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ON NONOSCILLATORY SOLUTIONS TENDING

TO ZERO OF THIRD-ORDER NONLINEAR

DIFFERENTIAL EQUATIONS

Ivan Mojsej — Alena Tartal’ová

ABSTRACT. The aim of this paper is to present some results concerning with
the asymptotic behavior of solutions of nonlinear differential equations of the
third-order with quasiderivatives. In particular, we state the necessary and suffi-
cient conditions ensuring the existence of nonoscillatory solutions tending to zero
as t → ∞.

1. Introduction

This paper deals with the asymptotic behavior of nonoscillatory solutions of
the third-order nonlinear differential equations with quasiderivatives of the form

(

1

p(t)

(

1

r(t)
x′(t)

)

′

)

′

+ q(t)f
(

x(t)
)

= 0, t ≥ a (N)

where

r, p, q ∈ C
(

[a,∞),R
)

, r(t) > 0, p(t) > 0, q(t) > 0 on [a,∞),

f ∈ C(R,R), f(u)u > 0 for u 6= 0 .

For the sake of brevity, we introduce the following notation

x[0] = x, x[1] =
1

r
x′, x[2] =

1

p

(

1

r
x′

)

′

=
1

p

(

x[1]
)

′

, x[3] =
(

x[2]
)

′

.

We call these functions x[i], i = 0, 1, 2, 3, the quasiderivatives of x.
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By a solution of an equation of the form (N), we mean a function w : [a,∞)→R

such that quasiderivatives w[i](t), 0 ≤ i ≤ 3 exist and are continuous on the
interval [a,∞) and w satisfies the equation (N) for all t ≥ a. A solution w of
equation (N) is said to be proper if it satisfies the following condition

sup {|w(s)| : t ≤ s < ∞} > 0 for any t ≥ a.

A proper solution is said to be oscillatory if it has a sequence of zeros converging
to ∞; otherwise it is said to be nonoscillatory.

Fixed point theorems are important tools in the oscillation and nonoscillation
theory of ordinary differential equations. Especially, when one proves the exis-
tence of nonoscillatory solutions with a specified asymptotic behavior as t → ∞.
We refer the reader to the books [1], [13] and to fairly comprehensive bibliogra-
phy contained therein for various interesting results on this topic. Now, we state
fixed point theorem that will be needed later.Theorem 1.1 (Banach fixed point theorem). Any contraction mapping of

a complete non-empty metric space M into M has a unique fixed point in M.

Let N (N) denote the set of all proper nonoscillatory solutions of equation
(N). The set N (N) can be divided into the following four classes in the same
way as in [5], [6]:

N0 =
{

x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) > 0 for t ≥ tx

}

,

N1 =
{

x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) < 0 for t ≥ tx

}

,

N2 =
{

x ∈ N (N), ∃ tx : x(t)x[1](t) > 0, x(t)x[2](t) > 0 for t ≥ tx

}

,

N3 =
{

x ∈ N (N), ∃ tx : x(t)x[1](t) < 0, x(t)x[2](t) < 0 for t ≥ tx

}

.

Let us remark that the solutions in the class N0 satisfy for all sufficiently large t
the inequality x[i](t)x[i+1](t) < 0 for i = 0, 1, 2 and in the literature they are
called Kneser solutions. The following results regarding the asymptotic prop-
erties of Kneser solutions of equation (N) will be useful in the sequel. They
are particular cases of more general results that have been presented in [16] for
differential equations with deviating argument.Lemma 1.2 ( [16, Lemma 2.8]). If I(r) = I(p) = ∞, then any solution x of

equation (N) in the class N0 satisfies limt→∞ x[i](t) = 0 for i = 1, 2.Theorem 1.3 ([16, Theorem 4.3]). Assume that

lim sup
u→0

f(u)

u
< ∞ and I(r) = I(p) = ∞.

If there exists a solution x of equation (N) in the class N0 such that

lim
t→∞

x[i](t) = 0 for i = 0, 1, 2, then I(q, p, r) = ∞.
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The object of our interest are nonoscillatory solutions of equation (N) in the
classes N0 and N3 tending to zero as t → ∞, i.e., the solutions that belong to
the following two subclasses

N 0
0 =

{

x ∈ N0 : lim
t→∞

x(t) = 0
}

, N 0
3 =

{

x ∈ N3 : lim
t→∞

x(t) = 0
}

.

