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HALF-LINEAR EULER DIFFERENTIAL EQUATIONS
IN THE CRITICAL CASE

ONDREJ DoOSLY — HANA HALADOVA

ABSTRACT. We investigate oscillatory properties of the perturbed half-linear
Euler differential equation

’l’y—p:z:— z) = |z|P 2z '—p;lp
(@) + Zo@) =0, a) =lol" e, = (22

A perturbation is also allowed in the coefficient involving derivative.

1. Introduction

The half-linear Euler differential equation
(@(m’))/+ tlpi)(x) =0, ®(z):=|z|P %, p>1, yER, (1)

is one of a few half-linear second order differential equations which can be solved
explicitly. Similarly to the linear case p = 2, if we look for a solution of () in
the form x(t) = t* substituting into (I)), we find that A has to be a solution of
the algebraic equation

P—1D2NA-1)+7=0,

see also [B]. The function F(A) := (p — 1)®(A\)(A — 1) has a global minimum
at \* = ijl and the value of this minimum is F(\*) = —, = —(ijl)p.
Consequently, the equation F'(A) + v = 0 has two real roots if v < ~,, one
double real root if v = 7,, and no real root if v > ,.

Equation () is a particular case of the general half-linear second order dif-

ferential equation
(r()@ (")) + e(t)B(x) = 0, (2)
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where 7, ¢ are continuous functions and r(¢t) > 0. It is known that oscillation
theory of (2)) is almost the same as this theory for the second order Sturm-
-Liouville linear differential equation

(r(t)a’) + c(t)z = 0 (3)

which is a special case p = 2 in (). In particular, all solutions of (2] are ei-
ther oscillatory or nonoscillatory, see [3]. This means, in particular, that () is
nonoscillatory if and only if v < ~,,. Also, equation ({Il) with the critical coefficient
7 = 1, serves as a comparison equation for the Kneser-type (non)oscillation test
which states that ([2) with r(¢) = 1 is oscillatory provided

e
hgl_l)g}ft c(t) >y

and nonoscillatory if
lim sup tPe(t) < 7.

t—o0
The Kneser test does not apply when lim;_,, tP¢(t) = =y, and this situation is
the principal concern of our paper.

2. Auxiliary results

In a general framework, we suppose that equation (2]) is nonoscillatory and
we study oscillatory properties of its perturbation

[(r(0) + 7)) 2a)| +(c(t) + (1)) @ () = 0. (4)

We suppose that the perturbation terms 7, ¢ are continuous functions such that
r(t) + 7(t) > 0 for large t.

Let x be a solution of (2)) such that z(t) # 0, then w = r@(%) is a solution
of the Riccati type differential equation

w +c(t)+ (p—Dr I B)|w? =0,  q:= I%.

In our research, an important role plays the concept of conditionally oscillatory
half-linear equation. Following [3], equation (2)) with Ac(t) instead of ¢(t) is said
to be conditionally oscillatory if there exists a constant Ay such that this equation
is oscillatory for A > Ay and nonoscillatory for A < Ag. The constant A is called
the oscillation constant of ([2)). A typical example of a conditionally oscillatory
equation is just Euler equation (IJ) and its oscillation constant is Ao = 7.

Here we will deal with conditionally oscillatory half-linear equations in a more
general sense. We will consider the equation of the form

[(r(0) + AF0) 2] + (et) + i) D) = 0 (5)
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and we say that (B) is conditionally oscillatory if there exist constants «, 8,w € R,
a # 0, B # 0, such that (B is oscillatory for aA + Su > w and nonoscillatory for
aX + fu < w. A typical example of conditionally oscillatory equation with two
parameters is perturbed Euler equation ([II) with the critical coefficient v,

A
14+ — |
( 10g2t> =)
1 p—1)p—1

It is proved in [2] that (@) is oscillatory if p — Ay, > pp = 5(7
nonoscillatory if g — Ay, < pp. It was conjectured in [2] that () is nonoscillatory

also in the limiting case

/+ [ﬁ+ s }‘I’(w‘)ZO- (6)

P trlog’t

and

= Xyp = fip - (7)

In our paper we prove that this conjecture is true. We also discuss some general
aspects of the problem.

Next we derive the modified Riccati equation in a more general setting than
in [2]. Let h(t) # 0 be a positive differentiable function, denote

G(t) == r(t)h(t)® (' (t)) (8)

and let

Qt) = (1 + %) G(t).

