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ON TWO-SCALE CONVERGENCE AND

PERIODIC UNFOLDING

Jan Franc̊u

ABSTRACT. Two-scale convergence is an important tool in homogenization the-
ory. The contribution deals with various primary and adjoint (based on unfolding)
approaches to the two-scale convergence and their pro-and-con.

1. Introduction

Two-scale convergence is an important tool in homogenization theory where
convergence of the sequence of solutions uε to problems, e.g.,

−div (aε ∇uε) = f in Ω, uε = 0 on ∂Ω

is studied. For a periodic bounded measurable function a(y) ≥ α > 0 and se-
quence {εn}, εn → 0+ (the subscript n in εn will be omitted) the relation
aε(x) = a

(

x
ε

)

yields a sequence of coefficients aε with diminishing period ε.

Under standard assumptions for each ε > 0 the weak solutions uε ∈ H1
0 (Ω)

exist, are bounded in H1(Ω) and thus a subsequence {uε
′

} weakly converging in
H1

0 (Ω) to a u∗ ∈ H1
0 (Ω) exists. In the weak formulation of the problem

∫

Ω

aε∇uε · ∇ψ dx =

∫

Ω

fv dx (1)

on the left hand side we have coefficients aε and gradients ∇uε
′

both weakly
converging in L2(Ω). Passing to the limit is not possible since the information
of local oscillations are lost in the weak limit as the following counterexample
shows: Both uε(x) = vε(x) = cos

(

x
ε

)

converge weakly to zero function, but

uε(x)vε(x) = cos2
(

x
ε

)

= 1
2

[

1 + cos 2x
ε

]

converge to the constant function 1
2 .
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This passing to the limit in the product of two weakly converging sequences
is the crucial point in proof of convergence of the solutions uε. The problem
was solved by construction of a special sequence of test functions in [3], in the
non-periodic case by the “div-curl” lemma by M u r a t and T a r t a r, see [12].

A straightforward solution appeared in 1989 in the so-called two-scale conver-
gence introduced by N g u e t s e n g [14] and further developed by A l l a i r e [1].
The two-scale limit of a sequence of x-variable functions {uε} is a function of
variables x, y; in y the local oscillations are conserved. For details see, e.g., survey
papers [11], [10], [5].

In this paper we survey several approaches to the two-scale convergence. We
start with the classical definition in Section 3, continue with dual definition based
on the periodic unfolding in Section 4 and return to primary definition based on
an averaging operator in Section 5. Conservation of integrals by unfolding and
averaging operators (Lemma 4.4 and 5.1) is crucial. Definitions and results of
Sections 4 (second half) and 5 seem to be new. The definitions are compared
and fundamental properties are surveyed in Section 6.

2. Preliminaries

A sequence E = {εn}
∞
n=1 of small positive numbers εn tending to zero is called

scale. In this paper instead of a subscript n ∈ Z all sequences will be denoted
with a superscript εn from the scale E, but the n in εn will be omitted.

In the periodic homogenization Y denotes the basic period in R
N called also

the unit cell with points y = (y1, . . . , yN). It is a set having the “paving prop-
erty”: the space R

N can be decomposed into a countable system of disjoint
Yξ = Y + ξ—the cells Y shifted by vectors ξ from a countable set Ξ in R

N. The
simplest case is the N -dimensional unit cube Y = 〈0, 1)N and the set of shifts
Ξ = Z

N. Each point y ∈ R
N can be decomposed into two parts: shift [y]Y and

local position in the cell {y}Y defined by

y = [y] + {y}, where [y] ∈ Ξ and {y} ∈ Y. (2)

Since {Yξ | ξ ∈ Ξ} is pavement of RN this decomposition is unique. In case when
Y is the unique cube, the decomposition (2) of a point x coincides with decom-
position into integer and fraction part of all coordinates of x.