Various types of differential equations (without or with deviating argument)
of the third-order have been subject of intensive studying in the literature. The
authors have obtained the sufficient conditions for oscillation and asymptotic
behavior of solutions, conditions for existence or nonexistence some types of
solutions and also many results for the classification of solutions according to
their oscillatory and asymptotic properties. Among the extensive literature on
these topics, we mention here [2], [4], [5], [6], [9], [17] for the differential equations
without deviating argument and [3], [8], [9], [10], [11], [14], [15], [18], [19] for those
with deviating argument.

The purpose of this paper is to study the existence and asymptotic behavior
of some nonoscillatory solutions of equation of the form (N). Namely, we give the
necessary and sufficient conditions for the existence of nonoscillatory solutions
in the subclasses N 0

0 and N 0
3 . The results are proved by means of a study of the

asymptotic properties of considered solutions as well as a topological approach
via the Banach fixed point theorem. Obtained results complement those in [17]
where the existence of bounded nonoscillatory solutions of (N) in the classes
N1 and N2 has been investigated. Moreover, our results complement and extend
some other ones that have been stated in [7] and [12], respectively.

Finally, we introduce the following notation

I(ui) =

∞
∫

a

ui(t) dt, I(ui, uj) =

∞
∫

a

ui(t)

t
∫

a

uj(s) ds dt, i, j = 1, 2,

I(ui, uj, uk) =

∞
∫

a

ui(t)

t
∫

a

uj(s)

s
∫

a

uk(z) dz ds dt, i, j, k = 1, 2, 3,

where ui, i = 1, 2, 3 are continuous positive functions on the interval [a,∞).

2. Main results

We begin our investigation with the results concerning the nonoscillatory
solutions of equation (N) in the class N3. The following result gives the sufficient
condition for the existence of solutions in the class N 0

3 .
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IVAN MOJSEJ — ALENA TARTAL’OVÁTheorem 2.1. Let I(r) < ∞, I(p, q) < ∞ and assume that function f satisfies

Lipschitz condition on the interval
[

0; 2I(r)
]

. Then equation (N) has a solution x

in the class N3 such that

lim
t→∞

x(t) = 0, i.e., N 0
3 6= Ø.

P r o o f. We prove the existence of a positive solution of equation (N) in the
class N3 which tends to zero as t → ∞.

Let L denote Lipschitz constant of function f on the interval
[

0; 2I(r)
]

and
let t0 ≥ a be such that

∞
∫

t0

r(s) ds ≤
1

L+ 1
(1)

and
∞
∫

t0

p(τ)

τ
∫

t0

q(s) ds dτ ≤ min

{

1

K
, 1

}

, (2)

where

K = max







f(u) : u ∈

[

0; 2

∞
∫

t0

r(s) ds

]







.

For the sake of convenience, we introduce the following notation

H1(t) =

∞
∫

t

r(s) ds, t ≥ t0.

Let us define the set

∆1 =
{

u ∈ C
(

[t0,∞),R
)

: H1(t) ≤ u(t) ≤ 2H1(t)
}

,

where C
(

[t0,∞),R
)

denotes the Banach space of all continuous and bounded
functions defined on the interval [t0,∞) with the sup norm

‖u‖ = sup{|u(t)|, t ≥ t0}.

It is clear that ∆1 is a non-empty closed subset of space C
(

[t0,∞),R
)

and so ∆1

is a non-empty complete metric space. For every u ∈ ∆1, we consider a mapping

T1 : ∆1 → C
(

[t0,∞),R
)

given by

xu(t) = (T1u)(t) = H1(t) +

∞
∫

t

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z)f
(

u(z)
)

dz ds dτ, t ≥ t0.

In the following, we prove that T1 maps ∆1 into itself and T1 is a contraction
mapping in ∆1 in order to apply to the mapping T1 the Banach fixed point
theorem (Theorem 1.1).
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T1 maps ∆1 into ∆1. Really, xu(t) ≥ H1(t) and in view of (2), we have

xu(t) = H1(t) +

∞
∫

t

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z)f
(

u(z)
)

dz ds dτ

≤ H1(t) +K

∞
∫

t

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z) dz ds dτ

≤ H1(t) +K





∞
∫

t0

p(s)

s
∫

t0

q(z) dz ds









∞
∫

t

r(τ) dτ





≤ H1(t) +H1(t) = 2H1(t).

