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OSCILLATION RESULTS FOR SECOND-ORDER

NEUTRAL DIFFERENTIAL EQUATIONS

OF MIXED TYPE

Tongxing Li — Blanka Bacuĺıková — Jozef Džurina

ABSTRACT. Some oscillation theorems are established for the second-order lin-
ear neutral differential equations of mixed type
(

r(t)[x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2)]
′
)

′

+q1(t)x(t−σ3)+q2(t)x(t+σ4) = 0.

Several examples are also provided to illustrate the main results.

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order
linear neutral differential equation of mixed type

(

r(t)
[

x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2)
]

′

)

′

+ q1(t)x(t− σ3) + q2(t)x(t+ σ4) = 0, t ≥ t0. (1.1)

Throughout this paper, we will assume the following conditions hold:

(A1) r ∈ C1
(

[t0,∞),R
)

, r(t) > 0 for t ≥ t0;

(A2) pi ∈ C
(

[t0,∞), [0, ai]
)

, where ai are constants for i = 1, 2;

(A3) qj ∈ C
(

[t0,∞), [0,∞)
)

, for j = 1, 2;

(A4) σi ≥ 0 are constants, for i = 1, 2, 3, 4.

By a solution of Eq. (1.1), we mean a function x ∈ C
(

[Tx,∞),R
)

for some

Tx ≥ t0 which has the properties
[

x(t) + p1(t)x(t − σ1) + p2(t)x(t + σ2)
]

∈

C1
(

[Tx,∞),R
)

and r(t)
[

x(t)+ p1(t)x(t−σ1)+ p2(t)x(t+σ2)
]

∈ C1
(

[Tx,∞),R
)

and satisfying Eq. (1.1) on [Tx,∞). As is customary, a solution of Eq. (1.1) is
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called oscillatory if it has arbitrarily large zeros on [t0,∞), otherwise, it is called
nonoscillatory. Eq. (1.1) is said to be oscillatory if all its solutions are oscillatory.

Neutral functional differential equations have numerous applications in elec-
tric networks. For instance, they are frequently used for the study of distributed
networks containing lossless transmission lines which rise in high speed com-
puters where the lossless transmission lines are used to interconnect switching
circuits; see [1].

In recent years, many results have been obtained on oscillation of nonneutral
differential equations and neutral functional differential equations, we refer the
reader to the papers [2]–[7] and [8]–[30], and the references cited therein.

P h i l o s [2] established some Philos-type oscillation criteria for the second-
-order linear differential equation

(

r(t)x′(t)
)

′

+ q(t)x(t) = 0.

In [3]–[5], the authors gave some sufficient conditions for oscillation of all
solutions of second-order half-linear differential equation

(

r(t)|x′(t)|γ−1x′(t)
)

′

+ q(t)
∣

∣x
(

τ(t)
)∣

∣

γ−1
x
(

τ(t)
)

= 0,

by employing a Riccati substitution technique.

D ž u r i n a [7] presented some sufficient conditions for the oscillation of the
second-order differential equation with mixed argument

(

1

r(t)
u′(t)

)

′

+ p(t)u
(

τ(t)
)

+ q(t)u
(

σ(t)
)

= 0, t ≥ t0.

H a n et al. [14], [15] examined the oscillation of second-order neutral differ-
ential equation

(

r(t)
[

x(t) + p(t)x
(

τ(t)
)

]

′

)

′

+ q(t)x
(

σ(t)
)

= 0, (1.2)

where τ ′(t) = τ0 > 0, 0 ≤ p(t) ≤ p0 < ∞, and the authors obtained some
oscillation criteria for (1.2) when

∞
∫

t0

1

r(t)
dt = ∞ (1.3)

and
∞
∫

t0

1

r(t)
dt < ∞. (1.4)

Some oscillation criteria for the following second-order neutral differential
equation

(

r(t)|z′(t)|γ−1z′(t)
)

′

+ q(t)
∣

∣x
(

σ(t)
)
∣

∣

γ−1
x
(

σ(t)
)

= 0,
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with z(t) = x(t) + p(t)x
(

τ(t)
)

were established by [16]–[20].

