VERSITA

ON THE KNESER-HUKUHARA PROPERTY FOR AN INTEGRO-DIFFERENTIAL EQUATION IN BANACH SPACES

Aldona Dutkiewicz

ABSTRACT. In this paper we investigate some topological properties of solutions sets of some integro-differential equations in Banach spaces. Our assumptions and proofs are expressed in terms of the measure of weak noncompactness.

1. Introduction.

Let I = [0, a] be a compact interval in \mathbb{R} , $B = \{x \in E : ||x|| \le b\}$ and let E be a sequentially weakly complete Banach space. Throughout this paper we shall assume that $f : I \times B \mapsto E$ and $g : I^2 \times B \mapsto E$ are functions continuous in the weak—weak sense, that is for every $t \in I$, $x \in B$ and arbitrary weak neighbourhood U of the point f(t, x) there exists an $\varepsilon > 0$ and a weak neighbourhood Vof x so that for every $y \in V \cap B$, $s \in I$, $|s - t| < \varepsilon$, $f(s, y) \in U$ is valid.

Consider the Cauchy problem

$$x^{(m)}(t) = f(t, x(t)) + \int_{0}^{t} g(t, s, x(s)) ds,$$

$$x(0) = 0, x'(0) = \eta_{1}, \dots, x^{(m-1)}(0) = \eta_{m-1},$$
(1)

where $m \geq 1$ and $\eta_1, \ldots, \eta_{m-1} \in E$ and $x^{(m)}$ means the *m*th order derivative in the weak sense and integral denotes the weak Riemann integral. Let us recall that the weak Riemann integral of a weak continuous function y(t) $(t \in I)$ with values in E is defined as the weak limit of Riemann sums (cf. [7]).

^{© 2011} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 47G20, 45J05.

Keywords: integro-differential equation, topological properties of solution sets, measures of weak noncompactness.

In this paper we prove that the set of all weak solutions of this problem, defined on a compact subinterval J = [0, d] of I, for some d > 0, is nonempty, compact and connected in the space $C_w(J, E)$ of weakly continuous functions $J \mapsto E$ with the topology of weak uniform convergence.

The method of the proof of our main result is suggested by the paper [9] concerning differential equations. Nevertheless the idea to consider the ε -approximate solutions set of Volterra integral equation

$$x(t) = f(t) + \int_{0}^{t} g(t, s, x(s)) ds$$

goes back to H u k u h a r a [6], who proved that this set is connected in $C(J, \mathbb{R}^n)$.

Our approach is to impose a weak compactness type conditions expressed in terms of the measure of weak noncompactness introduced by D e Blasi [5].

Let A be a nonvoid bounded subset of E. The measure of weak noncompactness $\beta(A)$ is defined by

 $\beta(A) = \inf \{ \varepsilon > 0 : \text{there exists a weakly compact set } K \text{ such that } A \subset K + \varepsilon B \},$ where B is the norm unit ball.

We make use of the following properties of the measure of weak noncompactness β (for bounded nonvoid subsets A and B of E):

 $\begin{aligned} 1^{\circ} \quad A \subset B \Rightarrow \beta(A) &\leq \beta(B); \\ 2^{\circ} \quad \beta(\bar{A}^w) &= \beta(A) \text{ where } \bar{A}^w \text{ denotes the weak closure of } A; \\ 3^{\circ} \quad \beta(A) &= 0 \Leftrightarrow \bar{A}^w \text{ is weakly compact}; \\ 4^{\circ} \quad \beta(A \cup B) &= \max\left(\beta(A), \beta(B)\right); \\ 5^{\circ} \quad \beta(\operatorname{conv} A) &= \beta(A); \\ 6^{\circ} \quad \beta(A + B) &\leq \beta(A) + \beta(B); \\ 7^{\circ} \quad \beta(\lambda A) &= |\lambda|\beta(A), \ (\lambda \in I\!\!R); \\ 8^{\circ} \quad \beta(\bigcup_{|\lambda| \leq h} \lambda A) &= h\beta(A). \end{aligned}$

2. Basic lemmas

Let V be a subset of $C_w(J, E)$. Put

$$V(t) = \{u(t) : u \in V\}$$
 and $V(T) = \{u(t) : u \in V, t \in T\}$.

In what follows we shall use the following Ambrosetti-type

LEMMA 1. If the set V is strongly equicontinuous and uniformly bounded, then

ON THE KNESER-HUKUHARA PROPERTY

- (i) the function $t \mapsto \beta(V(t))$ is continuous on J;
- (ii) for each compact subset T of J

$$\beta(V(T)) = \sup \left\{ \beta(V(t)) : t \in T \right\},\$$

and Krasnoselskii-type.

