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ON THE KNESER-HUKUHARA PROPERTY

FOR AN INTEGRO-DIFFERENTIAL EQUATION

IN BANACH SPACES

Aldona Dutkiewicz

ABSTRACT. In this paper we investigate some topological properties of solu-
tions sets of some integro-differential equations in Banach spaces. Our assump-
tions and proofs are expressed in terms of the measure of weak noncompactness.

1. Introduction.

Let I = [0, a] be a compact interval in IR, B = {x ∈ E : ‖x‖ ≤ b} and let E be
a sequentially weakly complete Banach space. Throughout this paper we shall
assume that f : I ×B 7→ E and g : I2 ×B 7→ E are functions continuous in the
weak—weak sense, that is for every t ∈ I, x ∈ B and arbitrary weak neighbour-
hood U of the point f(t, x) there exists an ε > 0 and a weak neighbourhood V

of x so that for every y ∈ V ∩ B, s ∈ I, |s− t| < ε, f(s, y) ∈ U is valid.

Consider the Cauchy problem

x(m)(t) = f
(
t, x(t)

)
+

t∫

0

g
(
t, s, x(s)

)
ds,

(1)

x(0) = 0, x′(0) = η1, . . . , x
(m−1)(0) = ηm−1,

where m ≥ 1 and η1, . . . , ηm−1 ∈ E and x(m) means the mth order derivative
in the weak sense and integral denotes the weak Riemann integral. Let us recall
that the weak Riemann integral of a weak continuous function y(t) (t ∈ I) with
values in E is defined as the weak limit of Riemann sums (cf. [7]).
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In this paper we prove that the set of all weak solutions of this problem,
defined on a compact subinterval J = [0, d] of I, for some d > 0, is nonempty,
compact and connected in the space Cw(J,E) of weakly continuous functions
J 7→ E with the topology of weak uniform convergence.

The method of the proof of our main result is suggested by the paper [9]
concerning differential equations. Nevertheless the idea to consider the ε-approx-
imate solutions set of Volterra integral equation

x(t) = f(t) +

t∫

0

g
(
t, s, x(s)

)
ds

goes back to H u k u h a r a [6], who proved that this set is connected in C(J, IRn).

Our approach is to impose a weak compactness type conditions expressed in
terms of the measure of weak noncompactness introduced by D e B l a s i [5].

Let A be a nonvoid bounded subset of E. The measure of weak noncompact-
ness β(A) is defined by

β(A) = inf{ε > 0 : there exists a weakly compact setK such thatA ⊂ K+ εB},

where B is the norm unit ball.

We make use of the following properties of the measure of weak noncompact-
ness β (for bounded nonvoid subsets A and B of E):

1◦ A ⊂ B ⇒ β(A) ≤ β(B);

2◦ β(Āw) = β(A) where Āw denotes the weak closure of A;

3◦ β(A) = 0 ⇔ Āw is weakly compact;

4◦ β(A ∪ B) = max
(
β(A), β(B)

)
;

5◦ β(convA) = β(A);

6◦ β(A+B) ≤ β(A) + β(B);

7◦ β(λA) = |λ|β(A), (λ ∈ IR);

8◦ β
(⋃

|λ|≤h λA
)
= hβ(A).

2. Basic lemmas

Let V be a subset of Cw(J,E). Put

V (t) =
{
u(t) : u ∈ V

}
and V (T ) =

{
u(t) : u ∈ V, t ∈ T

}
.

In what follows we shall use the following Ambrosetti-typeLemma 1. If the set V is strongly equicontinuous and uniformly bounded, then
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(i) the function t 7→ β
(
V (t)

)
is continuous on J;

(ii) for each compact subset T of J

β
(
V (T )

)
= sup

{
β
(
V (t)

)
: t ∈ T

}
,

and Krasnoselskii-type.Lemma 2 ([9]). For any ϕ ∈ E∗, ε ≥ 0 and for any weakly continuous function

z : J 7→ B there exists a weak neighbourhood U of 0 in E such that
∥∥ϕ
(
f(t, z(t))−

f(t, y(t))
)∥∥ ≤ ε for t ∈ J and for every weakly continuous function y : J 7→ B

such that y(s)− z(s) ∈ U for all s ∈ J.

In our considerations we apply the followingLemma 3 ([8]). Let m ≥ 1 be a natural number and let w : [0, 2b] 7→ IR+ be

a continuous nondecreasing function such that w(0) = 0, w(r) > 0 for r > 0
and ∫

0+

dr
m
√
rm−1w(r)

= ∞.