However, there are few results regarding the oscillatory problems of neutral
differential equations with mixed arguments, see the papers [23]–[30]. In [23],
the authors established some oscillation criteria for the following mixed neutral
equation

(

x(t) + p1x(t− τ1) + p2x(t+ τ2)
)

′′

= q1(t)x(t− σ1) + q2(t)x(t+ σ2),

here q1 and q2 are nonnegative real-valued functions. Y a n [24] considered the
oscillation of even-order mixed neutral differential equation

(

x(t)− c1x(t− h1)− c2x(t+ h2)
)(n)

+ qx(t− g1) + px(t+ g2) = 0,

where c1 and c2 are nonnegative, p and q are positive real numbers. G r a c e [25]
obtained some oscillation theorems for the odd order neutral differential equation

(

x(t) + p1x(t− τ1) + p2x(t+ τ2)
)(n)

= q1x(t− σ1) + q2x(t+ σ2),

where n ≥ 1 is odd. G r a c e [26] and Y a n [27] obtained several sufficient condi-
tions for the oscillation of solutions of higher order neutral functional differential
equation of the form

(

x(t) + cx(t− h) + Cx(t+H)
)(n)

+ qx(t− g) +Qx(t+G) = 0, (1.5)

where q and Q are nonnegative real constants.

The purpose of this paper is to study the oscillation problem of (1.1). The
organization of this paper is as follows: In Section 2, by using Riccati substitution
technique, some oscillation criteria are obtained for (1.1). In Section 3, we give
some examples to illustrate the main results.

In the sequel, for the sake of convenience, when we write a functional in-
equality without specifying its domain of validity we assume that it holds for all
sufficiently large t.

2. Main results

In this section, we will establish some oscillation criteria for Eq. (1.1).

Throughout this paper, we let

Q(t) = Q1(t) +Q2(t), Q1(t) = min
{

q1(t), q1(t− σ1), q1(t+ σ2)
}

,

Q2(t) = min
{

q2(t), q2(t− σ1), q2(t+ σ2)
}

,
(

ρ′(t)
)

+
= max

{

0, ρ′(t)
}

,

δ(t) =

∞
∫

t+σ4

1

r(s)
ds and ζ(t) = δ(t+ σ2).
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TONGXING LI — BLANKA BACUĹIKOVÁ — JOZEF DŽURINATheorem 2.1. Suppose that (1.3) holds and σ3 ≥ σ1. Moreover, assume that

there exists ρ ∈ C1
(

[t0,∞), (0,∞)
)

such that

lim sup
t→∞

t
∫

t0

[

ρ(s)Q(s)−
1 + a1 + a2

4
·
r(s− σ3)((ρ

′(s))+)
2

ρ(s)

]

ds = ∞ (2.1)

holds. Then every solution of Eq. (1.1) oscillates.

P r o o f. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(t−σ1) > 0, x(t+σ2) > 0,
x(t− σ3) > 0 and x(t+ σ4) > 0 for all t ≥ t1. Define

z(t) = x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2).

Then z(t) > 0 for t ≥ t1. In view of (1.1), we obtain
(

r(t)z′(t)
)

′

= −q1(t)x(t− σ3)− q2(t)x(t+ σ4) ≤ 0, t ≥ t1. (2.2)

Thus, r(t)z′(t) is nonincreasing function. By (1.3), there exists a t2 ≥ t1 such
that

z′(t) > 0, z′(t− σ1) > 0 and z′(t+ σ2) > 0, (2.3)

for t ≥ t2.

By applying (1.1), for all sufficiently large t, we obtain

a1
(

r(t− σ1)z
′(t− σ1)

)

′

+ a1q1(t− σ1)x(t− σ1 − σ3)

+ a1q2(t− σ1)x(t+ σ4 − σ1) = 0
and

a2
(

r(t+ σ2)z
′(t+ σ2)

)

′

+ a2q1(t+ σ2)x(t+ σ2 − σ3)

+ a2q2(t+ σ2)x(t+ σ2 + σ4) = 0.

