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IMPULSIVE COHEN-GROSSBERG NEURAL

NETWORKS WITH S-TYPE DISTRIBUTED DELAYS

Haydar Akça — Valéry Covachev

ABSTRACT. We study impulsive Cohen-Grossberg neural networks with S-type
distributed delays. This type of delays in the presence of impulses is more general
than the usual types of delays studied in the literature. Using analysis techniques
we prove the existence of a unique equilibrium point. By means of simple and effi-
cient Lyapunov functions we present some sufficient conditions for the exponential

stability of the equilibrium.

1. Introduction

An artificial neural network is an information processing paradigm that is
inspired by the way of biological nervous systems, such as the brain, process
information. The key element of this paradigm is the novel structure of the
information processing system. It is composed of a large number of highly in-
terconnected processing elements (neurons) working in unison to solve specific
problems. Although the initial intent of artificial neural networks was to explore
and reproduce human information processing tasks such as speech, vision, and
knowledge processing, artificial neural networks also demonstrated their supe-
rior capability for classification and function approximation problems. This has
great potential for solving complex problems such as systems control, data com-
pression, optimization problems, pattern recognition, and system identification.

C o h e n-G r o s s b e r g neural network [6] and its various generalizations with
or without transmission delays and impulsive state displacements have been the
subject of intense investigation recently [2], [4], [5], [12], [14], [15]. In a Cohen-
-Grossberg neural network model, the feedback terms consist of amplification
and stabilizing functions which are generally nonlinear. These terms provide the
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model with a special kind of generalization wherein many neural network models
that are capable for content addressable memory such as additive neural net-
works, cellular neural networks and bidirectional associative memory networks
and also biological models such as Lotka-Volterra models of population dynamics
are included as special cases.

In the present paper we study impulsive Cohen-Grossberg neural networks
with finite S-type distributed delays. This type of delays in the presence of
impulses is more general than the usual types of delays studied in the litera-
ture. In fact, concentrated delays correspond to the points of discontinuity of
the bounded variation functions. Neural networks with S-type delays without
impulses were considered, for instance, in [3], [8], [10], [13]. Using analysis tech-
niques we prove the existence of a unique equilibrium point. By means of simple
and efficient Lyapunov functions we present some sufficient conditions for the
exponential stability of the equilibrium. Some examples are given.

2. Preliminaries

We consider the impulsive Cohen-Grossberg neural network with S-type de-
lays consisting of m elementary processing units (or neurons) whose state vari-
ables xi (i = 1,m) are governed by

dxi(t)

dt
= ai

(

xi(t)
)



−bi
(

xi(t)
)

+

m
∑

j=1

cijfj
(

xj(t)
)

(1)

+

m
∑

j=1

dij

0
∫

−τ

gj
(

xj(t+ θ)
)

dηij(θ) + Ii



, t > t0 = 0, t 6= tk,

∆xi(tk) = −Bikxi(tk) +

0
∫

−τ

xi(tk + θ) dζk(θ) + γik, (2)

i = 1,m, k ∈ N = {1, 2, 3, . . .},

with initial values prescribed by piecewise-continuous functions xi(s) = φi(s)
with discontinuities of the first kind for s ∈ [−τ, 0]. In (1), ai(xi) denotes an am-
plification function; bi(xi) denotes an appropriate function which supports the
stabilizing (or negative) feedback term −ai(xi)bi(xi) of the unit i; fj(xj), gj(xj)
denote activation functions; the parameters cij , dij are real numbers that rep-
resent the weights (or strengths) of the synaptic connections between the jth
unit and the ith unit; the real constant Ii represents an input signal intro-
duced from outside the network to the ith unit; the past effect of the jth unit
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on the ith unit is given by the Lebesgue-Stieltjes integral
∫ 0

−τ
gj
(

xj(t+θ)
)

dηij(θ);

∆xi(tk) = xi(tk + 0)− xi(tk − 0) denote impulsive state displacements at fixed
moments of time tk, k ∈ N, involving Lebesgue-Stieltjes integrals. Here it is as-
sumed that xi(tk + 0) = limt→tk+0 xi(t) and xi(tk − 0) = limt→tk−0 xi(t), and
the sequence of times {tk}

∞
k=1 satisfies 0 = t0 < t1 < t2 < · · · < tk → ∞ as

k → ∞.