If u : [0, c) 7→ [0, 2b] is a Cm function satisfying the inequalities

u(j)(t) ≥ 0, j = 0, 1, . . . ,m,

u(j)(0) = 0, j = 0, 1, . . . ,m− 1,

u(m)(t) ≤ w
(
u(t)

)
, t ∈ [0, c),

then u = 0.

3. The main result

Put
M1 = sup

{
‖f(t, x)‖ : t ∈ I, x ∈ B

}
,

M2 = sup
{
‖g(t, s, x)‖ : t, s ∈ I, x ∈ B

}
.

Choose a positive number d such that d ≤ a and

m−1∑

j=1

‖ηj‖
dj

j!
+M1

dm

m!
+M2

dm+1

m!
< b. (2)

Let J = [0, d]. By Cw(J,E) we denote the space of weakly continuous functions
J 7→ E endowed with the topology of weak uniform convergence and by E∗ the
space of continuous linear functionals on E.

Our main result is given by the following Kneser-Hukuhara-type
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ALDONA DUTKIEWICZTheorem 1. Let w : IR+ 7→ IR+ be a continuous nondecreasing function such

that w(0) = 0 and ∫

0+

dr
m
√
rm−1w(r)

= ∞. (3)

If

β
(
f(J ×X)

)
≤ w

(
β(X)

)
for X ⊂ B, (4)

and the set g(I2×B) is relatively weakly compact in E, then the set S of all weak

solutions of (1) defined on J is nonempty, compact and connected in Cw(J,E).

P r o o f. 1
o Let B̃ denote the set of all weakly continuous functions J 7→ B. We

shall consider B̃ as a topological subspace of Cw(J,E). For t ∈ J and x ∈ B̃ put

g̃(t, x) =

t∫

0

g
(
t, s, x(s)

)
ds.

Fix τ ∈ J and x ∈ B̃. As the set J × x(J) is weakly compact, from the weak
continuity of g it follows that for each ε > 0 and φ ∈ E⋆ such that ‖φ‖ ≤ 1 there
exists δ > 0 such that

φ
(
g
(
t, s, x(s)

)
− g
(
τ, s, x(s)

))
< ε for t, s ∈ J with |t− τ | < δ.

In view of the inequality

φ
(
g̃(t, x)− g̃(τ, x)

)
≤ M2|t− τ |+

τ∫

0

φ
(
g
(
t, s, x(s)

)
− g
(
τ, s, x(s)

))
ds,

this implies the weak continuity of the function t → g̃(t, x). On the other hand,
applying Lemma 2, we can prove that for each fixed t ∈ J the function x →
g̃(t, x) is weakly continuous on B̃. Moreover

‖g̃(t, x)‖ ≤ M2t for t ∈ J and x ∈ B̃.

2
o The initial value problem (1) is equivalent to the following integral equa-

tion

x(t) = p(t) +
1

(m− 1)!

t∫

0

(t− s)m−1
[
f
(
s, x(s)

)
+ g̃(s, x)

]
ds (t ∈ J), (5)

where p(t) =
∑m−1

j=1 ηj
tj

j! .

Define the operator F by the formula

F (x)(t) = p(t) +
1

(m− 1)!

t∫

0

(t− s)m−1
[
f
(
s, x(s)

)
+ g̃(s, x)

]
ds (t ∈ J, x ∈ B̃).
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For simplicity assume that m ≥ 2.

Let us remark that if

y(t) =
1

(m− 1)!

t∫

0

(t− s)m−1f
(
s, x(s)

)
ds

and

z(t) =
1

(m− 1)!

t∫

0

(t− s)m−1g̃(s, x) ds,

then

y′(t) =
1

(m− 2)!

t∫

0

(t− s)m−2f
(
s, x(s)

)
ds

and

z′(t) =
1

(m− 2)!

t∫

0

(t− s)m−2g̃(s, x) ds,

so that

‖y′(t)‖ ≤
1

(m− 2)!

t∫

0

(t− s)m−2M1 ds = M1
tm−1

(m− 1)!

and

‖z′(t)‖ ≤
1

(m− 2)!

t∫

0

(t− s)m−2M2t ds = M2
tm

(m− 1)!
.

Moreover,

‖p′(t)‖ ≤
m−1∑

j=1

‖ηj‖
dj−1

(j − 1)!
.