Combining the previous two equalities with (1.1), we have
(

r(t)z′(t)
)

′

+ a1
(

r(t − σ1)z
′(t− σ1)

)

′

+ a2
(

r(t+ σ2)z
′(t+ σ2)

)

′

+Q1(t)z(t− σ3) +Q2(t)z(t+ σ4) ≤ 0. (2.4)

Since z′(t) > 0, we have z(t+ σ4) ≥ z(t− σ3). Then,
(

r(t)z′(t)
)

′

+ a1
(

r(t − σ1)z
′(t− σ1)

)

′

+ a2
(

r(t+ σ2)z
′(t+ σ2)

)

′

+Q(t)z(t− σ3) ≤ 0. (2.5)

Using the Riccati transformation

ω1(t) = ρ(t)
r(t)z′(t)

z(t− σ3)
, t ≥ t2. (2.6)
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Then ω1(t) > 0 for t ≥ t2. Differentiating (2.6), we obtain

ω′

1(t) = ρ′(t)
r(t)z′(t)

z(t− σ3)
+ ρ(t)

(r(t)z′(t))′

z(t− σ3)
− ρ(t)

r(t)z′(t)z′(t− σ3)

z2(t− σ3)
.

By (2.2), we have r(t − σ3)z
′(t− σ3) ≥ r(t)z′(t). Thus, from (2.6), we get

ω′

1(t) ≤
(ρ′(t))+
ρ(t)

ω1(t) + ρ(t)
(r(t)z′(t))′

z(t− σ3)
−

(ω1(t))
2

ρ(t)r(t − σ3)
. (2.7)

Next, define function ω2 by

ω2(t) = ρ(t)
r(t − σ1)z

′(t− σ1)

z(t− σ3)
, t ≥ t2. (2.8)

Then ω2(t) > 0 for t ≥ t2. Differentiating (2.8), we see that

ω′

2(t) = ρ′(t)
r(t − σ1)z

′(t− σ1)

z(t− σ3)
+ ρ(t)

(r(t − σ1)z
′(t− σ1))

′

z(t− σ3)

− ρ(t)
r(t − σ1)z

′(t− σ1)z
′(t− σ3)

z2(t− σ3)
.

Note that σ3 ≥ σ1. By (2.2), we have r(t − σ3)z
′(t − σ3) ≥ r(t − σ1)z

′(t − σ1).
Hence, by (2.8), we get

ω′

2(t) ≤
(ρ′(t))+
ρ(t)

ω2(t) + ρ(t)
(r(t − σ1)z

′(t− σ1))
′

z(t− σ3)
−

(ω2(t))
2

ρ(t)r(t − σ3)
. (2.9)

In the following, we define another function ω3 by

ω3(t) = ρ(t)
r(t + σ2)z

′(t+ σ2)

z(t− σ3)
, t ≥ t2. (2.10)

Then ω3(t) > 0 for t ≥ t2. Differentiating (2.10), we see that

ω′

3(t) = ρ′(t)
r(t + σ2)z

′(t+ σ2)

z(t− σ3)
+ ρ(t)

(r(t + σ2)z
′(t+ σ2))

′

z(t− σ3)

− ρ(t)
r(t + σ2)z

′(t+ σ2)z
′(t− σ3)

z2(t− σ3)
.

By (2.2), we have r(t − σ3)z
′(t − σ3) ≥ r(t + σ2)z

′(t + σ2). Then, from (2.10),
we get

ω′

3(t) ≤
(ρ′(t))+
ρ(t)

ω3(t) + ρ(t)
(r(t + σ2)z

′(t+ σ2))
′

z(t− σ3)
−

(ω3(t))
2

ρ(t)r(t − σ3)
. (2.11)
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Therefore, by (2.7), (2.9) and (2.11), we obtain

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t)

≤ ρ(t)

[

(r(t)z′(t))′ + a1(r(t − σ1)z
′(t− σ1))

′ + a2(r(t + σ2)z
′(t+ σ2))

′

z(t− σ3)

]

+
(ρ′(t))+
ρ(t)

ω1(t)−
(ω1(t))

2

ρ(t)r(t − σ3)
+ a1

(ρ′(t))+
ρ(t)

ω2(t)− a1
(ω2(t))

2

ρ(t)r(t− σ3)

+ a2
(ρ′(t))+
ρ(t)

ω3(t)− a2
(ω3(t))

2

ρ(t)r(t − σ3)
. (2.12)