Now, let u1, u2 ∈ ∆1 and t ≥ t0. Taking into account the fact that function f

satisfies Lipschitz condition on the interval [0; 2I(r)] and the inequalities (1) and
(2), we obtain the following

|(T1u1)(t)− (T1u2)(t)|≤

∞
∫

t

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z)
∣

∣f
(

u1(z)
)

− f
(

u2(z)
)∣

∣ dz ds dτ

≤

∞
∫

t0

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z)
∣

∣f
(

u1(z)
)

− f
(

u2(z)
)∣

∣ dz ds dτ

≤ L

∞
∫

t0

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z)|u1(z)− u2(z)| dz ds dτ

≤ L‖u1 − u2‖

∞
∫

t0

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z) dz ds dτ

≤ L‖u1 − u2‖





∞
∫

t0

r(τ) dτ









∞
∫

t0

p(s)

s
∫

t0

q(z) dz ds





≤
L

L+ 1
‖u1 − u2‖ = Q1‖u1 − u2‖.

These inequalities immediately imply that for every u1, u2 ∈ ∆1

‖T1u1 − T1u2‖ ≤ Q1‖u1 − u2‖, where 0 < Q1 < 1.

Hence, we proved that T1 is a contraction mapping in ∆1. Now, according to
the Banach fixed point theorem, there exists the unique fixed point x ∈ ∆1 such
that

x(t) = H1(t) +

∞
∫

t

r(τ)

τ
∫

t0

p(s)

s
∫

t0

q(z)f
(

x(z)
)

dz ds dτ, t ≥ t0.
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As

x
[1](t) = −1−

t
∫

t0

p(s)

s
∫

t0

q(z)f
(

x(z)
)

dz ds < 0

and

x
[2](t) = −

t
∫

t0

q(z)f
(

x(z)
)

dz < 0,

it is clear that x is a positive solution of the equation (N) in the class N3 which
approaches to zero as t → ∞, i.e., x ∈ N 0

3 . �

The following theorem for the solutions in the class N3 holds.Theorem 2.2. If I(r) = ∞ or I(r, p) = ∞, then N3 = Ø.

P r o o f. Let x ∈ N3. Without loss of generality, we suppose that there exists

t0 ≥ a such that x(t) > 0, x[1](t) < 0, x[2](t) < 0 for all t ≥ t0. Because
(

x[2](t)
)

′

= −q(t)f
(

x(t)
)

< 0 for all t ≥ t0, x
[2](t)

is a negative decreasing function and so
(

x[1](t)
)

′

≤ x[2](t0)p(t) for all t ≥ t0.

Integrating this inequality twice in the interval [t0, t], we obtain

x(t) ≤ x(t0) + x[1](t0)

t
∫

t0

r(s) ds+ x[2](t0)

t
∫

t0

r(s)

s
∫

t0

p(τ) dτ ds.

When t → ∞, we get a contradiction because function x(t) is a positive for all
t ≥ t0. The case x(t) < 0, x[1](t) > 0, x[2](t) > 0 for all t ≥ t1 (where t1 ≥ a)
can be treated similarly. �

As a consequence of Theorems 2.1 and 2.2, we get the following result.Corollary 2.3. Let function f satisfy Lipschitz condition on the interval
[

0; 2I(r)
]

and I(p, q) < ∞. Then a necessary and sufficient condition for equa-

tion (N) to have a solution x in the class N 0
3 is that I(r) < ∞.

Evidently, the following also holds.Corollary 2.4. Let function f satisfy Lipschitz condition on the interval
[

0; 2I(r)
]

and I(p, q) < ∞. Then a necessary and sufficient condition for equa-

tion (N) to have a solution x in the class N3 is that I(r) < ∞.

In the sequel, we turn our attention to the solutions of the equation (N) in the
class N0. More precisely, the sufficient and also necessary condition guaranteeing
the existence of solutions in the class N 0

0 are stated.
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ON NONOSCILLATORY SOLUTIONS TENDING TO ZEROTheorem 2.5. Let I(p, r) < ∞, I(q) < ∞ and assume that function f sat-

isfies Lipschitz condition on the interval
[

0; 2I(p, r)
]

. Then equation (N) has

a solution x in the class N0 such that limt→∞ x(t) = 0, i.e., N 0
0 6= Ø.

P r o o f. In the following, we prove the existence of a positive solution of equation
(N) in the class N0 which tends to zero as t → ∞.

