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HOW TO FIND INITIAL DATA GENERATING

BOUNDED SOLUTIONS OF DISCRETE EQUATIONS

Irena Hlavičková

ABSTRACT. This contribution concerns the asymptotic behavior of solutions

of a first-order difference equation. We are looking for a solution whose graph
stays in a given domain. It is supposed that all the boundary points of this
domain are the so called points of strict egress. Under this supposition, it has
been already proved that the existence of at least one solution the graph of which
stays in the given domain is guaranteed. The main aim of this article is to find
the concrete value of the initial condition which generates such a solution. The

method we introduce resembles the well-known bisection method for finding roots
of equations.

1. Introduction

For integers s, q, s ≤ q, we define Z
q
s := {s, s + 1, . . . , q} where possibilities

s = −∞ or q = ∞ are admitted, too.

We investigate the asymptotic behavior for n → ∞ of the solutions of the
equation

∆u(n) = f
(

n, u(n)
)

, (1)

where n ∈ Z
∞

a , a ∈ N is fixed, ∆u(n) = u(n+ 1)− u(n), and f : Z∞

a × R → R.

If an initial condition
u(a) = ua

is given, then for n ∈ Z
∞

a there exists a unique solution u = u(n) of (1) such
that u(a) = ua.

If the function f is continuous, then the solution depends continuously on
initial data.
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The main problem

Let b(n), c(n) be real functions defined on Z
∞

a such that b(n) < c(n) for every
n ∈ Z

∞

a . Define the set ω as

ω :=
{

(n, u) : n ∈ Z
∞

a , u ∈ ω(n)
}

(2)

with
ω(n) :=

{

u : b(n) < u < c(n)
}

,

its closure as

ω :=
{

(n, u) : n ∈ Z
∞

a , u ∈ ω(n)
}

with
ω(n) :=

{

u : b(n) ≤ u ≤ c(n)
}

,

and its boundary as

∂ω :=
{

(n, u) : n ∈ Z
∞

a , u = b(n) or u = c(n)
}

.

The aim is to find a solution u = u(n) of equation (1) such that

u(n) ∈ ω(n) for every n ∈ Z
∞

a .

Similar problems are studied in many papers, e.g., [2], [4]–[11]. In those papers,
various conditions concerning the set ω and the right-hand side of equation (1)
are considered.

Here, we will assume that the boundary of the set ω consists of the so called
points of strict egress.

Points of strict egress

We say that a point (n, u) ∈ ∂ω is a point of strict egress for the set ω with
respect to equation (1) if and only if

u = b(n) and f(n, u)− b(n+ 1) + b(n) < 0, (3)

or
u = c(n) and f(n, u)− c(n+ 1) + c(n) > 0. (4)

Let us explain the geometrical meaning of conditions (3) and (4):

Consider a solution u = u(n) of equation (1) such that u(s) = b(s) for some
s ∈ Z

∞

a . Then, due to equation (1), the next member of this solution, u(s+ 1),
is

u(s+ 1) = u(s) + f
(

s, u(s)
)

= b(s) + f
(

s, b(s)
)

.

According to (3), f
(

s, b(s)
)

− b(s+ 1) + b(s) < 0, i.e., u(s+ 1) < b(s+ 1). This
means that u(s+ 1) /∈ ω(s+ 1).

Analogously, we can show that if we have a solution u = u(n) such that
u(s) = c(s) for some s ∈ Z

∞

a , then for this solution, u(s + 1) > c(s + 1), i.e.,
u(s+ 1) /∈ ω(s+ 1).
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2. The existence theorem

The following theorem concerning asymptotic behavior of solutions of equa-
tion (1) is a particular case of more general results in [6, Theorem 2] and [10].Theorem 2.1. Suppose that f is continuous. If, moreover, all the boundary

points of the set ω defined by (2) are points of strict egress, then there exists an

initial condition
u(a) = u∗∈ ω(a) (5)

such that the corresponding solution u = u∗(n) satisfies the relation

u∗(n) ∈ ω(n) for every n ∈ Z
∞

a . (6)

The proof of Theorem 2.1 is done by contradiction. It is supposed that no
solution stays in ω and under this supposition a continuous mapping of the
interval

[

b(a), c(a)
]

onto the set
{

b(a), c(a)
}

is found which is impossible.

Unfortunately, Theorem 2.1 just states that there exists a solution staying in
the domain ω but it does not give us any recipe how to find the appropriate
initial condition (5). This gap is particularly filled, e.g., in [3] where the case
of linear equation is studied. Here we present another approach which is more
general. Our method will be applicable to any equation satisfying the conditions
of Theorem 2.1. The following algorithm has been already sketched in [12] but
without a rigorous mathematical justification which will be set right now.