As usual in the theory of impulsive differential equations, at the points of
discontinuity tk of the solution t 7→ xi(t) we assume that xi(tk) ≡ xi(tk − 0).
It is clear that, in general, the derivatives ẋi(tk) do not exist. On the other
hand, according to (1) there exist the limits ẋi(tk ∓ 0). According to the above
convention, we assume ẋi(tk) ≡ ẋi(tk − 0).

The assumptions that accompany the impulsive network (1), (2) are given as
follows:

A1: The amplification functions ai : R → R
+ are continuous and bounded in

the sense that

0 < ai ≤ ai(x) ≤ ai for x ∈ R, i = 1,m.

A2: The stabilizing functions bi : R → R are continuous and monotone increas-
ing, namely,

0 < bi ≤
bi(x)− bi(y)

x− y
for x 6= y, x, y ∈ R, i = 1,m.

A3: The activation functions fj , gj : R → R are Lipschitz continuous in the
sense of

Fj = sup
x 6=y

∣

∣

∣

∣

fj(x)− fj(y)

x− y

∣

∣

∣

∣

, Gj = sup
x 6=y

∣

∣

∣

∣

gj(x)− gj(y)

x− y

∣

∣

∣

∣

for x, y ∈ R, j = 1,m,

where Fj, Gj denote positive constants.

A4: ηij(θ) (i, j = 1,m), ζk(θ) (k ∈ N) are nondecreasing bounded variation

functions on [−τ, 0], tk+1 − tk ≥ τ for k ∈ {0} ∪ N and
∫ 0

−τ
dηij(θ) = 1

(without loss of generality),
∫ 0

−τ
dζk(θ) = βk.

Under these assumptions and the given initial conditions, there is a unique
solution of the impulsive network (1), (2). The solution is a vector x(t) =
(

x1(t), x2(t), . . . , xm(t)
)T

in which xi(t) are piecewise continuous for t ∈ (0, β),
where β is some positive number, possibly ∞, such that the limits xi(tk+0) and
xi(tk − 0) exist and xi(t) are differentiable for t ∈ (tk−1, tk) ⊂ (0, β). An equilib-
rium point of the impulsive network (1), (2) is denoted by x∗ = (x∗

1, x
∗
2, . . . , x

∗
m)T

whereby the components x∗
i are governed by the algebraic system

bi(x
∗
i ) =

m
∑

j=1

cijfj(x
∗
j ) +

m
∑

j=1

dijgj(x
∗
j ) + Ii, i = 1,m, (3)
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and satisfy the linear equations

(−Bik + βk)x
∗
i + γik = 0, k ∈ N, i = 1,m. (4)Definition 1. The equilibrium point x∗ = (x∗

1, x
∗
2, . . . , x

∗
m)T of the impulsive

network (1), (2) is said to be globally exponentially stable with a Lyapunov
exponent λ if there exist constants M ≥ 1 and λ > 0 and any other solution

x(t) =
(

x1(t), x2(t), . . . , xm(t)
)T

of (1), (2) is defined for all t > 0 and satisfies
the estimate

m
∑

i=1

|xi(t)− x∗
i | ≤ Me−λt

m
∑

i=1

sup
s∈[−τ,0]

|xi(s)− x∗
i |, t ≥ 0. (5)

3. Existence and exponential stability of an equilibrium

point

Our first task is to prove the existence and uniqueness of the solution x∗ of
the algebraic system (3). To this end we will need the following lemma.Lemma 1 ( [7]). A locally invertible C0 map Φ: Rm → R

m is a homeomorphism

of R
m onto itself if and only if it is proper.

In fact, this assertion is due to H a d am a r d [9]. A mapping is proper if the
pre-image of every compact is compact. In the finite-dimensional case it suffices
to show that ‖Φ(x)‖ → ∞ as ‖x‖ → ∞.Theorem 1. Let the assumptions A1–A4 hold. Suppose, further, that the fol-

lowing inequalities are valid:

bi − Fi

m
∑

j=1

|cji| −Gi

m
∑

j=1

|dji| > 0, i = 1,m. (6)

Then the system without impulses (1) has a unique equilibrium point x∗ =
(x∗

1, x
∗
2, . . . , x

∗
m)T.