Thus, from (2.5) and (2.12), we get

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t)

≤ −ρ(t)Q(t) +
(ρ′(t))+
ρ(t)

ω1(t)−
(ω1(t))

2

ρ(t)r(t − σ3)
+ a1

(ρ′(t))+
ρ(t)

ω2(t)

− a1
(ω2(t))

2

ρ(t)r(t− σ3)
+ a2

(ρ′(t))+
ρ(t)

ω3(t)− a2
(ω3(t))

2

ρ(t)r(t − σ3)
. (2.13)

Then, by (2.13), we find that

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t) ≤ −ρ(t)Q(t) +
1 + a1 + a2

4

r(t− σ3)((ρ
′(t))+)

2

ρ(t)
.

Integrating the above inequality from t2 to t, we obtain

t
∫

t2

[

ρ(s)Q(s)−
1 + a1 + a2

4

r(s− σ3)((ρ
′(s))+)

2

ρ(s)

]

ds

≤ ω1(t2) + a1ω2(t2) + a2ω3(t2),

which contradicts (2.1). The proof is complete. �

As an immediate consequence of Theorem 2.1 we get the following.Corollary 2.1. Let assumption (2.1) in Theorem 2.1 be replaced by

lim sup
t→∞

t
∫

t0

ρ(s)Q(s)ds = ∞,

and

lim sup
t→∞

t
∫

t0

r(s− σ3) ((ρ
′(s))+)

2

ρ(s)
ds < ∞.

Then every solution of Eq. (1.1) oscillates.
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From Theorem 2.1 by choosing the function ρ, appropriately, we can obtain
different sufficient conditions for oscillation of Eq. (1.1), if we define a function
ρ by ρ(t) = 1, and ρ(t) = t, we have the following oscillation results.Corollary 2.2. Suppose that (1.3) holds and σ3 ≥ σ1. If

lim sup
t→∞

t
∫

t0

Q(s)ds = ∞, (2.14)

then every solution of Eq. (1.1) oscillates.Corollary 2.3. Suppose that (1.3) holds and σ3 ≥ σ1. If

lim sup
t→∞

t
∫

t0

[

sQ(s)−
1 + a1 + a2

4

r(s− σ3)

s

]

ds = ∞, (2.15)

then every solution of Eq. (1.1) oscillates.

In the following theorem, we present another oscillation criterion for Eq. (1.1)
when σ1 ≥ σ3.Theorem 2.2. Suppose that (1.3) holds and σ1 ≥ σ3. Moreover, assume that

there exists ρ ∈ C1
(

[t0,∞), (0,∞)
)

such that

lim sup
t→∞

t
∫

t0

[

ρ(s)Q(s)−
1 + a1 + a2

4

r(s− σ1)((ρ
′(s))+)

2

ρ(s)

]

ds = ∞ (2.16)

holds. Then every solution of Eq. (1.1) oscillates.

P r o o f. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(t−σ1) > 0, x(t+σ2) > 0,
x(t− σ3) > 0 and x(t+ σ4) > 0 for all t ≥ t1. Define

z(t) = x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2).

Then z(t) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 2.1, we obtain
(2.2)–(2.5), for t ≥ t2 ≥ t1.

Using the Riccati transformation

ω1(t) = ρ(t)
r(t)z′(t)

z(t− σ1)
, t ≥ t2. (2.17)

Then ω1(t) > 0 for t ≥ t2. Differentiating (2.17), we see that

ω′

1(t) = ρ′(t)
r(t)z′(t)

z(t− σ1)
+ ρ(t)

(r(t)z′(t))′

z(t− σ1)
− ρ(t)

r(t)z′(t)z′(t− σ1)

z2(t− σ1)
.
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By (2.2), we have r(t − σ1)z
′(t− σ1) ≥ r(t)z′(t). Then, from (2.17), we get

ω′

1(t) ≤
(ρ′(t))+
ρ(t)

ω1(t) + ρ(t)
(r(t)z′(t))′

z(t− σ1)
−

(ω1(t))
2

ρ(t)r(t − σ1)
. (2.18)

Next, define function ω2 by

ω2(t) = ρ(t)
r(t − σ1)z

′(t− σ1)

z(t− σ1)
, t ≥ t2. (2.19)

Then ω2(t) > 0 for t ≥ t2. Differentiating (2.19), we find that

ω′

2(t) = ρ′(t)
r(t − σ1)z

′(t− σ1)

z(t− σ1)
+ ρ(t)

(r(t − σ1)z
′(t− σ1))

′

z(t− σ1)

− ρ(t)
r(t − σ1)z

′(t− σ1)z
′(t− σ1)

z2(t− σ1)
.