By the mean value theorem we obtain

‖F (x)(t)− F (x)(τ)‖ ≤ K | t− τ | (x ∈ B̃, t, τ ∈ J), (6)

where

K =

m−1∑

j=1

‖ηj‖
dj−1

(j − 1)!
+M1

dm−1

(m− 1)!
+M2

dm

(m− 1)!
.

Since

‖y(t)‖ ≤
1

(m− 1)!

t∫

0

(t− s)m−1M1 ds = M1
tm

m!

and

‖z(t)‖ ≤
1

(m− 1)!

t∫

0

(t− s)m−1M2t ds = M2
tm+1

m!
,
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‖F (x)(t)‖ ≤ L (x ∈ B̃, t ∈ J), (7)

where L =
∑m−1

j=1 ‖ηj‖
dj

j! +M1
dm

m! +M2
dm+1

m! .

From (2), (6) and (7) it is clear that F (B̃) ⊂ B̃ and the set F (B̃) is strongly
equicontinuous. By Lemma 2 we can prove that F is a continuous.

Put W =
⋃

0≤λ≤d λ conv g(I2 ×B).

Since for convex subsets of E the closure in the norm topology coincides with
the weak closure [4, Th. II. 1], it is clear that

t∫

0

(t− s)m−1g̃(s, x) ds ∈ t conv
{
(t− s)m−1g̃(s, x) : s ∈ J, x ∈ B̃

}

= t conv
{
(t− s)m−1W : s ∈ [0, t]

}
,

from the above and corresponding properties of β it follows that

β

({
1

(m− 1)!

t∫

0

(t− s)m−1g̃(s, x) ds : x ∈ B̃

})

≤ β

(
1

(m− 1)!
t conv

{
(t− s)m−1W : s ∈ J

})

≤ β

(
1

(m− 1)!
t
{
(t− s)m−1W : s ∈ J

})

= max
s∈J

(
1

(m− 1)!
t(t− s)m−1

)
β(W )

=
1

(m− 1)!
tmβ(W ) = 0. (8)

3
o For given ε > 0 denote by Sε the set of all z ∈ B̃ such that

‖z(t)− F (z)(t)‖ < ε for allt ∈ J.

The following lemma is proved in [9].Lemma 4. For each ε, 0 < ε < b− L, the set Sε is nonempty and connected in

Cw(J,E).

For any positive integer n we define

Fn(x)(t) =





p(t) if 0 ≤ t ≤ d
n
,

p(t) + 1
(m−1)!

t− d
n∫

0

(t− s)m−1
[
f
(
s, x(s)

)
+ g̃(s, x)

]
ds if d

n
≤ t ≤ d
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for x ∈ B̃, t ∈ J . Analogously as for F, by inequalities (6) and (7), we can prove

that Fn maps continuosly B̃ into itself and

‖Fn(x)(t)− F (x)(t)‖ ≤ K
d

n
(x ∈ B̃, t ∈ J). (9)

Moreover, there exists a unique zn ∈ B̃ such that zn = Fn(zn). It is clear from (9)
that zn ∈ Sε for sufficiently large n.

Next we shall show that the set S is nonempty. From the above it follows that

there exists a sequence (un) such that un ∈ B̃ and

lim
n→∞

sup
t∈J

‖un(t)− F (un)(t)‖ = 0. (10)

Let V = {un : n ∈ N}. From (6) and (10) we deduce that the set V is strongly
equicontinuous and

β
(
V (t)

)
= β

(
F (V )(t)

)
for t ∈ J. (11)

Hence, by Lemma 1, the function t 7→ v(t) = β
(
V (t)

)
is continuous on J .

Fix t ∈ J and ε > 0. Choose δ > 0 in such a way that
∣∣(t− τ)m−1w

(
v(q)

)
− (t− s)m−1w

(
v(s)

)∣∣ < ε (12)

if |τ − s| < δ, |q − s| < δ, q, s, τ ∈ J . Divide the interval [0, t] into n parts
0 = t0 < t1 < · · · < tn = t in such way that ∆ti = ti − ti−1 < δ for i = 1, . . . , n.
Let Ti = [ti−1, ti]. By Lemma 1 for each i there exists si ∈ Ti such that

β
(
V (Ti)

)
= v(si) (i = 1, . . . , n).