In this paper Ω will be a bounded domain in R
N, with points x = (x1, . . . , xN)

and with a Lipschitz boundary ∂Ω. For ε > 0 we obtain ε-scaled paving of RN

with ε-scaled εξ-shifted cells Y ε
εξ = {εy + εξ | y ∈ Y }, ξ ∈ Ξ which covers also

the domain Ω. Let Ωε be union of all cells Y ε
εξ that are subset of Ω and Λε be

its complement in Ω containing the “uncomplete” cells in Ω, i.e.,

Ωε =
{

⋃

Y ε
εξ | ξ ∈ Ξ , Y ε

εξ ⊂ Ω
}

, Λε = Ω− Ωε. (3)
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A function a(y) is said to be Y-periodic, if it is defined on R
N and satisfies

a(y + ξ) = a(y) for each ξ ∈ Ξ and all y ∈ R
N. In case when Y is the unit cube

a(y) is periodic in each variable yi with period 1.

Let us recall that taking a bounded measurable Y-periodic function a(y) and
the scale E, relation

aε(x) = a
(x

ε

)

≡ a
(x1

ε
, . . . ,

xN

ε

)

defines a sequence of periodic functions with diminishing period. It converges in
Lp(Ω) weakly if 1 ≤ p <∞ (weakly-∗ if p = ∞) to a constant function a, which
is the integral average of a(y): a(x) = |Y |−1

∫

Y
a(y) dy.

Function spaces of Y -periodic functions will be denoted by Xper(Y ). Its ele-
ments a(y) are defined on R

N and are periodic in y with period Y, their restriction
to any bounded domain G ⊂ R

N is in X(G), although the norm is taken over
the cell Y only.

3. Classical definition

The two-scale convergence in L2(Ω) was introduced in [14] and further worked
out in [1]. Let (p, q) be a pair of conjugate exponents, i.e., p, q ∈ (1,∞) and
1
p + 1

q = 1. The classical definition, see, e.g., [11], reads as followsDefinition 3.1. A sequence of functions uε in Lp(Ω) is said to two-scale con-
verge to a limit u0 ∈ Lp(Ω× Y ) (with respect to the scale E) if

lim
ε→0

∫

Ω

uε(x)ϕ
(

x,
x

ε

)

dx =
1

|Y |

∫∫

Ω×Y

u0(x, y)ϕ(x, y) dy dx

for each test function ϕ ∈ V = Lq
(

Ω;Cper(Y )
)

.

For the space V of admissible functions the space C0
(

Ω, Lp
per(Y )

)

can be also
used. If the definition requires that the sequence {uε} is bounded in Lp(Ω), then
the space V = C∞

0 (Ω) ⊗ C∞
per(Y ) of functions with compact support in Ω is

sufficient.

Although the limit can be any element of Lp(Ω × Y ) the space V of test
functions in the definition cannot be the whole Lq(Ω×Y ), since the test function
ϕ(x, y) is transformed into one variable function ϕ

(

x, xε
)

. For integrable and

therefore only measurable function ϕ(x, y) ∈ Lp(Ω × Y ) the trace ϕ
(

x, xε
)

is
not defined. Thus some continuity of the test functions must be added. Usually
the Carathéodory conditions are assumed: measurability in one variable and
continuity in the other variable. Another solution is sketched in Section 5.
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4. Dual definitions based on the periodic unfolding

The alternative approach is based on the so-called periodic unfolding called
also two-scale transform Tε. The idea appeared in [2]. Each function uε of one
variable x is transformed into a function Tεu

ε of both variables x, y. Now both
Tεuε and u0 are in Lp(Ω× Y ) and the convergence can be tested in this space.

This approach removes difficulties with the space of test functions: the test
function ϕ can be taken from the maximal space Lq

(

Ω;Lqper(Y )
)

. We need not
take care of the space V, admissibility and compatibility of the test functions as
in the classical definition.

By means of ε-scaled decomposition (2) the unfolding can be defined by

(Tεu)(x, y) = u

(

ε
[x

ε

]

Y
+ εy

)

(4)

and the weak convergence of Tεu
ε is tested in Lp(Ω× Y ), see [4], [13]:Definition 4.1. The sequence {uε} ⊂ Lp(Ω) is said to two-scale converge to u0

in Lp(Ω) with respect to the scale E, if Tεu
ε converge to u0 weakly in Lp(Ω×Y ).