P r o o f. Let us define a mapping Φ: Rm → R
m by Φ(x) =

(

Φ1(x),Φ2(x), . . .

. . ., Φm(x)
)T

for x ∈ R
m, where

Φi(x) = −bi(xi) +

m
∑

j=1

cijfj(xj) +

m
∑

j=1

dijgj(xj) + Ii, i = 1,m.

The space Rm is endowed with the norm ‖x‖ =
∑m

i=1 |xi|. Under the assumptions
A2, A3, Φ(x) ∈ C0. It is known that if Φ(x) ∈ C0 is a homeomorphism of Rm,
then there is a unique point x∗ = (x∗

1, x
∗
2, . . . , x

∗
m)T ∈ R

m such that Φ(x∗) = 0,
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that is, Φi(x
∗) = 0, i = 1,m. The last equalities are, in fact, (3), so x∗ =

(x∗
1, x

∗
2, . . . , x

∗
m)T is the equilibrium point we are looking for.

To demonstrate the one-to-one property of Φ(x), we take arbitrary vectors
x, y ∈ R

m and assume that Φ(x) = Φ(y). From

bi(xi)− bi(yi) =

m
∑

j=1

cij
(

fj(xj)− fj(yj)
)

+

m
∑

j=1

dij
(

gj(xj)− gj(yj)
)

, i = 1,m,

one obtains

bi|xi − yi| ≤

m
∑

j=1

|cij|Fj |xj − yj |+

m
∑

j=1

|dij |Gj |xj − yj |, i = 1,m,

under the given assumptions. Adding together the above inequalities, we derive

m
∑

i=1

bi|xi − yi| ≤

m
∑

i=1

m
∑

j=1

{|cij|Fj + |dij |Gj} |xj − yj|

=

m
∑

i=1







Fi

m
∑

j=1

|cji|+Gi

m
∑

j=1

|dji|







|xi − yi|,

that is,

m
∑

i=1







bi − Fi

m
∑

j=1

|cji| −Gi

m
∑

j=1

|dji|







|xi − yi| ≤ 0.

Now the assertion xi = yi, i = 1,m, follows by virtue of inequalities (6). Thus,
Φ(x) = Φ(y) implies x = y.

Next we show that ‖Φ(x)‖ → ∞ as ‖x‖ → ∞. It suffices to show that

‖Φ̃(x)‖ → ∞, where Φ̃(x) = Φ(x) − Φ(0). We have Φ̃(x) =
(

Φ̃1(x), Φ̃2(x), . . .

. . ., Φ̃m(x)
)T
, where

Φ̃i(x) = −
(

bi(xi)− bi(0)
)

+

m
∑

j=1

cij
(

fj(xj)− fj(0)
)

+

m
∑

j=1

dij
(

gj(xj)− gj(0)
)

.

These equalities imply

|Φ̃i(x)| ≥ bi|xi| −

m
∑

j=1

|cij|Fj |xj | −

m
∑

j=1

|dij |Gj |xj |.

As above we deduce

‖Φ̃(x)‖ ≥

m
∑

i=1







bi − Fi

m
∑

j=1

|cji| −Gi

m
∑

j=1

|dji|







|xi|.
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By virtue of inequalities (6) there exists a number µ > 0 such that

bi − Fi

m
∑

j=1

|cji| −Gi

m
∑

j=1

|dji| ≥ µ, i = 1,m.

Then ‖Φ̃(x)‖ ≥ µ‖x‖ and ‖Φ̃(x)‖ → ∞ as ‖x‖ → ∞.

According to Lemma 1, Φ(x) ∈ C0 is a homeomorphism of Rm. Thus, there
is a unique point x∗ ∈ R

m such that Φ(x∗) = 0. The point represents a unique
solution of the algebraic system (3). �Theorem 2. Let the assumptions A1–A4 hold. Suppose, further, that the in-

equalities

aibi − Fi

m
∑

j=1

|cji|aj −Gi

m
∑

j=1

|dji|aj > 0, i = 1,m, (7)

are valid and the system (1) has a unique equilibrium point x∗ whose components

x∗
i , i = 1,m, satisfy the linear equations (4). Then there exist constants M ≥ 1

and λ > 0 and any other solution x(t) =
(

x1(t), x2(t), . . . , xm(t)
)T

of (1), (2)
is defined for all t > 0 and satisfies the estimate

m
∑

i=1

|xi(t)− x∗
i | ≤ Me−λt

i(0,t)
∏

k=1



 max
i=1,m

|1− Bik|+

0
∫

−τ

e−λθ dζk(θ)