Define the function
G(t,2) = |z + Q)|" — ¢@ 71 (1)) — QD)% (9)
where ®~!(z) = |29~ 22 is the inverse function of ®, and put
z::hp(w—wh)—gG:hpw—G—é,
where w is a solution of the Riccati equation associated with ()
W'+ e(t) + &(t) + (p— 1) (r(t) +7(1)) |t =0,
wp, = r@(%), and G = #h®(h'). Then z is a solution of the equation
2O + (0= 1)(r(1) +7(0) T hU(0)G (¢ 2) =0, (10)
where

C(0) = hte)| (o) + 7021 0) + (et + ) @(b) | (a1
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Indeed, by a direct computation we have
2 = p®(h)h'w + hPw' — r|h' [P — h(r&(h')) — 71’ [P — h(FR(h"))

W+ 17 | =(c+8) = (p = 1)(r + 7)o

!/

pd(
— (r+ F)W[P = h[(r+F)B(R)]
Py

et GG = (4 DI — A[((r 4 W) + (e + 2]

— (p—1)AP(r 4 7)1 74 ’

h/
h™Pz +wy, + 7P (ﬁ)

=" h[((r +7)®(A)) + (c + é)@(h)} —(p—1)(r + )R

x {z +Q7— Llh’(r ) — (r f)qhq|h’|p}
= = B[((r+ PR + (e + ()]

— (= 1)+ |24+ Q7 - g0 @)z — |}

Note that in contrast to [2] we do not suppose that h is a solution of (2]), so the
extra term

R (re(1)) + @ (h)]

appears in the definition of the function C' in (I).

We will also need the following statement which is a slight modification of
[2, Theorem 3] (here we do not require that the function h is a solution of (2)).
So we omit its proof since it is the same as that of [2] Theorem 3] and it based
on the fact that solvability of (I0) implies nonoscillation of ().

THEOREM 1. Let h be a positive differentiable function such that h'(t) # 0 for
large t. Denote

R(t) = (r(t) +7(t)) R ()W ()2, (12)

and suppose that -
dt
/W = 00, /C’(t) dt is convergent,
0 0
where C is given by (), and

liminf (r(t) + #(t)) h(t)| (¢)|[P~" > 0.

t—o0
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If oo
lim sup/ / ) ds <50 (13)
t—o00
t
and t 0o
Lo ds 3
0 t

then equation (@l is nonoscillatory.

3. Equation (@) in the limiting case

Now we can prove the main result of our paper.

THEOREM 2. Suppose that ([ holds. Then the perturbed Euler equation with
the critical coefficients (@) is nonoscillatory.

Proof. We rewrite (@) into the form
/
A —
<1+1 )@(x') v [ﬁ+ e “p]cb(:c):o (15)
og

tr - trlog®t  trlog’t
and we use the previous computation with

- A 5 I _ w— p=1_ 1
r(t) =1, 7(t) = cce(t) =24+ L2 Et) = P nt)y=tr logvrt.
(1) =1, (1) 0= 5+ ooy 40 = foy MO g

We have

p—1 1 1 p—1 1
n = —t" Plogvt—i— -t plogP t= ——1t" Plogpt 1+ ——F——,
p p p (p—1)logt

p—1 p—1 1 p=1
» log » t|1 -
o <+(p—1)logt> ’
-1 p—1 p— 1 1 p—1
o)) = (2= P i e (11—
(2(7) ( P ) [ D g7 ¢ +(p—1)logt

1
p—1, o941 1 1 g
PR pt<1+7
P (p—1)logt

2+ 2 1 P2
5 1og" T t1 R A
g7 tlog < - (p—l)logt>
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—1\V p—1 1 P2
- (p ) P =25 10g" t<1+7>
p p (p—1)logt
1 1 1 p 1
x |—1— + 1+ -
[ (p—1)logt logt< (p—l)logt) p—llog2t]

o4l p=1 -2 p—2 1
— 2 1o Iplt{1+p7+< >—
k& s (p—1)logt 2 ) (p—1)2log*t

p—2 1 _3 1 1
= tolog )| 1 — (1 ——
+< 3 )(p—1)310g3t+0(0g )H +logt< p—1>

1 1 P
+— —
logt \p—1 p-1

_ 1 p—1 1 p—2 p—2
=yt 2 0 log™ T £ |—1 -
T st +logt p—1+p—1

1 (_(p—2)(p—3) n Ep—z)Z _ 1) +o(log_2t>}

log2t 2(p —1)? p—1)2

L. 1
=t log T -1 = — P O(l ‘3t)
T o8 [ 2(p — 1) log? t s

— 2% longjl t[—fyp S + O(log 3t>} , as t — oo.

