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HALF-LINEAR EULER DIFFERENTIAL EQUATIONS

IN THE CRITICAL CASE

Ondřej Došlý — Hana Haladová

ABSTRACT. We investigate oscillatory properties of the perturbed half-linear
Euler differential equation

(

Φ(x′)
)

′

+
γp

tp
Φ(x) = 0, Φ(x) := |x|p−2x, γp :=

(

p− 1

p

)

p

.

A perturbation is also allowed in the coefficient involving derivative.

1. Introduction

The half-linear Euler differential equation
(

Φ(x′)
)

′

+
γ

tp
Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, γ ∈ R, (1)

is one of a few half-linear second order differential equations which can be solved
explicitly. Similarly to the linear case p = 2, if we look for a solution of (1) in
the form x(t) = tλ substituting into (1), we find that λ has to be a solution of
the algebraic equation

(p− 1)Φ(λ)(λ− 1) + γ = 0,

see also [5]. The function F (λ) := (p − 1)Φ(λ)(λ − 1) has a global minimum

at λ∗ = p−1
p

and the value of this minimum is F (λ∗) = −γp := −
(

p−1
p

)p
.

Consequently, the equation F (λ) + γ = 0 has two real roots if γ < γp, one
double real root if γ = γp, and no real root if γ > γp.

Equation (1) is a particular case of the general half-linear second order dif-
ferential equation

(

r(t)Φ(x′)
)

′

+ c(t)Φ(x) = 0, (2)
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where r, c are continuous functions and r(t) > 0. It is known that oscillation
theory of (2) is almost the same as this theory for the second order Sturm-
-Liouville linear differential equation

(

r(t)x′
)

′

+ c(t)x = 0 (3)

which is a special case p = 2 in (2). In particular, all solutions of (2) are ei-
ther oscillatory or nonoscillatory, see [3]. This means, in particular, that (1) is
nonoscillatory if and only if γ ≤ γp. Also, equation (1) with the critical coefficient
γ = γp serves as a comparison equation for the Kneser-type (non)oscillation test
which states that (2) with r(t) = 1 is oscillatory provided

lim inf
t→∞

tpc(t) > γp

and nonoscillatory if
lim sup
t→∞

tpc(t) < γp.

The Kneser test does not apply when limt→∞ tpc(t) = γp and this situation is
the principal concern of our paper.

2. Auxiliary results

In a general framework, we suppose that equation (2) is nonoscillatory and
we study oscillatory properties of its perturbation

[

(

r(t) + r̃(t)
)

Φ(x′)
]

′

+
(

c(t) + c̃(t)
)

Φ(x) = 0. (4)

We suppose that the perturbation terms r̃, c̃ are continuous functions such that
r(t) + r̃(t) > 0 for large t.

Let x be a solution of (2) such that x(t) 6= 0, then w = rΦ
(

x′

x

)

is a solution
of the Riccati type differential equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, q :=
p

p− 1
.

In our research, an important role plays the concept of conditionally oscillatory
half-linear equation. Following [3], equation (2) with λc(t) instead of c(t) is said
to be conditionally oscillatory if there exists a constant λ0 such that this equation
is oscillatory for λ > λ0 and nonoscillatory for λ < λ0. The constant λ0 is called
the oscillation constant of (2). A typical example of a conditionally oscillatory
equation is just Euler equation (1) and its oscillation constant is λ0 = γp.

Here we will deal with conditionally oscillatory half-linear equations in a more
general sense. We will consider the equation of the form

[

(

r(t) + λr̃(t)
)

Φ(x′)
]

′

+
(

c(t) + µc̃(t)
)

Φ(x) = 0 (5)

42
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and we say that (5) is conditionally oscillatory if there exist constants α, β, ω ∈ R,
α 6= 0, β 6= 0, such that (5) is oscillatory for αλ+βµ > ω and nonoscillatory for
αλ+ βµ < ω. A typical example of conditionally oscillatory equation with two
parameters is perturbed Euler equation (1) with the critical coefficient γp

[

(

1 +
λ

log2 t

)

Φ(x′)

]

′

+

[

γp

tp
+

µ

tp log2 t

]

Φ(x) = 0 . (6)

It is proved in [2] that (6) is oscillatory if µ − λγp > µp := 1
2

(

p−1
p

)p−1
and

nonoscillatory if µ−λγp < µp. It was conjectured in [2] that (6) is nonoscillatory
also in the limiting case

µ− λγp = µp . (7)

In our paper we prove that this conjecture is true. We also discuss some general
aspects of the problem.