×

m
∑

i=1

sup
s∈[−τ,0]

|xi(s)− x∗
i |, t ≥ 0, (8)

where i(0, t) = max
{

k ∈ {0} ∪ N : tk < t
}

is the number of instants of impulse

effect tk in the interval (0, t).

P r o o f. Upon introducing the translations

ui(t) = xi(t)− x∗
i , ϕi(s) = φi(s)− x∗

i

we derive the system

dui(t)

dt
= ãi

(

ui(t)
)



−b̃i
(

ui(t)
)

+

m
∑

j=1

cij f̃j
(

uj(t)
)

(9)

+

m
∑

j=1

dij

0
∫

−τ

g̃j
(

uj(t+ θ)
)

dηij(θ)



, t > t0 = 0, t 6= tk,

∆ui(tk) = −Bikui(tk) +

0
∫

−τ

ui(tk + θ) dζk(θ), i = 1,m, k ∈ N, (10)
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ui(s) = ϕi(s), s ∈ [−τ, 0],

where

ãi(ui) = ai(ui + x∗
i ), b̃i(ui) = bi(ui + x∗

i )− bi(x
∗
i ),

f̃j(uj) = fj(uj + x∗
j )− fj(x

∗
j ), g̃j(uj) = gj(uj + x∗

j )− gj(x
∗
j ).

This system inherits the assumptions A1–A4 given before. It suffices to examine
the exponential stability characteristics of the trivial equilibrium point u∗ = 0
of system (9), (10).

From equation (9) we derive an estimate for the upper right Dini derivative

d+

dt
|ui(t)| ≤ − aibi|ui(t)|+ ai

m
∑

j=1

|cij|Fj |uj(t)| (11)

+ ai

m
∑

j=1

|dij |Gj

0
∫

−τ

|uj(t+ θ)| dηij(θ), i = 1,m.

Next we define the following functions of λ ≥ 0:

Hi(λ) = aibi − λ− Fi

m
∑

j=1

|cji| aj −Gi

m
∑

j=1

|dji| aj

0
∫

−τ

e−λθ dηji(θ), i = 1,m.

By virtue of the inequalities (7) we find

Hi(0) = aibi − Fi

m
∑

j=1

|cji| aj −Gi

m
∑

j=1

|dji| aj > 0, i = 1,m.

By a lemma proved in [3] the integrals in Hi(λ) depend continuously on λ. Since
Hi(λ) are a finite number of continuous functions, there is λ∗ > 0 such that
Hi(λ) > 0 for λ ∈ [0, λ∗], that is,

aibi − λ− Fi

m
∑

j=1

|cji| aj −Gi

m
∑

j=1

|dji| aj

0
∫

−τ

e−λθ dηji(θ) > 0, i = 1,m. (12)

For any λ ∈ (0, λ∗] define yi(t) = eλt|ui(t)|. Then by virtue of (11) we find

d+

dt
yi(t) ≤ − (aibi − λ)yi(t) + ai

m
∑

j=1

|cij |Fjyj(t) (13)

+ ai

m
∑

j=1

|dij |Gj

0
∫

−τ

e−λθyj(t+ θ) dηij(θ) i = 1,m.

7
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We consider a Lyapunov functional

V (t) =

m
∑

i=1







yi(t) + ai

m
∑

j=1

|dij |Gj

0
∫

−τ

e
−λθ





t
∫

t+θ

yj(s) ds



 dηij(θ)







.

