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OSCILLATION THEOREMS FOR SECOND ORDER

ADVANCED NEUTRAL DIFFERENTIAL

EQUATIONS

Jozef Džurina

ABSTRACT. The aim of this paper is to study the oscillation of the second
order advanced neutral differential equations

(

r(t)
[

x(t) + p(t)x
(

τ(t)
)

]

′

)

′

+ q(t)x
(

σ(t)
)

= 0 . (E)

Obtained results are based on the new comparison theorems that enable us to
reduce problem of the oscillation of the second order equation to the the oscillation
of the first order equations. Obtained comparison principles essentially simplify
the examination of the studied equations.

1. Introduction

In this paper, we shall study the oscillation behavior of the solutions of the
second order advanced neutral differential equations of the form

(

r(t)
[

x(t) + p(t)x
(

τ(t)
)

]

′

)

′

+ q(t)x
(

σ(t)
)

= 0, (E)

where q(t) ∈ C
(

[t0,∞)
)

, r(t), p(t), τ(t), σ(t) ∈ C1
(

[t0,∞)
)

and

(H1) r(t) > 0, q(t) > 0, 0 ≤ p(t) ≤ p0 < ∞,

(H2) limt→∞ τ(t) = ∞, σ(t) ≥ t, σ(t) is nondecreasing,

(H3) τ ′(t) ≥ τ0 > 0, τ ◦ σ = σ ◦ τ .
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For our further references, we denote and assume that

R(t) =

t
∫

t0

1

r(t)
ds → ∞ as t → ∞. (1.1)

We set
z(t) = x(t) + p(t)x

(

τ(t)
)

.

By a solution of equation (E) we mean a function

x(t) ∈ C
(

[Tx,∞)
)

, Tx ≥ t0,

which has the property r(t)z′(t) ∈ C1
(

[Tx,∞)
)

and satisfies (E) on [Tx,∞).
A solution x(t) of (E) is said to be proper if

sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx.

We assume that (E) possesses such a solution. A solution of (E) is called oscil-
latory if it has arbitrarily large zeros on [Tx,∞) and otherwise, it is said to be
nonoscillatory. Equation (E) itself is said to be oscillatory if all its solutions are
oscillatory.

The second order equations have the applications in various problems of phy-
sics, biology and economy. Therefore, there is the permanent interest in obtaining
sufficient conditions for the oscillation or nonoscillation of the solutions of va-
rietal types of the second order equations.

Since the authors mainly study the oscillation properties of the delay differen-
tial equations there is a gap in the oscillation theory. In this paper, we attempt
to fill this gap and we shall deal with the advanced neutral differential equations.

Known oscillation criteria require various restrictions on the coefficients of
the studied neutral differential equations.

G r a mm a t i k o p o u l o s et al. [9] shoved that 0 ≤ p(t) ≤ 1 together with
∞
∫

0

q(s)
(

1− p(s− σ)
)

ds = ∞

guarantee the oscillation of the neutral equation
(

x(t) + p(t)x(t− τ)
)

′′

+ q(t)x(t− σ) = 0.

For the same equation E r b e et al. [7] established oscillation criterion that
requires

q(t) ≥ q0 > 0, p1 ≤ p(t) ≤ p2, p(t) not eventually negative.

This result has been improved and generalized by other authors. We mention
G r a c e and L a l l i [8] who studied oscillation of

(

r(t)
[

x(t) + p(t)x(t− τ)
]

′

)

′

+ q(t)f
(

x(t− σ)
)

= 0,
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under the conditions

f(x)

x
≥ k,

∞
∫

0

ds

r(s)
= ∞,

and
∞
∫

0

ρ(s)q(s)
(

1− p(s− σ)
)

− (ρ′(s))2r(s− σ)

4kρ(s)
ds = ∞,

where ρ(t) is an optional function.

X u and X i a [17] established oscillation of

(

x(t) + p(t)x(t− τ)
)

′′

+ q(t)f
(

x(t− σ)
)

= 0,

provided that
0 ≤ p(t) < ∞, q(t) ≥ M > 0.

L i at al. [12] studied the more general neutral differential equation

(

r(t)
[

x(t) + p(t)x
(

τ(t)
)

]

′

)

′

+ q(t)f
(

x
(

σ(t)
)

)

= 0.

Using double Riccati transformation, they presented new oscillation criteria,
where they replaced usually used restriction 0 ≤ p(t) ≤ 1 with 0 ≤ p(t) ≤ p0 <
∞, and also required inter alia σ(t) ≤ τ(t) ≤ t, and

∞
∫

0

ρ(s)q(s)
(

1− p(s− σ)
)

− (ρ′(s))2r(s− σ)

4kρ(s)
ds = ∞,

where ρ(t) is an optional function.