By (4) we obtain

β

({
(t− s)m−1f

(
s, x(s)

)
: x ∈ V, s ∈ Ti

})

≤ (t− ti−1)
m−1β

(
f
(
Ti × V (Ti)

))

≤ (t− ti−1)
m−1w

(
β
(
V (Ti)

))

= (t− ti−1)
m−1w

(
v(si)

)
.

Since

F (V )(t) ⊂ p(t) +
1

(m− 1)!

n∑

i=1

∆ti conv
{
(t− s)m−1f

(
s, x(s)

)
: x ∈ V, s ∈ Ti

}

+
1

(m− 1)!





t∫

0

(t− s)m−1g̃(s, x) ds : x ∈ V



 ,
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from (8) and corresponding properties of β we have

β
(
F (V )(t)

)
≤

1

(m − 1)!
β

(
n∑

i=1

∆ti conv {(t − s)m−1
f
(
s, x(s)

)
: x ∈ V, s ∈ Ti}

)

+
1

(m− 1)!
β

({ t∫

0

(t− s)m−1
g̃(s, x) ds : x ∈ V

})

=
1

(m − 1)!

n∑

i=1

∆tiβ
{
(t − s)m−1

f
(
s, x(s)

)
: x ∈ V, s ∈ Ti

}

≤
1

(m − 1)!

n∑

i=1

∆ti(t− ti−1)
m−1

w
(
v(si)

)
.

Furthermore, from (12) we infer that

1

(m− 1)!

n∑

i=1

(t− ti−1)
m−1w

(
v(si)

)
∆ti

≤
1

(m− 1)!

t∫

0

(t− s)m−1w
(
v(s)

)
ds+

εt

(m− 1)!
.

Therefore

β
(
F (V )(t)

)
≤

1

(m− 1)!

t∫

0

(t− s)m−1w
(
v(s)

)
ds+

εt

(m− 1)!
.

Because ε is arbitrary

β
(
F (V )(t)

)
≤

1

(m− 1)!

t∫

0

(t− s)m−1w
(
v(s)

)
ds .

Thus, by (11),

v(t) ≤
1

(m− 1)!

t∫

0

(t− s)m−1w
(
v(s)

)
ds for t ∈ J.

Putting u(t) = 1
(m−1)!

∫ t

0
(t − s)m−1w

(
v(s)

)
ds we see that u ∈ Cm, v(t) ≤ u(t),

u(j)(t) ≥ 0 for j = 0, 1, . . . ,m, u(j)(0) = 0 for j = 0, 1, . . . ,m− 1 and

u(m)(t) = w
(
v(t)

)
≤ w

(
u(t)

)
for t ∈ J.

As u(0) = 0, from Lemma 3 we deduce that u(t) = 0 for t ∈ J . Consequently,
β
(
V (t)

)
= v(t) = 0 for t ∈ J , i.e., V (t) is relatively weakly compact for t ∈ J .

Hence Ascoli’s theorem implies that V is relatively compact in Cw(J,E). There-
fore the sequence (un) has a limit point x. From (10) and the continuity of F it
follows that x = F (x), i.e., x ∈ S.
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4
o Now we shall prove that the set S is compact and then that it is connected.

Since F is continuous, S is closed in Cw(J,E). As S = F (S), we have β
(
S(t)

)
=

β
(
F (S)(t)

)
for t ∈ J . Therefore, repeating the argument from 3o, we can show

that S is compact in Cw(J,E). Suppose that S is not connected in Cw(J,E). As S
is compact, there are nonempty compact sets S1, S2 such that S = S1 ∪ S2 and
S1 ∩ S2 = ∅, and consequently there are two disjoint open sets U1, U2 such that
S1 ⊂ U1, S2 ⊂ U2. Let U = U1∪U2. We choose n0 such that 1

n0
< b−L. Suppose

that for each n ≥ n0 there exists un ∈ S1
n
\U . Put V = {un : n ∈ N}. Because

limn→∞ supt∈J ‖un(t) − F (un)(t)‖ = 0, using once more similar arguments as

in 3o, we can prove that there exists u0 ∈ V such that u0 = F (u0), i.e., u0 ∈ S.
Furthermore, V ⊂ Cw(J,E)\U , as U is open, so that u0 ∈ S\U , a contradiction.
Therefore there exists k ∈ N such that S1

k
⊂ U . Since U1 ∩ S1

k
6= ∅ 6= U2 ∩ S1

k
,

this shows that S1
k
is not connected, which contradicts Lemma 4. Hence S is

connected. �
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