We note that V (t) > 0 for t ≥ 0 and

V (0) =

m
∑

i=1







yi(0) + ai

m
∑

j=1

|dij |Gj

0
∫

−τ

e
−λθ





0
∫

θ

yj(s) ds



 dηij(θ)







=

m
∑

i=1







yi(0) +Gi

m
∑

j=1

|dji| aj

0
∫

−τ

e
−λθ





0
∫

θ

yi(s) ds



dηji(θ)







≤
m
∑

i=1







1 +Gi

m
∑

j=1

|dji| aj

0
∫

−τ

e
−λθ(−θ) dηji(θ)







sup
s∈[−τ,0]

yi(s),

thus

V (0) ≤ M

m
∑

i=1

sup
s∈[−τ,0]

yi(s) (14)

with

M = max
i=1,m







1 +Gi

m
∑

j=1

|dji| aj

0
∫

−τ

e
−λθ(−θ) dηji(θ)







.

Calculating the rate of change of V (t) along the solutions of (9), by virtue of
(13) and (7) we obtain

d+

dt
V (t)

≤
m
∑

i=1







d+

dt
yi(t) + ai

m
∑

j=1

|dij |Gj

0
∫

−τ

e
−λθ

(

yj(t)− yj(t + θ)
)

dηij(θ)







≤ −
m
∑

i=1

(aibi − λ)yi(t) +

m
∑

i=1

ai

{

m
∑

j=1

|cij |Fjyj(t) +

m
∑

j=1

|dij |Gj

0
∫

−τ

e
−λθ

dηij(θ) yj(t)







= −
m
∑

i=1

{

aibi − λ− Fi

m
∑

j=1

|cji| aj − Gi

m
∑

j=1

|dji| aj

0
∫

−τ

e
−λθ

dηji(θ)







yi(t) ≤ 0.

This implies that V (t) is nonincreasing on every interval (tk−1, tk], k ∈ N, thus

V (t) ≤ V (tk−1 + 0) for tk−1 < t ≤ tk. (15)

In particular,

V (tk) ≤ V (tk−1 + 0), k ∈ N. (16)

8
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Further on, we have

ui(tk + 0) = (1−Bik)ui(tk) +

0
∫

−τ

ui(tk + θ) dζk(θ)

and

yi(tk + 0) ≤ |1−Bik| yi(tk) +

0
∫

−τ

e−λθyi(tk + θ) dζk(θ).

Making use of (15) and (16), we obtain

V (tk + 0) ≤ max
i=1,m

|1−Bik|V (tk) +

0
∫

−τ

e−λθdζk(θ)V (tk−1 + 0)

≤



max
i=1,m

|1−Bik|+

0
∫

−τ

e−λθ dζk(θ)



V (tk−1 + 0).

Combining the last estimate with (15), (16) and (14), we derive (8). �

For three sets of additional assumptions we will show that inequality (8)
implies global exponential stability of the equilibrium point x∗ of the impulsive
system (1), (2).Corollary 1. Let all conditions of Theorem 2 hold. Let there exist λ > 0 such

that inequalities (12) are valid and

max
i=1,m

|1− Bik|+

0
∫

−τ

e−λθ dζk(θ) ≤ 1 (17)

for all sufficiently large values of k ∈ N. Then the equilibrium point x∗ of the

impulsive system (1), (2) is globally exponentially stable with Lyapunov expo-

nent λ.

In the above corollary the global exponential stability was provided by the
rather small magnitudes of the impulse effects. Further we will show that we may
have global exponential stability for quite large and even unbounded magnitudes
of the impulse effects provided that those do not occur too often.Corollary 2. Let all conditions of Theorem 2 hold and

lim sup
t→∞

i(0, t)

t
= p < +∞.

9
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Let there exist positive constants λ and B satisfying the inequalities (12),

max
i=1,m

|1−Bik|+

0
∫

−τ

e−λθ dζk(θ) ≤ B

and p lnB < λ. Then for any λ̃ ∈ (0, λ− p lnB) the equilibrium point x∗ of the

impulsive system (1), (2) is globally exponentially stable with Lyapunov expo-

nent λ̃.

Similar conditions were introduced in our previous paper [1].Corollary 3. Let all conditions of Theorem 2 hold and there exist constants

λ > κ > 0 satisfying the inequalities (12) and

max
i=1,m

|1−Bik|+

0
∫

−τ

e−λθ dζk(θ) ≤ eκ(tk−tk−1) (18)

for all sufficiently large values of k ∈ N. Then the equilibrium point x∗ of the

impulsive system (1), (2) is globally exponentially stable with Lyapunov exponent

λ− κ.