LEMMA 2 ([9]). For any $\varphi \in E^*$, $\varepsilon \ge 0$ and for any weakly continuous function $z: J \mapsto B$ there exists a weak neighbourhood U of 0 in E such that $\|\varphi(f(t, z(t)) - f(t, y(t)))\| \le \varepsilon$ for $t \in J$ and for every weakly continuous function $y: J \mapsto B$ such that $y(s) - z(s) \in U$ for all $s \in J$.

In our considerations we apply the following

LEMMA 3 ([8]). Let $m \ge 1$ be a natural number and let $w: [0, 2b] \mapsto \mathbb{R}_+$ be a continuous nondecreasing function such that w(0) = 0, w(r) > 0 for r > 0and

$$\int_{0+} \frac{dr}{\sqrt[m]{r^{m-1}w(r)}} = \infty$$

If $u: [0, c) \mapsto [0, 2b]$ is a C^m function satisfying the inequalities

$$u^{(j)}(t) \ge 0, \qquad j = 0, 1, \dots, m, \\ u^{(j)}(0) = 0, \qquad j = 0, 1, \dots, m - 1, \\ u^{(m)}(t) \le w(u(t)), \qquad t \in [0, c),$$

then u = 0.

3. The main result

Put

$$M_1 = \sup\{\|f(t, x)\| \colon t \in I, \ x \in B\},\$$

$$M_2 = \sup\{\|g(t, s, x)\| \colon t, \ s \in I, \ x \in B\}.$$

Choose a positive number d such that $d \leq a$ and

$$\sum_{j=1}^{m-1} \|\eta_j\| \frac{d^j}{j!} + M_1 \frac{d^m}{m!} + M_2 \frac{d^{m+1}}{m!} < b.$$
(2)

Let J = [0, d]. By $C_w(J, E)$ we denote the space of weakly continuous functions $J \mapsto E$ endowed with the topology of weak uniform convergence and by E^* the space of continuous linear functionals on E.

Our main result is given by the following Kneser-Hukuhara-type

THEOREM 1. Let $w: \mathbb{R}_+ \mapsto \mathbb{R}_+$ be a continuous nondecreasing function such that w(0) = 0 and

$$\int_{0+} \frac{dr}{\sqrt[m]{r^{m-1}w(r)}} = \infty.$$
(3)

If

$$\beta(f(J \times X)) \le w(\beta(X)) \quad for \quad X \subset B,$$
(4)

and the set $g(I^2 \times B)$ is relatively weakly compact in E, then the set S of all weak solutions of (1) defined on J is nonempty, compact and connected in $C_w(J, E)$.

Proof. **1°** Let \widetilde{B} denote the set of all weakly continuous functions $J \mapsto B$. We shall consider \widetilde{B} as a topological subspace of $C_w(J, E)$. For $t \in J$ and $x \in \widetilde{B}$ put

$$\widetilde{g}(t,x) = \int_{0}^{t} g(t,s,x(s)) \, ds.$$

Fix $\tau \in J$ and $x \in \widetilde{B}$. As the set $J \times x(J)$ is weakly compact, from the weak continuity of g it follows that for each $\varepsilon > 0$ and $\phi \in E^*$ such that $\|\phi\| \le 1$ there exists $\delta > 0$ such that

$$\phi(g(t,s,x(s)) - g(\tau,s,x(s))) < \varepsilon$$
 for $t,s \in J$ with $|t-\tau| < \delta$.

In view of the inequality

$$\phi\Big(\widetilde{g}(t,x) - \widetilde{g}(\tau,x)\Big) \le M_2|t-\tau| + \int_0^\tau \phi\Big(g\big(t,s,x(s)\big) - g\big(\tau,s,x(s)\big)\Big) \, ds,$$

this implies the weak continuity of the function $t \to \tilde{g}(t, x)$. On the other hand, applying Lemma 2, we can prove that for each fixed $t \in J$ the function $x \to \tilde{g}(t, x)$ is weakly continuous on \tilde{B} . Moreover

$$\|\widetilde{g}(t,x)\| \le M_2 t$$
 for $t \in J$ and $x \in B$.

 $2^{\mathbf{o}}$ The initial value problem (1) is equivalent to the following integral equation

$$x(t) = p(t) + \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} \Big[f\big(s, x(s)\big) + \widetilde{g}(s, x) \Big] ds \qquad (t \in J), \quad (5)$$

where $p(t) = \sum_{j=1}^{m-1} \eta_j \frac{t^j}{j!}$.