Hence, from (2.19), we get

ω′

2(t) ≤
(ρ′(t))+
ρ(t)

ω2(t) + ρ(t)
(r(t − σ1)z

′(t− σ1))
′

z(t− σ1)
−

(ω2(t))
2

ρ(t)r(t − σ1)
. (2.20)

In the following, we define another function ω3 by

ω3(t) = ρ(t)
r(t + σ2)z

′(t+ σ2)

z(t− σ1)
, t ≥ t2. (2.21)

Then ω3(t) > 0 for t ≥ t2. Differentiating (2.21), we obtain

ω′

3(t) = ρ′(t)
r(t + σ2)z

′(t+ σ2)

z(t− σ1)
+ ρ(t)

(r(t + σ2)z
′(t+ σ2))

′

z(t− σ1)

− ρ(t)
r(t + σ2)z

′(t+ σ2)z
′(t− σ1)

z2(t− σ1)
.

By (2.2), we have r(t − σ1)z
′(t − σ1) ≥ r(t+ σ2)z

′(t+ σ2). Thus, by (2.21), we
get

ω′

3(t) ≤
(ρ′(t))+
ρ(t)

ω3(t) + ρ(t)
(r(t + σ2)z

′(t+ σ2))
′

z(t− σ1)
−

(ω3(t))
2

ρ(t)r(t − σ1)
. (2.22)

Therefore, by (2.18), (2.20) and (2.22), we obtain

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t)

≤ ρ(t)

[

(r(t)z′(t))′ + a1(r(t − σ1)z
′(t− σ1))

′ + a2(r(t + σ2)z
′(t+ σ2))

′

z(t− σ1)

]

+
(ρ′(t))+
ρ(t)

ω1(t)−
(ω1(t))

2

ρ(t)r(t − σ1)
+ a1

(ρ′(t))+
ρ(t)

ω2(t)− a1
(ω2(t))

2

ρ(t)r(t− σ1)

+ a2
(ρ′(t))+
ρ(t)

ω3(t)− a2
(ω3(t))

2

ρ(t)r(t − σ1)
. (2.23)
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Thus, by (2.5) and (2.23), we get

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t)

≤ −ρ(t)Q(t) +
(ρ′(t))+
ρ(t)

ω1(t)−
(ω1(t))

2

ρ(t)r(t − σ1)
+ a1

(ρ′(t))+
ρ(t)

ω2(t)

− a1
(ω2(t))

2

ρ(t)r(t − σ1)
+ a2

(ρ′(t))+
ρ(t)

ω3(t)− a2
(ω3(t))

2

ρ(t)r(t − σ1)
. (2.24)

Then, by (2.24), we find that

ω′

1(t) + a1ω
′

2(t) + p2ω
′

3(t) ≤ −ρ(t)Q(t) +
1 + a1 + a2

4
·
r(t− σ1)((ρ

′(t))+)
2

ρ(t)
.

Integrating the above inequality from t2 to t, we obtain

t
∫

t2

[

ρ(s)Q(s)−
1 + a1 + a2

4

r(s− σ1)((ρ
′(s))+)

2

ρ(s)

]

ds

≤ ω1(t2) + a1ω2(t2) + a2ω3(t2),

which contradicts (2.16). The proof is complete. �

Remark 2.1. From Theorem 2.2, we can obtain some oscillation criteria for
Eq. (1.1) by choosing different ρ, the details are left to the reader.

Remark 2.2. By (2.12), (2.23) and the techniques given in [2], we can establish
some Philos-type oscillation criteria for Eq. (1.1), the details are left to the
reader.