A similar condition was introduced in the paper [11].

4. Examples

Consider the system

ẋ1(t) =
(

2 + sin x1(t)
)



−2x1(t) + 0.1 arctanx1(t) + 0.15 arctanx2(t)

+ 0.1

0
∫

−1

x1(t+ θ) deθ + 0.15

0
∫

−1

x2(t+ θ) deθ



,

ẋ2(t) =
(

3 + sin x2(t)
)



−3x2(t) + 0.15 arctanx1(t)− 0.2 arctanx2(t) (19)

+ 0.1

0
∫

−1

x1(t+ θ) deθ − 0.2

0
∫

−1

x2(t+ θ) deθ



.

For this system assumptions A1–A3 hold with a1 = 1, a1 = 3, a2 = 2, a2 = 4,
b1 = 2, b2 = 3, F1 = F2 = G1 = G2 = 1. Moreover, c11 = 0.1, c12 = c21 = 0.15,
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c22 = −0.2, d11 = d21 = 0.1(1− e−1), d12 = 0.15(1− e−1), d22 = −0.2(1− e−1).
Inequalities (7) reduce to

0.4 + 0.7e−1 > 0 and 3.5 + 1.25e−1 > 0.

Further on,

H1(λ) = 1.1− λ− 0.7
1− eλ−1

1− λ
and H2(λ) = 4.75− λ− 1.25

1− eλ−1

1− λ
.

Since H1(0.5) ≈ 0.05 > 0 and H2(0.5) ≈ 3.27 > 0, we can take λ∗ = 0.5.
Theorem 2 is valid for system (19) with any impulse conditions of the form (2)
such that γik = 0, i = 1,m, k ∈ N.

Let us consider the impulse conditions

∆x1(tk) = −
1

2
x1(tk) +

1

4

0
∫

−1

x1(tk + θ) deθ,

∆x2(tk) = −
1

4
x2(tk) +

1

4

0
∫

−1

x2(tk + θ) deθ. (20)

Now

max
i=1,2

|1−Bik|+

0
∫

−τ

e−λθ dζk(θ) =
3

4
+

1

4

0
∫

−1

e−λθ deθ =

{

3
4 + 1−eλ−1

4(1−λ) , λ 6= 1,

1, λ = 1.

Obviously, inequalities (17) are valid for all k ∈ N and all λ ∈ (0, 1], in par-
ticular, for λ = 0.5. According to Corollary 1, the equilibrium point (0, 0)T of
the impulsive system (19), (20) is globally exponentially stable with Lyapunov
exponent 0.5.

Next consider the impulse conditions

∆x1(tk) = −100x1(tk) +

0
∫

−1

x1(tk + θ) deθ,

∆x2(tk) = −50x2(tk) +

0
∫

−1

x2(tk + θ) deθ, (21)

tk = 10k, k ∈ N.

Now

max
i=1,2

|1−Bik|+

0
∫

−τ

e−λθ dζk(θ) = 99 +

0
∫

−1

e−λθ deθ =

{

99 + 1−eλ−1

1−λ
, λ 6= 1,

100, λ = 1,

11
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and we can take B = 100. Further on, p = 0.1, for λ = 0.5 we have λ− p lnB ≈
0.5−0.1×4.605 = 0.0395. According to Corollary 2, the equilibrium point (0, 0)T

of the impulsive system (19), (21) is globally exponentially stable with Lyapunov
exponent 0.039.

Finally, let us consider the impulse conditions

∆x1(tk) = −(k + 1)x1(tk) + k

0
∫

−1

x1(tk + θ) deθ,

∆x2(tk) = −(k2 + 1)x2(tk) + k2
0

∫

−1

x2(tk + θ) deθ, (22)

tk = k2, k ∈ N.

Now for λ = 0.5 inequality (18) becomes k2(3− e0.5) ≤ eκ(2k−1). Obviously, for
any κ > 0 this inequality is valid for all natural k large enough. For instance,
for κ = 0.4 inequality (18) holds for k ≥ 6, while for κ = 0.1 it holds for k ≥ 41.
Thus, according to Corollary 3, the equilibrium point (0, 0)T of the impulsive
system (19), (22) is globally exponentially stable with Lyapunov exponent being
any λ ∈ (0, 0.5).
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