3. Bisection method for finding the initial data

We will describe an algorithm how to find u∗ so that the solution generated
by the initial condition (5) stays in the domain ω. Similarly as in the well-known
bisection method for finding roots of functions, we will construct a sequence of
intervals

[

ua
L,i, u

a
U,i

]

(L as “lower”, U as “upper” bound), i = 1, 2, . . . , each of

them half the width of the previous one. In the classical bisection method, the
existence of a root of a continuous function f in the interval [a, b] is guaranteed
by the opposite signs of f(a) and f(b). Here, this role will be played by the fact
that the solution of equation (1) starting at the point ua

L,i exceeds the lower
bound of the set ω and the solution starting at ua

U,i exceeds the upper bound.
Theorem 3.1 below states that this property will ensure that the sought u∗ is
between ua

L,i and ua
U,i. In its proof we will use Lemma 3.1 which could be proved

by means of basic mathematical analysis.Lemma 3.1. Let g : R → R be a continuous function and [a, b], [c, d] two non-

empty intervals. If
g
(

[a, b]
)

⊇ [c, d ],
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then there exists an interval [ã, b̃] ⊆ [a, b] such that

g
(

[ã, b̃]
)

= [c, d ].Theorem 3.1. Suppose that the function f in equation (1) is continuous and

that all the boundary points of the set ω defined by (2) are points of strict egress.

Let u = u1(n) and u = u2(n) be two solutions of equation (1) given by the

initial conditions

u(a) = ua
1 ∈ ω(a) and u(a) = ua

2 ∈ ω(a),

respectively.

If there exist integers r, s ∈ Z
∞

a+1 such that

u1(n) ∈ ω(n) for n ∈ Z
r−1
a and u1(r) < b(r) (7)

and

u2(n) ∈ ω(n) for n ∈ Z
s−1
a and u2(s) > c(s) (8)

then there exists an initial condition

u(a) = u∗∈ (ua
1 , u

a
2)

such that the corresponding solution u = u∗(n) satisfies the relation (6).

P r o o f. Without the loss of generality we may suppose that s ≥ r. The opposite
case would be analogous. It is easy to see that if we take s as the initial value
of n instead of a, Theorem 2.1 remains valid, i.e., if f is continuous and all the
points (n, u) ∈ ∂ω, n ∈ Z

∞

s , are points of strict egress, then there exists a initial
condition

u(s) = u∗∗ ∈ ω(s) (9)

such that the corresponding solution u = u∗∗(n) satisfies the relation

u∗∗(n) ∈ ω(n) for every n ∈ Z
∞

s . (10)

We will show that there exists a value u∗ ∈ (ua
1 , u

a
2) such that the solution

u = u∗(n) given by the initial condition u(a) = u∗ satisfies the conditions

u∗(s) = u∗∗.
and

u∗(n) ∈ ω(n) for n ∈ Z
s−1
a .

For next considerations, define for every n ∈ Z
∞

a the function gn : R → R as

gn(u) := u+ f(n, u).

As f is a continuous function, gn is continuous as well. Notice that for every
solution u = u(n) of equation (1),

u(n+ 1) = gn
(

u(n)
)
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and that the conditions (3) and (4) are equivalent to

gn
(

b(n)
)

< b(n+ 1),

gn
(

c(n)
)

> c(n+ 1).

Further, define auxiliary functions

b̂(n) :=

{

u1(n) for n ∈ Z
r−1
a ,

b(n) for n ∈ Z
s
r

and

ĉ(n) :=

{

u2(n) for n ∈ Z
s−1
a ,

c(s) for n = s.

Remark that b̂(a) = u1(a) = u∗

1, ĉ(a) = u2(a) = u∗

2. Further, notice that, as
we do not know anything about the monotonicity of the functions gn, it is not

guaranteed that b̂(n) < ĉ(n). However, the equality b̂(n) = ĉ(n) is ruled out by
the uniqueness of solution of equation (1) and by (3) and (4). For n ∈ Z

s
a, define

the interval

În :=
[

min{b̂(n), ĉ(n)},max
{

b̂(n), ĉ(n)
}

]

.

As the functions gn are continuous and due to (3), (4), (7) and (8), we know
that for n ∈ Z

s−1
a ,

gn

(

În

)

⊇ În+1. (11)

Thus, we are able to find a sequence of intervals In, n ∈ Z
s
a such that

(i) Is = Îs = ω(s),

(ii) In ⊆ În for n ∈ Z
s−1
a ,

(iii) gn(In) = In+1 for n ∈ Z
s−1
a .

Constructing these intervals, we proceed backwards: we begin with the interval
Is := Îs =

[

b(s), c(s)
]

. Due to (11) and Lemma 3.1, we can find an interval

Is−1 ⊆ Îs−1 such that gs−1(Is−1) = Is. Recursively, we find Is−2, . . . , Ia.

Having this sequence of intervals, we can find a sequence of points ũn, n ∈ Z
s
a,

such that

(i) ũs = u∗∗ ∈ Is,

(ii) ũn ∈ In for n ∈ Z
s−1
a ,

(iii) gn(ũn) = ũn+1 for n ∈ Z
s−1
a .

Again, we proceed backwards: put ũs := u∗∗. Then there exists a point ũs−1 ∈
Is−1 such that gs−1(ũs−1) = ũs, etc., until we come to ũa ∈ Ia. Now, prescribing
the initial condition

u(a) = u∗ := ũa,

we get the solution u = u∗(n) of equation (1) for which
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(i) u∗(n) = ũn ∈ In ⊂ ω(n) for n ∈ Z
s−1
a ,

(ii) u∗(s) = u∗∗ ∈ ω(s),

(iii) u∗(n) = u∗∗(n) ∈ ω(n) for n ∈ Z
∞

s+1.