Next we derive the modified Riccati equation in a more general setting than
in [2]. Let h(t) 6= 0 be a positive differentiable function, denote

G(t) := r(t)h(t)Φ
(

h′(t)
)

(8)

and let

Ω(t) :=

(

1 +
r̃(t)

r(t)

)

G(t).

Define the function

G(t, z) := |z + Ω(t)|
q
− qΦ−1

(

Ω(t)
)

z − |Ω(t)|q, (9)

where Φ−1(x) = |x|q−2x is the inverse function of Φ, and put

z := hp(w − wh)−
r̃

r
G = hpw −G− G̃,

where w is a solution of the Riccati equation associated with (4)

w′+ c(t) + c̃(t) + (p− 1)
(

r(t) + r̃(t)
)1−q

|w|q = 0,

wh = rΦ
(

h′

h

)

, and G̃ = r̃hΦ(h′). Then z is a solution of the equation

z′+ C(t) + (p− 1)
(

r(t) + r̃(t)
)1−q

h−q(t)G(t, z) = 0, (10)

where

C(t) = h(t)

[

(

(

r(t) + r̃(t)
)

Φ
(

h′(t)
)

)

′

+
(

c(t) + c̃(t)
)

Φ
(

h(t)
)

]

. (11)
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Indeed, by a direct computation we have

z′ = pΦ(h)h′w + hpw′− r|h′|p − h
(

rΦ(h′)
)

′

− r̃|h′|p − h
(

r̃Φ(h′)
)

′

= pΦ(h)h′w + hp
[

−(c+ c̃)− (p− 1)(r + r̃)1−q|w|q
]

− (r + r̃)|h′|p − h
[

(r + r̃)Φ(h′)
]

′

= p
h′

h
(z +G+ G̃)− (r + r̃)|h′|p − h

[

(

(r + r̃)Φ(h′)
)

′

+ (c+ c̃)Φ(h)
]

− (p− 1)hp(r + r̃)1−q

∣

∣

∣

∣

h−pz + wh + r̃Φ

(

h′

h

)
∣

∣

∣

∣

q

= − h
[

(

(r + r̃)Φ(h′)
)

′

+ (c+ c̃)Φ(h)
]

− (p− 1)(r + r̃)1−qh−q

×

{

|z +Ω|q −
p

p− 1
h′(r + r̃)q−1hq−1z − (r + r̃)qhq|h′|p

}

= − h
[

(

(r + r̃)Φ(h′)
)

′

+ (c+ c̃)Φ(h)
]

− (p− 1)(r + r̃)1−qh−q
{

|z +Ω|q − qΦ−1(Ω)z − |Ω|q
}

.

Note that in contrast to [2] we do not suppose that h is a solution of (2), so the
extra term

h
[(

rΦ(h′)
)

′

+ cΦ(h)
]

appears in the definition of the function C in (11).

We will also need the following statement which is a slight modification of
[2, Theorem 3] (here we do not require that the function h is a solution of (2)).
So we omit its proof since it is the same as that of [2, Theorem 3] and it based
on the fact that solvability of (10) implies nonoscillation of (4).Theorem 1. Let h be a positive differentiable function such that h′(t) 6= 0 for

large t. Denote

R(t) =
(

r(t) + r̃(t)
)

h2(t)|h′(t)|p−2, (12)

and suppose that
∞
∫

0

dt

R(t)
= ∞,

∞
∫

0

C(t) dt is convergent,

where C is given by (11), and

lim inf
t→∞

(

r(t) + r̃(t)
)

h(t)|h′(t)|p−1 > 0 .
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If

lim sup
t→∞

t
∫

0

ds

R(s)

∞
∫

t

C(s) ds <
1

2q
(13)

and

lim inf
t→∞

t
∫

0

ds

R(s)

∞
∫

t

C(s) ds > −
3

2q
, (14)

then equation (4) is nonoscillatory.