Now, we will establish some oscillation results for Eq. (1.1) under the case
when (1.4) holds.Theorem 2.3. Suppose that (1.4) holds and σ3 ≥ σ1. Moreover, assume that

there exists ρ ∈ C1
(

[t0,∞), (0,∞)
)

such that (2.1) holds. If

lim sup
t→∞

t
∫

t0

[

ζ(s)Q(s)−
(1 + a1)r(s+ σ4) + a2r(s+ σ2 + σ4)

4r2(s+ σ2 + σ4)ζ(s)

]

ds = ∞, (2.25)

then every solution of Eq. (1.1) oscillates.

P r o o f. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
assume that there exists t1 ≥ t0 such that x(t) > 0, x(t−σ1) > 0, x(t+σ2) > 0,
x(t− σ3) > 0 and x(t+ σ4) > 0 for all t ≥ t1. Define

z(t) = x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2).

Then z(t) > 0 for t ≥ t1. In view of (1.1), we obtain that (2.2) holds. From (2.2),
we see that there exist two possible cases for the sign of z′(t).
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Assume that z′(t) > 0, z′(t − σ1) > 0 and z′(t + σ2) > 0, for t ≥ t2 ≥ t1.
Then (2.5) holds. Proceeding as in the proof of Theorem 2.1, we can obtain
a contradiction with (2.1).

Suppose that z′(t) < 0, z′(t − σ1) < 0 and z′(t + σ2) < 0, for t ≥ t2 ≥ t1.
Also, we have (2.4). From z′(t) < 0, we have z(t+ σ4) ≤ z(t− σ3). Then,

(

r(t)z′(t)
)

′

+ a1
(

r(t − σ1)z
′(t− σ1)

)

′

+ a2
(

r(t + σ2)z
′(t+ σ2)

)

′

+Q(t)z(t+ σ4) ≤ 0. (2.26)

Define function ω1 by

ω1(t) =
r(t)z′(t)

z(t+ σ4)
, t ≥ t2. (2.27)

Clearly, ω1(t) < 0 for t ≥ t2. Noting that r(t)z′(t) is nonincreasing, we have

z′(s) ≤
r(t)z′(t)

r(s)
, s ≥ t ≥ t2.

Integrating it from t+ σ4 to l, we obtain

z(l) ≤ z(t+ σ4) + r(t)z′(t)

l
∫

t+σ4

ds

r(s)
, l ≥ t+ σ4.

Note that liml→∞ z(l) ≥ 0. Letting l → ∞ in the above inequality, we have

0 ≤ z(t+ σ4) + r(t)z′(t)δ(t), t ≥ t2.

Therefore,

r(t)z′(t)

z(t+ σ4)
δ(t) ≥ −1, t ≥ t2.

From (2.27), we have

−1 ≤ ω1(t)δ(t) ≤ 0, t ≥ t2. (2.28)

By (2.2), we obtain

z′(t+ σ4) ≤
r(t)z′(t)

r(t+ σ4)
.

Differentiating (2.27), we get

ω′

1(t) ≤
(r(t)z′(t))′

z(t+ σ4)
−

(ω1(t))
2

r(t+ σ4)
. (2.29)

Next, we introduce another function

ω2(t) =
r(t− σ1)z

′(t− σ1)

z(t+ σ4)
, t ≥ t2. (2.30)
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Obviously, ω2(t) < 0 for t ≥ t2. Noting that r(t)z′(t) is nonincreasing for t ≥ t1,
we get r(t − σ1)z

′(t− σ1) ≥ r(t)z′(t), for t ≥ t2. Thus ω2(t) ≥ ω1(t), for t ≥ t2.
By (2.28), we obtain

− 1 ≤ ω2(t)δ(t) ≤ 0, t ≥ t2. (2.31)

It follows from (2.2) that

z′(t+ σ4) ≤
r(t − σ1)z

′(t− σ1)

r(t+ σ4)
.