Let L denote Lipschitz constant of function f on the interval
[

0; 2I(p, r)
]

and
let t0 ≥ a be such that

∞
∫

t0

p(s)

s
∫

t0

r(τ) dτ ds ≤
1

L+ 1
(3)

and
∞
∫

t0

q(s) ds ≤ min

{

1

K
, 1

}

, (4)

where

K = max







f(u) : u ∈

[

0; 2

∞
∫

t0

r(τ)

∞
∫

τ

p(s) ds dτ

]







.

We observe that
∞
∫

t0

r(τ)

∞
∫

τ

p(s) ds dτ =

∞
∫

t0

p(s)

s
∫

t0

r(τ) dτ ds.

Further, for the sake of convenience, we introduce the following notation

H2(t) =

∞
∫

t

r(τ)

∞
∫

τ

p(s) ds dτ, t ≥ t0.

Let us define the set

∆2 =
{

u ∈ C
(

[t0,∞),R
)

: H2(t) ≤ u(t) ≤ 2H2(t)
}

,

where C
(

[t0,∞),R
)

denotes the Banach space of all continuous and bounded
functions defined on the interval [t0,∞) with the sup norm ‖u‖ = sup{|u(t)|,
t ≥ t0}. Clearly, ∆2 is a non-empty closed subset of space C

(

[t0,∞),R
)

and
so ∆2 is a non-empty complete metric space. For every u ∈ ∆2, we consider
a mapping T2 : ∆2 → C

(

[t0,∞),R
)

given by

xu(t) = (T2u)(t) = H2(t) +

∞
∫

t

r(τ)

∞
∫

τ

p(s)

∞
∫

s

q(z)f
(

u(z)
)

dz ds dτ, t ≥ t0.

Easy computation gives the following inequality

∞
∫

t

r(τ)

∞
∫

τ

p(s)

∞
∫

s

q(z) dz ds dτ ≤ H2(t)

∞
∫

t0

q(z) dz, t ≥ t0. (5)

141



IVAN MOJSEJ — ALENA TARTAL’OVÁ

The fact that function f satisfies Lipschitz condition on interval
[

0; 2I(p, r)
]

, the
inequalities (3), (4) and (5) and similar arguments as in the proof of Theorem 2.1
enable us to verify that T2 maps ∆2 into itself and T2 is a contraction mapping
in ∆2. Consequently, the Banach fixed point theorem ensures the existence of
the unique fixed point x ∈ ∆2 such that

x(t) = H2(t) +

∞
∫

t

r(τ)

∞
∫

τ

p(s)

∞
∫

s

q(z)f
(

x(z)
)

dz ds dτ, t ≥ t0.

It is evident that x is a positive solution of the equation (N) in the class N0

which approaches to zero as t → ∞, i.e., x ∈ N 0
0 . �Theorem 2.6. Assume that

lim sup
u→0

f(u)

u
< ∞.

If

I(q, p, r) < ∞ and I(r) = I(p) = ∞, then N 0
0 = Ø.

P r o o f. Let x ∈ N 0
0 . It means that we have a solution of the equation (N) in

the class N0 such that limt→∞ x(t) = 0. Moreover, Lemma 1.2 secures that
limt→∞ x[i](t) = 0 for i = 1, 2. Consequently, Theorem 1.3 gives that
I(q, p, r) = ∞, which is a contradiction. �

Remark 2.7. Theorem 2.1 (Theorem 2.5) is still valid if instead of the as-
sumption that function f satisfies Lipschitz condition on the interval

[

0; 2I(r)
]

([0; 2I(p, r)]), we will require that function f satisfies Lipschitz condition on the
interval

[

−2I(r); 0
]

([−2I(p, r); 0]). Taking into account this assumption and
using similar arguments as in the proof of Theorem 2.1 (Theorem 2.5), we can
prove the existence of a negative solution of equation (N) in the class N3 (N0)
which approaches to zero as t → ∞.
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[3] BACULÍKOVÁ, B.—DŽURINA, J.: Oscillation of third-order neutral differential equa-

tions, Math. Comput. Modelling 52 (2010), 215–226.
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[5] CECCHI, M.—DOŠLÁ, Z.—MARINI, M.: On nonlinear oscillations for equations asso-

ciated to disconjugate operators, Nonlinear Anal. 30 (1997), 1583–1594.

142



ON NONOSCILLATORY SOLUTIONS TENDING TO ZERO
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