3. Equation (6) in the limiting case

Now we can prove the main result of our paper.Theorem 2. Suppose that (7) holds. Then the perturbed Euler equation with

the critical coefficients (6) is nonoscillatory.

P r o o f. We rewrite (6) into the form
[

(

1 +
λ

log2 t

)

Φ(x′)

]

′

+

[

γp

tp
+

µp

tp log2 t
+

µ− µp

tp log2 t

]

Φ(x) = 0 (15)

and we use the previous computation with

r(t) = 1, r̃(t) =
λ

log2 t
, c(t) =

γp

tp
+

µp

tp log2 t
, c̃(t) =

µ− µp

tp log2 t
, h(t) = t

p−1

p log
1

p t .

We have

h′ =
p− 1

p
t−

1

p log
1

p t+
1

p
t−

1

p log
1

p
−1 t =

p− 1

p
t−

1

p log
1

p t

(

1 +
1

(p− 1) log t

)

,

Φ(h′) =

(

p− 1

p

)p−1

t−
p−1

p log
p−1

p t

(

1 +
1

(p− 1) log t

)p−1

,

and

(

Φ(h′)
)

′

=

(

p− 1

p

)p−1
[

−
p− 1

p
t−2+ 1

p log
p−1

p t

(

1 +
1

(p− 1) log t

)p−1

+
p− 1

p
t−2+ 1

p log−
1

p t

(

1 +
1

(p− 1) log t

)p−1

−t−2+ 1

p log
p−1

p t log−2 t

(

1 +
1

(p− 1) log t

)p−2
]
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ONDŘEJ DOŠLÝ — HANA HALADOVÁ

=

(

p− 1

p

)p−1
p− 1

p
t−2+ 1

p log
p−1

p t

(

1 +
1

(p− 1) log t

)p−2

×

[

−1−
1

(p− 1) log t
+

1

log t

(

1 +
1

(p− 1) log t

)

−
p

p− 1

1

log2 t

]

= γpt
−2+ 1

p log
p−1

p t

[

1 +
p− 2

(p− 1) log t
+

(

p− 2

2

)

1

(p− 1)2 log2 t

+

(

p− 2

3

)

1

(p− 1)3 log3 t
+ o

(

log−3 t
)

][

−1 +
1

log t

(

1−
1

p− 1

)

+
1

log2 t

(

1

p− 1
−

p

p− 1

)]

= γpt
−2+ 1

p log
p−1

p t

[

−1 +
1

log t

(

−
p− 2

p− 1
+

p− 2

p− 1

)

+
1

log2 t

(

−
(p− 2)(p− 3)

2(p− 1)2
+

(p− 2)2

(p− 1)2
− 1

)

+ o
(

log−2 t
)

]

= γpt
−2+ 1

p log
p−1

p t

[

−1−
p

2(p− 1)

1

log2 t
+ O

(

log−3 t
)

]

= t−2+ 1

p log
p−1

p t

[

−γp −
µp

log2 t
+ O

(

log−3 t
)

]

, as t → ∞.

Similarly,
(

λ

log2 t
Φ(h′)

)

′

= λ

(

p− 1

p

)p−1
[

t−
p−1

p log−1− 1

p t

(

1 +
1

(p− 1) log t

)p−1
]

′

= λ

(

p− 1

p

)p−1

t−2+ 1

p log−1− 1

p t

[

1 +
p− 2

(p− 1) log t
+ o

(

log−1 t
)

]

×

[

−
p− 1

p

(

1 +
1

(p− 1) log t

)

−

(

1 +
1

p

)

1

log t

(

1 +
1

(p− 1) log t

)

−
1

log2 t

]

= λ

(

p− 1

p

)p−1

t−2+ 1

p log−1− 1

p t

[

1 +
p− 2

(p− 1) log t
+ o

(

log−1 t
)

]

×

[

−
p− 1

p
−

p+ 2

p log t
+ o

(

log−1
)

]

= λ

(

p− 1

p

)p−1

t−2+ 1

p log−1− 1

p t

[

−
p− 1

p
−

2

log t
+ o

(

log−1t
)

]

as t → ∞.
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Hence, in the limiting case (7) it holds

[

(

r̃Φ(h′)
)

′

+ c̃Φ(h)
]

= t−2+ 1

p log−1− 1

p t

[

−λγp + µ− µp − 2λ

(

p− 1

p

)p−1
1

log t
+ o

(

log−1 t
)

]

− 2λ

(

p

p− 1

)p−1

t−2+ 1

p log−2− 1

p t
(

1 + o(1)
)

as t → ∞.