log
Similarly,
A ! —1\TH] . 1 Pl
——®(W)) = 7 log Tt 1+7>
<log2t ( )) ( P ) l o ( (»—1)logt

2t —1-1 p—2 ( -1 )
] pt |1 _— 1 t
) o8 [ +(p—1)10gt+0 o8

/

=A
p
_b—

p—1 +2 1
X + o(log )
p logt

= A
P logt

(
A(p ) 7243 log 15t {1+(pf+)i)gt+o<log‘1t)]
-
(5

p
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Hence, in the limiting case () it holds
| (Fo (")) + e (n)]

—1
gl _q_1 p—1\""" 1 =
=t +;n log ptl—A7p+M—MP—2A<T> @—FO(lOg t)

p—1
— 9\ <L1> t_2+%log_2_% t(1+0(1)) as t — oo.
p—

Consequently,
h [(F@(h’))/+ écb(h)}
p—1 1 p ot 241, —2-1
= -2\t 7 logrt ] t % log™* P (14 0(1))

= O(t_1 log 2 t) as t — oo.

Now we use Theorem [Il In this theorem
R=(r+7)h? N [P~* =tlogt(l+o(1)) ~ tlogt
(here f(t) ~ g(t) for a pair of functions f, g means lim;_,, % =1),

(r +7)hD(H)

p—l p—1 A 1 p—1
:(—) <1+ 2>logt<1+7> — 0 as t — oo,
p log? t (p—1)logt

and using the previous computations

C = h[((r +PO()) + (c+ o(h)]
= O(f1 log ™2 t) as t — oo,
i.e., there exists a constant M > 0 such that |C(t)] < Mt~'log™2t for large t.

Now, by a direct computation

t

lim /R—l(s) ds/C(s) ds| < M tim 28008Y) _
t—o00 t—oo  logt
0 t

so by Theorem [Ml equation (@) with A and p satisfying (7)) is nonoscillatory. [
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4. Open problems

In equation (@), the functions 7(t) = log%t’ é(t) = m “match together”,
i.e., for r(t) = 1 and ¢(t) = v,t~P they have such asymptotic growth for
t — oo that equation ([]) is conditionally oscillatory. This fact is likely a
special case of the general situation which is a subject of the present in-
vestigation. More precisely, given the functions r, ¢, we look for functions
7, ¢ with such asymptotic growth that equation (5] is conditionally oscil-
latory. For 7 = 0, this problem has been studied in [4], where conditions
on unperturbed equation (2) are found under which its perturbation

1
r()®(z')) + |e(t) + B(x) =0
( ) he(E)R(E) (JE R (s) ds)
is conditionally oscillatory (and its oscillation constant is pg= 2—1(1, where
q is the conjugate exponent to p, i.e., % + % = 1). Here h is the so called

principal solution of () and R = rh?|h/|P~2. The subject of the present
investigation is to find an explicit formula for the function 7 in such a way
that together with the function

&(t) = !

W () R(t) ([ R (s) ds)?

equation (B)) is conditionally oscillatory.

In [I0] the authors establish a “power comparison theorem” for the Rie-
mann-Weber half-linear equation

(®(a")) + [ﬁ+ K ]@(x):O. (16)

P trlog’t

They proved a (non)oscillation criterion for this equation, where this equa-
tion is compared with an equation of the same form, but with a different
power in the function ® and other functions and constants appearing in
(@G). It suggests to investigate a similar problem for the more general
equation ((@).

In [I], motivated by the linear case treated in [7], [§], [9], we have investi-
gated oscillatory properties of the equation

(2 @) + {%5) + tpcllc()22t

] ®(z) =0 (17)

with positive a-periodic functions 7, ¢, d. It was shown, similarly to the
case when these periodic functions are constants, that (I7) is conditionally
oscillatory and an explicit formula for oscillation constants has been found.
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This result suggests to establish a similar result for (@), where the constants

. . A Tp 1 T
in numerators of the fractions ToaZ 1 and 5t TogZ7 ¢ replaced by periodic
functions.
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