Define the operator F by the formula

$$F(x)(t) = p(t) + \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} \Big[f\big(s, x(s)\big) + \tilde{g}(s, x) \Big] ds \qquad (t \in J, \ x \in \widetilde{B}).$$

For simplicity assume that $m \geq 2$.

Let us remark that if

$$y(t) = \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} f(s, x(s)) \, ds$$

and

$$z(t) = \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} \widetilde{g}(s,x) \, ds,$$

then

$$y'(t) = \frac{1}{(m-2)!} \int_{0}^{t} (t-s)^{m-2} f(s, x(s)) \, ds$$

and

$$z'(t) = \frac{1}{(m-2)!} \int_{0}^{t} (t-s)^{m-2} \widetilde{g}(s,x) \, ds,$$

so that

$$||y'(t)|| \le \frac{1}{(m-2)!} \int_{0}^{t} (t-s)^{m-2} M_1 \, ds = M_1 \frac{t^{m-1}}{(m-1)!}$$

and

$$\|z'(t)\| \le \frac{1}{(m-2)!} \int_0^t (t-s)^{m-2} M_2 t \, ds = M_2 \frac{t^m}{(m-1)!}.$$

Moreover,

$$||p'(t)|| \le \sum_{j=1}^{m-1} ||\eta_j|| \frac{d^{j-1}}{(j-1)!}$$

By the mean value theorem we obtain

$$\|F(x)(t) - F(x)(\tau)\| \le K |t - \tau| \qquad (x \in \widetilde{B}, t, \tau \in J),$$
(6)

where

$$K = \sum_{j=1}^{m-1} \|\eta_j\| \frac{d^{j-1}}{(j-1)!} + M_1 \frac{d^{m-1}}{(m-1)!} + M_2 \frac{d^m}{(m-1)!}$$

.

Since

$$\|y(t)\| \le \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} M_1 \, ds = M_1 \frac{t^m}{m!}$$

and

$$||z(t)|| \le \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} M_2 t \, ds = M_2 \frac{t^{m+1}}{m!},$$

$$||F(x)(t)|| \le L \qquad (x \in \widetilde{B}, \ t \in J), \tag{7}$$

where $L = \sum_{j=1}^{m-1} \|\eta_j\| \frac{d^j}{j!} + M_1 \frac{d^m}{m!} + M_2 \frac{d^{m+1}}{m!}$.

From (2), (6) and (7) it is clear that $F(\widetilde{B}) \subset \widetilde{B}$ and the set $F(\widetilde{B})$ is strongly equicontinuous. By Lemma 2 we can prove that F is a continuous.

Put $W = \bigcup_{0 < \lambda < d} \lambda \operatorname{\overline{conv}} g(I^2 \times B).$

Since for convex subsets of E the closure in the norm topology coincides with the weak closure [4, Th. II. 1], it is clear that

$$\int_{0}^{t} (t-s)^{m-1} \widetilde{g}(s,x) \, ds \in t \, \overline{\operatorname{conv}} \left\{ (t-s)^{m-1} \widetilde{g}(s,x) \colon s \in J, \ x \in \widetilde{B} \right\}$$
$$= t \, \overline{\operatorname{conv}} \left\{ (t-s)^{m-1} W \colon s \in [0,t] \right\},$$

from the above and corresponding properties of β it follows that

$$\beta\left(\left\{\frac{1}{(m-1)!}\int_{0}^{t}(t-s)^{m-1}\widetilde{g}(s,x)\,ds\colon x\in\widetilde{B}\right\}\right)$$

$$\leq\beta\left(\frac{1}{(m-1)!}t\,\overline{\operatorname{conv}}\left\{(t-s)^{m-1}W\colon s\in J\right\}\right)$$

$$\leq\beta\left(\frac{1}{(m-1)!}t\{(t-s)^{m-1}W\colon s\in J\}\right)$$

$$=\max_{s\in J}\left(\frac{1}{(m-1)!}t(t-s)^{m-1}\right)\beta(W)$$

$$=\frac{1}{(m-1)!}t^{m}\beta(W)=0.$$
(8)

3° For given $\varepsilon > 0$ denote by S_{ε} the set of all $z \in \widetilde{B}$ such that

$$||z(t) - F(z)(t)|| < \varepsilon \text{ for all } t \in J.$$

The following lemma is proved in [9].

LEMMA 4. For each ε , $0 < \varepsilon < b - L$, the set S_{ε} is nonempty and connected in $C_w(J, E)$.