Differentiating (2.30), we have

ω′

2(t) ≤
(r(t− σ1)z

′(t− σ1))
′

z(t+ σ4)
−

(ω2(t))
2

r(t + σ4)
. (2.32)

Similarly, we introduce substitution

ω3(t) =
r(t+ σ2)z

′(t+ σ2)

z(t+ σ2 + σ4)
, t ≥ t2. (2.33)

Clearly, ω3(t) < 0 for t ≥ t2. In view of the definition of ω1 and (2.28), we find
that ω3(t) = ω1(t+ σ2) and

− 1 ≤ ω3(t)δ(t+ σ2) ≤ 0, t ≥ t2. (2.34)

By (2.2), we have z′(t+σ2+σ4) ≤ r(t+σ2)z
′(t+σ2)/r(t+σ2+σ4). Differentiating

(2.33), we get

ω′

3(t) ≤
(r(t+ σ2)z

′(t+ σ2))
′

z(t+ σ2 + σ4)
−

(ω3(t))
2

r(t+ σ2 + σ4)

≤
(r(t+ σ2)z

′(t+ σ2))
′

z(t+ σ4)
−

(ω3(t))
2

r(t+ σ2 + σ4)
. (2.35)

Note that δ(t) ≥ δ(t+ σ2). Then, we have

− 1 ≤ ω1(t)δ(t + σ2) ≤ 0, t ≥ t2, (2.36)

and

− 1 ≤ ω2(t)δ(t + σ2) ≤ 0, t ≥ t2. (2.37)

From (2.29), (2.32) and (2.35), we can obtain

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t)

≤
(r(t)z′(t))′ + a1(r(t− σ1)z

′(t− σ1))
′ + a2(r(t+ σ2)z

′(t+ σ2))
′

z(t+ σ4)

−
(ω1(t))

2

r(t + σ4)
− a1

(ω2(t))
2

r(t + σ4)
− a2

(ω3(t))
2

r(t + σ2 + σ4)
. (2.38)
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Therefore, by (2.26) and (2.38), we have

ω′

1(t) + a1ω
′

2(t) + a2ω
′

3(t)

≤ −Q(t)−
(ω1(t))

2

r(t + σ4)
− a1

(ω2(t))
2

r(t + σ4)
− a2

(ω3(t))
2

r(t + σ2 + σ4)
. (2.39)

Multiplying (2.39) by ζ(t), and integrating over [t2, t] implies

ζ(t)ω1(t)− ζ(t2)ω1(t2) +

t
∫

t2

ω1(s)

r(s+ σ2 + σ4)
ds+

t
∫

t2

(ω1(s))
2ζ(s)

r(s+ σ4)
ds

+ a1ζ(t)ω2(t)− a1ζ(t2)ω2(t2) + a1

t
∫

t2

ω2(s)

r(s+ σ2 + σ4)
ds

+ a1

t
∫

t2

(ω2(s))
2ζ(s)

r(s+ σ4)
ds+ a2ζ(t)ω3(t)− a2ζ(t2)ω3(t2)

+ a2

t
∫

t2

ω3(s)

r(s+ σ2 + σ4)
ds+ a2

t
∫

t2

(ω3(s))
2ζ(s)

r(s+ σ2 + σ4)
ds+

t
∫

t2

ζ(s)Q(s)ds ≤ 0.

From the above inequality, we obtain

t
∫

t2

[

ζ(s)Q(s)−
(1 + a1)r(s+ σ4) + a2r(s+ σ2 + σ4)

4r2(s+ σ2 + σ4)ζ(s)

]

ds

≤ −
[

ζ(t)ω1(t) + a1ζ(t)ω2(t) + a2ζ(t)ω3(t)
]

≤ 1 + a1 + a2

due to (2.34), (2.36) and (2.37). This contradicts (2.25) and finishes the proof.
�

Combining Theorem 2.2 with Theorem 2.3, we give the following criterion for
the oscillation of Eq. (1.1) when the conditions σ1 ≥ σ3 and (1.4) hold.Theorem 2.4. Suppose that (1.4) holds and σ1 ≥ σ3. Moreover, assume that

there exists ρ ∈ C1
(

[t0,∞), (0,∞)
)

such that (2.16) holds. If (2.25) holds, then
every solution of Eq. (1.1) oscillates.

Remark 2.3. The technique used in this paper can be extended to even-order
mixed neutral differential equations.
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3. Applications and examples

G r a c e [26] and Y a n [27] investigated the oscillation behavior of Eq. (1.5).
The authors gave some oscillation criteria when n ≥ 1 is odd, c, C and Q are
nonnegative real constants, and g, G, h, H, and q are positive real constants. It
is easy to find that the results given in [26], [27] cannot be applied to Eq. (1.1).
Also, the results obtained in [23]–[25], [28]–[30] do not apply to Eq. (1.1).