Consequently,

h
[

(

r̃Φ(h′)
)

′

+ c̃Φ(h)
]

= −2λt
p−1

p log
1

p t

(

p

p− 1

)p−1

t−2+ 1

p log−2− 1

p t
(

1 + o(1)
)

= O
(

t−1 log−2 t
)

as t → ∞.

Now we use Theorem 1. In this theorem

R = (r + r̃)h2|h′|p−2 = t log t
(

1 + o(1)
)

∼ t log t

(here f(t) ∼ g(t) for a pair of functions f, g means limt→∞

f(t)
g(t) = 1),

(r + r̃)hΦ(h′)

=

(

p− 1

p

)p−1(

1 +
λ

log2 t

)

log t

(

1 +
1

(p− 1) log t

)p−1

→ ∞ as t → ∞,

and using the previous computations

C = h
[

(

(r + r̃)Φ(h′)
)

′

+ (c+ c̃)Φ(h)
]

= O
(

t−1 log−2 t
)

as t → ∞,

i.e., there exists a constant M > 0 such that |C(t)| ≤ Mt−1 log−2 t for large t.
Now, by a direct computation

lim
t→∞

∣

∣

∣

∣

∣

∣

t
∫

0

R−1(s) ds

∞
∫

t

C(s) ds

∣

∣

∣

∣

∣

∣

≤ M lim
t→∞

log(log t)

log t
= 0,

so by Theorem 1 equation (6) with λ and µ satisfying (7) is nonoscillatory. �
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4. Open problems

(i) In equation (6), the functions r̃(t) = 1
log2 t

, c̃(t) = 1
tp log2 t

“match together”,

i.e., for r(t) = 1 and c(t) = γpt
−p they have such asymptotic growth for

t → ∞ that equation (6) is conditionally oscillatory. This fact is likely a
special case of the general situation which is a subject of the present in-
vestigation. More precisely, given the functions r, c, we look for functions
r̃, c̃ with such asymptotic growth that equation (5) is conditionally oscil-
latory. For r̃ = 0, this problem has been studied in [4], where conditions
on unperturbed equation (2) are found under which its perturbation

(

r(t)Φ(x′)
)

′

+

[

c(t) +
µ

hp(t)R(t)
(

∫ t0 R
−1(s) ds

)2

]

Φ(x) = 0

is conditionally oscillatory (and its oscillation constant is µ0 =
1
2q , where

q is the conjugate exponent to p, i.e., 1
p
+ 1

q
= 1). Here h is the so called

principal solution of (2) and R = rh2|h′|p−2. The subject of the present
investigation is to find an explicit formula for the function r̃ in such a way
that together with the function

c̃(t) =
1

hp(t)R(t)
(

∫ t0 R
−1(s) ds

)2

equation (5) is conditionally oscillatory.

(ii) In [10] the authors establish a “power comparison theorem” for the Rie-
mann-Weber half-linear equation

(

Φ(x′)
)

′

+

[

γp

tp
+

µ

tp log2 t

]

Φ(x) = 0 . (16)

They proved a (non)oscillation criterion for this equation, where this equa-
tion is compared with an equation of the same form, but with a different
power in the function Φ and other functions and constants appearing in
(16). It suggests to investigate a similar problem for the more general
equation (6).

(iii) In [1], motivated by the linear case treated in [7], [8], [9], we have investi-
gated oscillatory properties of the equation

(

r(t)Φ(x′)
)

′

+

[

c(t)

tp
+

d(t)

tp log2 t

]

Φ(x) = 0 (17)

with positive α-periodic functions r, c, d. It was shown, similarly to the
case when these periodic functions are constants, that (17) is conditionally
oscillatory and an explicit formula for oscillation constants has been found.
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This result suggests to establish a similar result for (6), where the constants
in numerators of the fractions λ

log2 t
,
γp

tp
, and µ

tp log2 t
are replaced by periodic

functions.
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