The conditions (i) and (ii) are fulfilled due to the construction of the sequence
ũn and the condition (iii) is fulfilled thanks to (9) and (10). Thus we have found
the value of u∗ ∈ (ua

1 , u
a
2) for which the corresponding solution satisfies (6). �

The algorithm of the bisection method for finding u∗

The value u∗ will be found as a limit of an infinite sequence {ua
i }

∞

i=1 (although
sometimes the process can be finite).

As it has been said above, the method of finding u∗ will be similar to the
bisection method for solving nonlinear equations of the form f(x) = 0. Let us
start with an interval that certainly contains the sought “root” u∗. According to
Theorem 2.1, it is the interval

[

b(a), c(a)
]

. Denote

ua
L,1 := b(a) and ua

U,1 := c(a).

Further, we will construct a sequence of intervals
[

ua
L,i, u

a
U,i

]

, i = 1, 2, . . . , con-
taining the “root” u∗. The next interval will be obtained by bisecting the previous
one and choosing the correct half of it.

Denote the solutions of equation (1) given by the initial conditions u(a) = ua
L,i

and u(a) = ua
U,i as u = uL,i(n) and u = uU,i(n), respectively.

Due to conditions (3) and (4), we have

uL,1(a+ 1) < b(a+ 1) and uU,1(a+ 1) > c(a+ 1).

Now we will bisect the interval
[

ua
L,1, u

a
U,1

]

. Denote its center as

ua
1 :=

ua
L,1 + ua

U,1

2
.

Consider the solution u = u1(n) of equation (1) given by the initial condition
u(a) = ua

1 . There are three possibilities:

I. u1(n) ∈ ω(n) for every n ∈ Z
∞

a . In this case u∗ = ua
1 , we have a solution

with the desired property (6) and we can stop the process.

II. There exists an r ∈ Z
∞

a such that u1(n) ∈ ω(n) for n = a, . . . , r − 1, but
u1(r) ≤ b(r), i.e., u1(r) /∈ ω(r). In this case we set

ua
L,2 := ua

1 , ua
U,2 := ua

U,1.

III. There exists an s ∈ Z
∞

a such that u1(n) ∈ ω(n) for n = a, . . . , s − 1, but
u1(s) ≥ c(s). This time we change the upper bound of the interval:

ua
U,2 := ua

1 , ua
L,2 := ua

L,1.
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Now, either we have the desired u∗, or we have a new interval
[

ua
L,2, u

a
U,2

]

with the property that the solution u = uL,2(k) exceeds the lower bound b(r)
of the domain ω for some r ∈ Z

∞

a , meanwhile the solution u = uU,2(k) exceeds
the upper bound c(s) for some s ∈ Z

∞

a . Due to Theorem 3.1, this interval has
to contain the value of u∗ for which the corresponding solution u = u∗(n) stays
in ω.

Further, we will proceed inductively. Having the interval
[

ua
L,i, u

a
U,i

]

, we bisect
it and denote its center as

ua
i :=

ua
L,i + ua

U,i

2
.

For the solution u = ui(n) given by the initial condition u(a) = ua
i , we

have three possibilities: either it stays in ω, or it exceeds its lower bound, or it
exceeds its upper bound. According to this, either we have found u∗ = ua

i, or we
set ua

L,i+1
:= ua

i, u
a
U,i+1

:= ua
U,i, or we set ua

U,i+1
:= ua

i, u
a
L,i+1

:= ua
L,i, respectively.

Continuing this process, either we get the sought initial point u∗ in a finite
number of steps, or we get infinite sequences

{

ua
L,i

}

∞

i=1
,
{

ua
U,i

}

∞

i=1
and

{

ua
i

}

∞

i=1
.

These sequences are obviously convergent as
{

ua
L,i

}

∞

i=1
is a nondecreasing se-

quence bounded from above by c(a),
{

ua
U,i

}

∞

i=1
is a nonincreasing sequence

bounded from below by b(a) and ua
L,i < ua

i < ua
U,i for every i ∈ N. In this

case,

u∗ = lim
i→∞

ua
i .

Problems with practical implementation of this method

Programming the above described method, we are limited by the possibilities
of computers. In the ideal case, we would bisect the intervals until either we find
a solution with property (6), or the length of the interval

[

ua
L,i, u

a
U,i

]

is less than
some chosen ε > 0. But, practically, for a given initial condition, we can compute
the values of the corresponding solution of equation (1) for n = a, a+1, . . . , but
it is clear that it is impossible to compute to infinity. We have to stop sometimes.
Thus, given a fixed N ∈ Z

∞

a , we are able to find a point ũ∗ such that the solution
u = ũ∗(k) satisfies the condition

ũ∗(n) ∈ ω(n), n ∈ Z
N
a .

But the validity of (6) for every n ∈ Z
∞

a cannot be guaranteed.

Another limitation of the bisection method is that it cannot be generalized
for systems of equations.
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