∈ Uad(e∗) × Ead

such that

J(u∗, e∗) ≤ J(u, e) for all (u, e) ∈ Uad(e)× Ead, (26)

Uad(e) =
{

u ∈ K : u̇ ∈ W, u is a weak solution of (1)–(6),

‖u̇‖2L∞(I;L2(0,L)) + ‖u‖2L∞(I;V ) ≤ C1

}

(27)

with C1 ≥ C(d0, d1, e1, e2, u0, v0, f) - a positive constant defined in (15).

The construction of a solution u ∈ K using the penalization method in The-
orem 2.3 implies that Uad(e) 6= ∅ for every e ∈ Ead.Theorem 3.1. There exists a solution of the Optimal control problem P.
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P r o o f. Let
{

(un, en)
}

∈ Uad(en)×Ead be a minimizing sequence, i.e.,

lim
n→∞

J(un, en) = inf
Uad(e)×Ead

J(u, e).

Due to the boundedness and compactness of the sequence in the appropriate
spaces there exist (u∗, e∗) ∈ K×Ead and a subsequence denoted again by (un, en)
such that

en → e∗ in C2
(

[0, T ]
)

, un ⇀ u∗ in V. (28)

The elements un ∈ Uad(en) are weak solutions of the State problem (1)–(6) with
e ≡ en and satisfy

〈〈ün, eny〉〉+

∫

Q

[

e3n(x)(d1u̇n + d0un)xxyxx − f(t, x)y(t, x)
]

dx dt

= 〈gn, y(·, L)〉I for all y ∈ L∞(I;V ) (29)

with functionals gn ∈
(

L∞(I)
)∗
, n ∈ N fulfilling

〈gn, v(·, L)〉I ≥ 0, for all v ∈ K, (30)

〈gn, un(·, L)〉I = 0. (31)

We use the similar approach as in the proof of the existence in Theorem 2.3 in
order to verify u∗ ∈ Uad(e∗). We have, due to the fact that u̇n ∈ W, the relation

〈〈ün, z〉〉 =
(

u̇n(T ), z
)

−
(

u̇n(0), z
)

=
(

u̇n(T )− v0, z
)

for all z ∈ V.

After inserting y(x) ≡ x2 in (29) we obtain

L
∫

0

[

(

u̇n(T, x)− v0(x)
)

en(x)x
2 dx+ 2d1e

3
n(x)

(

un(T, x)− u0(x)
)

xx

]

dx

+

∫

Q

[

2d0e
3
n(x)un(t, x)xx − f(t, x)x2

]

dx dt = L2〈gn, 1〉I .

Using the definition of the admissible set Uad and the property (30) of the
functionals gn we arrive to the estimates

‖gn‖(
L∞(I)

)

∗ ≤ c5

and

‖ün‖(
L∞(I,V )

)

∗ ≤ c6.

Then there exists the subsequence of {un, en, gn} (denoted by {un, en, gn}) ful-

filling the convergence (28) and gn ⇀∗ g in
(

L∞(I)
)∗

such that u∗ ∈ Uad(e∗)
with a contact functional g ≡ g∗.
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Lower semicontinuity properties of the functional J imply

J(u∗, e∗) ≤ lim inf
n→∞

J(un, en) = inf
Uad(e)×Ead

J(u, e).

Then
J(u∗, e∗) = min

Uad(e)×Ead

J(u, e)

and the proof is complete. �

Remark 3.2. We have chosen an admissible set Uad(e) in a form (27) because
there are no uniqueness and no a priori estimates of solutions of the state vari-
ational inequality. The smoothness assumption e ∈ H3(0, L) is inevitable due
to the appearance of the control parameter e in the term connected with the
second derivative ü ∈

(

L∞(I, V )
)∗
.
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[2] BOCK, I.—JARUŠEK, J.: Unilateral dynamic contact of viscoelastic von Kármán plates,
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