This unfolding works well in case of Ω = R
N or if the domain Ω can be written

as interior of a union of “complete” cells εYξ, i.e., Ωε = Ω and Λε = ∅. Then the
unfolding has an important property: it conserves integral of the functions:

∫

Ω

u(x) dx =
1

|Y |

∫∫

Ω×Y

(Tεu)(x, y) dx dy. (5)

But in general the domain Ω cannot be written in this way and in Ω around
its boundary ∂Ω a stripe Λε, see (3), of “uncomplete” cells remain. In these cells
the unfolded function Tεu is not defined, since here ε

[

x
ε

]

+ εy overlaps Ω. Also
the equality (5) does not hold, namely equality in [4, Prop. 1] is not true in
general case.

To remove the problem in [6] and [5] the unfolding was modified to

(

T 0
ε u

)

(x, y) =

{

u
(

ε
[x

ε

]

Y
+ ε · y

)

for x ∈ Ωε,

0 for x ∈ Λε.
(6)

The unfolding T 0
ε is now well defined in Ω. It is used for definition of two-scale

convergence for any domain Ω:Definition 4.2. The sequence {uε} ⊂ Lp(Ω) is said to two-scale converge to
u0 in Lp(Ω) if Tεu

ε defined by (6) converge to u0 weakly in Lp(Ω× Y ).

This definition works for any domain Ω, nevertheless the integral conservation
equality (5) is lost. In [5] the problem was solved by introducing a new property:
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ON TWO-SCALE CONVERGENCE AND PERIODIC UNFOLDINGDefinition 4.3. The sequence {uε} is said to satisfy “unfolding criterion for
integrals” if limε→0

∫

Λε
uε(x) dx = 0.

This property requires the difference
∫

Ω
uε(x) dx−

∫∫

Ω×Y
T 0
ε (u

ε)(x, y) dx dy to

go to zero, i.e., the integral conservation equality (5) holds in the limit only.

In [7], [8] and [9] a modified extension of the unfolding operator Tε is proposed
which removes the problems cited above. In the uncomplete cells Λε the unfolding
is extended by the identity:

(T ∗
ε u)(x, y) =

{

u
(

ε
[x

ε

]

Y
+ εy

)

for x ∈ Ωε,

u(x) for x ∈ Λε.
(7)

Let us survey properties of the unfolding operator T ∗
ε :Lemma 4.4. The unfolding T ∗

ε defined by (7) for each ε > 0 satisfies:

(a) The unfolding T ∗
ε is linear and multiplicative, i.e., for α, β ∈ R

T ∗
ε (αu+ βv) = αT ∗

ε (u) + βT ∗
ε (v) ,

T ∗
ε (uv) = T ∗

ε (u) T ∗
ε (v).

(b) The unfolding T ∗
ε conserves the integral (up to the multiplicative constant

|Y |), i.e., for f ∈ L1(Ω) there is

∫∫

Ω×Y

(T ∗
ε f)(x, y) dx dy = |Y |

∫

Ω

f(x) dx,

which means that T ∗
ε is an isometry (up to the multiplicative constant

|Y |1/p) of spaces Lp(Ω) and Lp(Ω× Y ), i.e.,

‖T ∗
ε u‖Lp(Ω×Y ) = |Y |

1

p ‖u‖Lp(Ω) for u ∈ Lp(Ω).

The unfolding T ∗
ε enables to introduce new, “the most convenient” definition

of the two-scale convergence including the strong two-scale convergence:Definition 4.5. Let E be a scale, {uε} a sequence in Lp(Ω) and u0 ∈ Lp(Ω×Y ).

(a) The sequence uε is said to (weakly) two-scale converge to u0 in Lp(Ω) with
respect to the scale E, if T ∗

ε u
ε converge to u0 weakly in Lp(Ω× Y ).

(b) The sequence uε is said to strongly two-scale converge to u0 in Lp(Ω) with
respect to the scale E, if T ∗

ε u
ε converge to u0 strongly in Lp(Ω× Y ).

77



JAN FRANCŮ

Example 4.6.