For any positive integer n we define

$$F_n(x)(t) = \begin{cases} p(t) & \text{if } 0 \le t \le \frac{d}{n}, \\ p(t) + \frac{1}{(m-1)!} \int_0^{t-\frac{d}{n}} (t-s)^{m-1} \Big[f\big(s, x(s)\big) + \widetilde{g}(s, x) \Big] ds & \text{if } \frac{d}{n} \le t \le d \end{cases}$$

ON THE KNESER-HUKUHARA PROPERTY

for $x \in \widetilde{B}$, $t \in J$. Analogously as for F, by inequalities (6) and (7), we can prove that F_n maps continuously \widetilde{B} into itself and

$$\|F_n(x)(t) - F(x)(t)\| \le K \frac{d}{n} \qquad (x \in \widetilde{B}, \ t \in J).$$
(9)

Moreover, there exists a unique $z_n \in \widetilde{B}$ such that $z_n = F_n(z_n)$. It is clear from (9) that $z_n \in S_{\varepsilon}$ for sufficiently large n.

Next we shall show that the set S is nonempty. From the above it follows that there exists a sequence (u_n) such that $u_n \in \widetilde{B}$ and

$$\lim_{n \to \infty} \sup_{t \in J} \|u_n(t) - F(u_n)(t)\| = 0.$$
(10)

Let $V = \{u_n : n \in N\}$. From (6) and (10) we deduce that the set V is strongly equicontinuous and

$$\beta(V(t)) = \beta(F(V)(t)) \quad \text{for} \quad t \in J.$$
(11)

Hence, by Lemma 1, the function $t \mapsto v(t) = \beta(V(t))$ is continuous on J.

Fix $t \in J$ and $\varepsilon > 0$. Choose $\delta > 0$ in such a way that

$$\left| (t-\tau)^{m-1} w \big(v(q) \big) - (t-s)^{m-1} w \big(v(s) \big) \right| < \varepsilon$$
(12)

if $|\tau - s| < \delta$, $|q - s| < \delta$, $q, s, \tau \in J$. Divide the interval [0, t] into n parts $0 = t_0 < t_1 < \cdots < t_n = t$ in such way that $\Delta t_i = t_i - t_{i-1} < \delta$ for $i = 1, \ldots, n$. Let $T_i = [t_{i-1}, t_i]$. By Lemma 1 for each i there exists $s_i \in T_i$ such that

$$\beta(V(T_i)) = v(s_i) \qquad (i = 1, \dots, n).$$

By (4) we obtain

$$\beta\left(\left\{(t-s)^{m-1}f(s,x(s)): x \in V, s \in T_i\right\}\right)$$

$$\leq (t-t_{i-1})^{m-1}\beta\left(f(T_i \times V(T_i))\right)$$

$$\leq (t-t_{i-1})^{m-1}w\left(\beta(V(T_i))\right)$$

$$= (t-t_{i-1})^{m-1}w(v(s_i)).$$

Since

$$\begin{split} F(V)(t) &\subset p(t) + \frac{1}{(m-1)!} \sum_{i=1}^{n} \Delta t_{i} \,\overline{\operatorname{conv}} \left\{ (t-s)^{m-1} f\left(s, x(s)\right) \colon x \in V, \, s \in T_{i} \right\} \\ &+ \frac{1}{(m-1)!} \left\{ \int_{0}^{t} (t-s)^{m-1} \widetilde{g}(s, x) \, ds \colon x \in V \right\}, \end{split}$$

from (8) and corresponding properties of β we have

$$\beta(F(V)(t)) \leq \frac{1}{(m-1)!} \beta\left(\sum_{i=1}^{n} \Delta t_i \operatorname{\overline{conv}} \{(t-s)^{m-1} f(s, x(s)) : x \in V, s \in T_i\}\right)$$
$$+ \frac{1}{(m-1)!} \beta\left(\left\{\int_{0}^{t} (t-s)^{m-1} \widetilde{g}(s, x) \, ds : x \in V\right\}\right)$$
$$= \frac{1}{(m-1)!} \sum_{i=1}^{n} \Delta t_i \beta\left\{(t-s)^{m-1} f(s, x(s)) : x \in V, s \in T_i\right\}$$
$$\leq \frac{1}{(m-1)!} \sum_{i=1}^{n} \Delta t_i (t-t_{i-1})^{m-1} w(v(s_i)).$$

Furthermore, from (12) we infer that

$$\frac{1}{(m-1)!} \sum_{i=1}^{n} (t-t_{i-1})^{m-1} w(v(s_i)) \Delta t_i$$

$$\leq \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} w(v(s)) \, ds + \frac{\varepsilon t}{(m-1)!}.$$