In order to illustrate the main results, we will give the following examples.

Example 3.1. Consider the second-order Euler differential equation:

x′′(t) +
γ

t2
x(t) = 0, t ≥ t0. (3.1)

Now a1 = a2 = 0 and Q(t) = γ
t2
. Applying Corollary 2.3, we can obtain that

Eq. (3.1) is oscillatory for γ > 1
4 , which is a sharp condition for the oscillation

of Eq. (3.1).

Example 3.2. Consider the following linear neutral equation:
(

x(t) + x(t− (2n+ 1)π) + x(t+ (2n− 1)π)
)

′′

+
1

2
x(t− (2m+ 1)π) +

1

2
x(t+ (2m− 1)π) = 0, (3.2)

for t ≥ t0 > 0, where n and m are positive integers, m ≥ n.

Obviously, all the conditions of Corollary 2.2 hold. Thus, by Corollary 2.2,
every solution of Eq. (3.2) is oscillatory. It is easy to verify that x(t) = sin t is
a solution of Eq. (3.2).

Example 3.3. Consider the following linear neutral equation:
(

t
[

x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2)
]

′

)

′

+
β

t
x(t− σ3) +

γ

t
x(t+ σ4) = 0, (3.3)

for t ≥ t0 > 0, where σ3 ≥ σ1, 0 ≤ pi(t) ≤ ai for i = 1, 2, a1 + a2 ≤ 3, β and γ
are positive constants.

We see that (1.3) holds and Q1(t) = β/(t + σ2), Q2(t) = γ/(t + σ2), and
Q(t) = (β + γ)/(t+ σ2). On the other hand, (2.14) reduces to

lim sup
t→∞

t
∫

t0

(β + γ − 1)s2 + s(σ3 − σ2) + σ2σ3

s(s+ σ2)
ds = ∞,

which holds for β+γ > 1. Therefore, by Corollary 2.3, every solution of Eq. (3.3)
is oscillatory provided that β + γ > 1.
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Example 3.4. Consider the following linear neutral equation:
(

1

t

[

x(t) + p1(t)x(t− σ1) + p2(t)x(t+ σ2)
]

′

)

′

+
β

t2
x(t− σ3) +

γ

t2
x(t+ σ4) = 0, (3.4)

for t ≥ t0 > 0, where σ1 ≥ σ3, 0 ≤ pi(t) ≤ ai, for i = 1, 2, a1 + a2 ≤ 3, β and γ
are positive constants.

We see that (1.3) holds and Q1(t) = β/(t + σ2)
2, Q2(t) = γ/(t + σ2)

2, and
Q(t) = (β + γ)/(t+ σ2)

2. Take ρ(t) = t, then (2.16) takes the form

lim sup
t→∞

t
∫

t0

[

(β + γ)s

(s+ σ2)2
−

1

s(s− σ1)

]

ds = ∞,

which is evidently true. Therefore, by Theorem 2.2, every solution of Eq. (3.4)
is oscillatory.

Example 3.5. Consider the following linear neutral equation:
(

t2
[

x(t) + x(t− 2π) + x(t+ 2π)
]

′

)

′

+ 3t2x(t− 4π) + 6tx

(

t+
3π

2

)

= 0, (3.5)

for t ≥ t0 > 0.

The condition (1.4) is fulfilled and a1 = a2 = 1, Q1(t) = 3(t− 2π)2, Q2(t) =
6(t−2π), Q(t) = 3(t−2π)2+6(t−2π), δ(t) = 2/(2t+3π) and ζ(t) = 2/(2t+7π).
Set ρ(t) = 1. Obviously, we get that (2.1) and (2.25) hold. That is, all the
assumptions of Theorem 2.3 are satisfied. Hence, by Theorem 2.3, every solution
of Eq. (3.5) is oscillatory. It is easy to see that x(t) = sin t is a solution of
Eq. (3.5).

Remark 3.1. It is easy to find another example to illustrate Theorem 2.4, the
details are left to the reader.
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