(a) Let f, g ∈ Lp(Ω) and ψ ∈ L∞(Yper), s.t.
∫

Y
ψ(y) dy = 0. Then the sequence

uε(x) = f(x)ψ
(

x
ε

)

+ g(x) is bounded in Lp(Ω). Since its unfolding T ∗
ε u

ε

yields (T ∗
ε u

ε)(x, y) = f(x)ψ(y) + g(x) in Ωε × Y, uε strongly two-scale
converges in Lp(Ω) to the limit u0(x, y) = f(x)ψ(y)+g(x). The sequence
uε converges to g(x) in Lp(Ω) weakly, but not strongly, unless f(x) ≡ 0 or
ψ(y) ≡ 0. The example shows that the local oscillations of uε, which are
lost in the usual weak Lp(Ω) limit, are conserved in the strong two-scale
limit.

(b) In the previous example the sequence was strongly two-scale converging.
It was caused by the fact that the period ε of ψ

(

x
ε

)

was “in resonance”

with the scale E = {ε}. Modifying the sequence to uε(x) = f(x)ψ
(

2x
ε

)

+
g(x) with the same scale E, the sequence also strongly two-scale converges
but the limit is u0(x, y) = f(x)ψ(2y) + g(x). The weak Lp(Ω) limit is
unchanged.

(c) If the period of the function ψ is not “in resonance” with the scale E, i.e.,
their ratio is irrational, e.g., uε(x) = f(x)ψ

(

x√
2ε

)

+g(x), then the sequence

{uε} does not converge two-scale strongly but only two-scale weakly. Its
limit u0(x, y) = g(x) is independent of y, i.e., the local oscillations are
again lost.

5. The primary definition revisited

In the classical Definition 3.1 the test function ϕ(x, y) appears in the form
ϕ
(

x, xε
)

, which is undefined for functions ψ ∈ Lq(Ω × Y ) and thus the space
for admissible V should be restricted by some continuity. This restriction can
be removed if the trace operator ψ(x, y) 7→ ψ

(

x, xε
)

is replaced by an averaging
operator Uε : L

q(Ω×Y ) → Lq(Ω) giving the mean value of ϕ over the scaled cells
Y ε
εξ. Using splitting y = [y]Y + {y}Y defined be (2) it is defined by

(Uεϕ)(x) =
1

|Y ε|

∫

Y ε
εξ

ϕ

(

t,
{x

ε

}

Y

)

dt for x ∈ Y ε
εξ.

Also in this case problems with uncomplete cells appear: for x ∈ Λε the integral
overlaps Ω× Y. To conserve isometry of the operator we modify it to:

(U∗
εϕ)(x) =

{

|Y ε|−1
∫

Y ε
εξ

ϕ
(

t,
{

x
ε

}

Y

)

dt for x ∈ Y ε
εξ ⊂ Ωε,

|Y |−1
∫

Y
ϕ(x, y) dy for x ∈ Λε.

(8)
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It can be easily verified that the averaging operator U∗
ε satisfies analogous prop-

erties as the unfolding operator T ∗
ε .Lemma 5.1. The unfolding U∗

ε defined by (8) for each ε > 0 satisfies:

(a) The averaging operator U∗
ε is linear, i.e., for α, β ∈ R

U∗
ε (αϕ+ βψ) = αU∗

ε (ϕ) + β U∗
ε (ψ) .

(b) The averaging operator U∗
ε conserves the integrals (up to the multiplicative

constant |Y |−1), i.e., for ϕ ∈ L1(Ω× Y )
∫

Ω

(U∗
εϕ)(x) dx =

1

|Y |

∫∫

Ω×Y

ϕ(x, y) dx dy,

which means that U∗
ε is an isometry (up to the multiplicative constant

|Y |−1/p) between Lq(Ω× Y ) and Lq(Ω), i.e.,

‖U∗
εϕ‖Lp(Ω) = |Y |−

1

p ‖ϕ‖Lp(Ω×Y ) for ϕ ∈ Lp(Ω× Y ).

Using the averaging operator U∗
ε the Definition 3.1 can be modified to:Definition 5.2. A sequence of functions uε in Lp(Ω) is said to two-scale con-

verge to a limit u0 ∈ Lp(Ω× Y ) (with respect to the scale E) if

lim
ε→0

∫

Ω

uε(x)(U∗
εϕ)(x) dx =

1

|Y |

∫∫

Ω×Y

u0(x, y)ϕ(x, y) dy dx

for each test function ϕ ∈ Lq(Ω× Y ).