Therefore

$$\beta(F(V)(t)) \le \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds + \frac{\varepsilon t}{(m-1)!}.$$

Because ε is arbitrary

$$\beta(F(V)(t)) \le \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds \, .$$

Thus, by (11),

$$v(t) \le \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds \quad \text{for} \quad t \in J.$$

Putting $u(t) = \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} w(v(s)) ds$ we see that $u \in C^m$, $v(t) \le u(t)$, $u^{(j)}(t) \ge 0$ for $j = 0, 1, \dots, m, u^{(j)}(0) = 0$ for $j = 0, 1, \dots, m-1$ and

$$u^{(m)}(t) = w(v(t)) \le w(u(t))$$
 for $t \in J$.

As u(0) = 0, from Lemma 3 we deduce that u(t) = 0 for $t \in J$. Consequently, $\beta(V(t)) = v(t) = 0$ for $t \in J$, i.e., V(t) is relatively weakly compact for $t \in J$. Hence Ascoli's theorem implies that V is relatively compact in $C_w(J, E)$. Therefore the sequence (u_n) has a limit point x. From (10) and the continuity of F it follows that x = F(x), i.e., $x \in S$.

ON THE KNESER-HUKUHARA PROPERTY

4° Now we shall prove that the set S is compact and then that it is connected. Since F is continuous, S is closed in $C_w(J, E)$. As S = F(S), we have $\beta(S(t)) = \beta(F(S)(t))$ for $t \in J$. Therefore, repeating the argument from 3°, we can show that S is compact in $C_w(J, E)$. Suppose that S is not connected in $C_w(J, E)$. As S is compact, there are nonempty compact sets S_1, S_2 such that $S = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$, and consequently there are two disjoint open sets U_1, U_2 such that $S_1 \subset U_1, S_2 \subset U_2$. Let $U = U_1 \cup U_2$. We choose n_0 such that $\frac{1}{n_0} < b - L$. Suppose that for each $n \geq n_0$ there exists $u_n \in S_{\frac{1}{n}} \setminus U$. Put $V = \{u_n : n \in N\}$. Because $\lim_{n \to \infty} \sup_{t \in J} ||u_n(t) - F(u_n)(t)|| = 0$, using once more similar arguments as in 3°, we can prove that there exists $u_0 \in \overline{V}$ such that $u_0 = F(u_0)$, i.e., $u_0 \in S$. Furthermore, $\overline{V} \subset C_w(J, E) \setminus U$, as U is open, so that $u_0 \in S \setminus U$, a contradiction. Therefore there exists $k \in N$ such that $S_{\frac{1}{k}} \subset U$. Since $U_1 \cap S_{\frac{1}{k}} \neq \emptyset \neq U_2 \cap S_{\frac{1}{k}}$, this shows that $S_{\frac{1}{k}}$ is not connected, which contradicts Lemma 4. Hence S is connected.

REFERENCES

- ALEXANDROV, V. A.—DAIRBEKOV, N. S.: Remarks on the theorem of M. and S. Radulescu about an initial value problem for the differential equation x⁽ⁿ⁾ = f(t,x), Rev. Roumaine Math. Pures Appl. 37 (1992), 95–102.
- [2] BANAŚ, J.—GOEBEL, K.: Measures of Noncompactness in Banach Spaces, in: Lecture Notes in Pure and Appl. Math., Vol. 60, Marcel Dekker, New York, 1980.
- [3] CRAMER, E.—LAKSHMIKANTHAM, V.—MITCHELL, A. R.: On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 169–177.
- [4] DIESTEL, J.: Sequences and Series in Banach Spaces. Springer-Verlag, New York, 1984.
- [5] DE BLASI, F. S.: On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 21 (1977), 259–262.
- [6] HUKUHARA, M: Sur l'application qui fait correspondre á un point un continu bicompact, Proc. Japan Acad. Ser. A Math. Sci. 31 (1955), 5–7.
- [7] SZEP, A.: Existence theorems for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hunngar. 6 (1971), 197–203.
- [8] SZUFLA, S.: Osgood type conditions for an m-th order differential equation, Discuss. Math. Differential Incl. 18 (1998), 45–55.
- [9] SZUFLA, S.: Kneser's theorem for weak solutions of an mth-order ordinary differential equation in Banach spaces, Nonlinear Anal. 38 (1999), 785–791.

Received July 12, 2010

Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87 PL-61-614 Poznań POLAND E-mail: szukala@amu.edu.pl