Let us remark that on contrary to Definition 3.1 in the Definition 5.2 the test
function ϕ is from the maximal spaces Lq(Ω× Y ) and the problem of the space
V for test function disappeared.

6. Comparison of the definitions and properties

The unfoldings (6), (7) in Definitions 4.2, 4.5 differ in the boundary stripe
Λε only, thus in the case when Λε has zero measure both definitions coincide.
In case of a general domain Ω when |Λε| > 0 and |Λε| → 0 if the sequence uε

is bounded in Lp(Ω), then integral of uε over Λε goes to zero and thus both
definitions are equivalent.

For Y-periodic function ψ the unfolding of ψε(x) = ψ
(

x
ε

)

yields in Ωε× Y

Tεψε(x, y) = ψε

(

ε
[x

ε

]

Y
+ εy

)

= ψ

(

[x

ε

]

Y
+ y

)

= ψ(y).
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For previous bounded ψ and uniformly continuous ϕ ∈ C0(Ω) the sequence of
functions Tε(ϕψε)(x, y) converges uniformly to ϕ(x)ψ(y) in Ωε× Y. Using this
fact one can prove that for uε bounded in Lp(Ω) Definitions 3.1, 4.1 and 4.2 are
equivalent, see, e.g., [5, Proposition 2.14]. Similarly equivalence of Definition 3.1
and Definition 5.2 can be proved.

Advantage of the Definitions 4.5 and 5.2 is that unfolding operator T ∗
ε and

averaging operator U∗
ε conserve measure and integrals and they are isometries be-

tween corresponding spaces Lp(Ω×Y ) and Lp(Ω), see Lemma 4.4 and Lemma 5.1.
The Definition 4.5 thus yields a direct proof of principal results of the two-scale
convergence theory, see [9]:Theorem 6.1 (Compactness). Each sequence {uε}ε∈E bounded in Lp(Ω) con-

tains a subsequence
{

uε
′}

ε′∈E′
two-scale converging to a function u0 ∈ Lp(Ω×Y ).Theorem 6.2 (Passage to the limit in the product of sequences). Let

p, q, r ∈ (1,∞) satisfy 1
p + 1

q = 1
r and let the sequence {uε} converge to u0 two-

-scale strongly in Lp(Ω) and the sequence {vε} converge to v0 two-scale (weakly)
in Lq(Ω), both with respect to the same scale E. Then the product uεvε converges
to the limit u0v0 ≡ u0(x, y)v0(x, y) two-scale (weakly) in Lr(Ω).

Particularly for any ϕ ∈ Ls(Ω) with s ∈ (1,∞) satisfying 1
p + 1

q + 1
s = 1:

∫

Ω

uε(x) vε(x)ϕ(x) dx −→
1

|Y |

∫∫

Ω×Y

u0(x, y) v0(x, y)ϕ(x) dx dy .

Remark 6.3. The last two theorems enable to solve the problem cited in the
Introduction. Since the sequence of solutions uε is bounded in H1

0 (Ω), the se-
quence of their gradients {∇uε} is bounded in L2

(

Ω,RN
)

. Due to Theorem 6.1
{∇uε} contains a subsequence weakly two-scale converging to a function η. Since
the coefficients are strongly two-scale converging, Theorem 6.2 enables to pass
to the limit in (1), see [9].

7. Conclusion and outline to non-periodic homogenization

Using the modified unfolding operator we arrived to a natural definition of
weak and strong two scale-convergence in Definition 4.5. Thanks to properties of
the unfolding T ∗

ε cited in Lemma 4.4, the proofs of Theorems 6.1 and 6.2 easily
follow from the theory of Lp-spaces.

The unfolding operator T ∗
ε and averaging operator U∗

ε satisfying measure and
integral conservation property, see Lemma 4.4 and Lemma 5.1, are starting point
for general convergence for nonperiodic homogenization, see [9].
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Fundamentals for theory of nonlinear homogenization was laid by Nguetseng
in series of papers from 2003. In this theory the role of two-scale convergence is
replaced by Σ-convergence. For citations and further information see [15].
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