In this paper, we use a different technique for studying the oscillation of (E).
We shall establish new comparison theorems in which we compare the second
order equation (E) with the first order advanced differential inequality in the
sense that the absence of the positive solutions of this first order inequality yields
the oscillation of (E). Established comparison theorems essentially simplify the
examination of (E) and enable us also to eliminate some conditions imposed in
the cited papers on the coefficients of (E). Moreover, our results can be easily
extended to cover also the more general functional differential equations.

Remark 1. All functional inequalities considered in this paper are assumed to
hold eventually, that is they are satisfied for all t large enough.

Remark 2. Without loss of generality, we can deal only with positive solutions
of (E).
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2. Main results

It follows from (1.1) that the positive solutions of (E) have the following
property.Lemma 1. If x(t) is a positive solution of (E), then the corresponding function

z(t) = x(t) + p
(

t)x(τ(t)
)

satisfies
z(t) > 0, r(t)z′(t) > 0,

(

r(t)z′(t)
)

′

< 0, (2.1)

eventually.

P r o o f. Assume that x(t) is a positive solution of (E). Then it follows from (E)
that

(

r(t)z′(t)
)

′

= −q(t)x
(

σ(t)
)

< 0.

Consequently, r(t)z′(t) is decreasing and thus either z′(t) > 0 or z′(t) < 0,
eventually. If we let z′(t) < 0, then also r(t)z′(t) < −c < 0 and integrating this
from t1 to t, we have

z(t) ≤ z(t1)− c

∞
∫

t1

1

r(s)
ds → −∞ as t → ∞.

This contradicts the positivity of z(t) and the proof is complete. �

For our further references, let us denote

Q(t) = min
{

q(t), q
(

τ(t)
)

}

, Q1(t) =
1

r(t)

∞
∫

t

Q(s) ds, (2.2)

Q2(t) = Q(t)
(

R(t)−R(t1)
)

, (2.3)

where t ≥ t1, t1 is large enough.Theorem 1. Let τ(t) ≥ t. Assume that at least one of the first order advanced

differential inequalities

w′(t)− τ0
τ0 + p0

Q1(t)w
(

σ(t)
)

≥ 0, (E1)

w′(t)− τ0
τ0 + p0

Q2(t)w
(

σ(t)
)

≥ 0, (E2)

has no positive solution. Then (E) is oscillatory.
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P r o o f. Assume that x(t) is a positive solution of (E). Then the corresponding
function z(t) satisfies

z
(

σ(t)
)

= x
(

σ(t)
)

+ p
(

σ(t)
)

x
(

τ
(

σ(t)
)

)

≤ x
(

σ(t)
)

+ p0x
(

σ
(

τ(t)
)

)

, (2.4)

where we have used the hypothesis (H3).

On the other hand, it follows from (E) that
(

r(t)z′(t)
)

′

+ q(t)x
(

σ(t)
)

= 0, (2.5)

and moreover, taking (H1) and (H3) into account, we have

0 =
1

τ ′(t)

(

r
(

τ(t)
)

z′
(

τ(t)
)

)

′

+ q
(

τ(t)
)

x
(

σ
(

τ(t)
)

)

≥ p0
τ0

(

r
(

τ(t)
)

z′
(

τ(t)
)

)

′

+ p0q
(

τ(t)
)

x
(

σ
(

τ(t)
)

)

. (2.6)

Combining (2.5) and (2.6), we are led to

(

r(t)z′(t)
)

′

+
p0
τ0

(

r
(

τ(t))z′
(

τ(t)
)

)

′

+ q(t)x
(

σ(t)
)

+ p0q
(

τ(t)
)

x
(

σ
(

τ(t)
)

)

≤ 0,

which in view of (2.4) and (2.2) provides

(

r(t)z′(t)
)

′

+
p0
τ0

(

r
(

τ(t)
)

z′
(

τ(t)
)

)

′

+Q(t)z
(

σ(t)
)

≤ 0. (2.7)

Integrating the previous inequality from t to ∞, we get

r(t)z′(t) +
p0
τ0

r
(

τ(t)
)

z′
(

τ(t)
)

≥
∞
∫

t

Q(s)z
(

σ(s)
)

ds. (2.8)

On the other hand, since r(t)z′(t) is decreasing and τ(t) ≥ t, it follows from (2.8)
that

r(t)z′(t)

(

1 +
p0
τ0

)

≥
∞
∫

t

Q(s)z
(

σ(s)
)

ds. (2.9)

Using that z
(

σ(t)
)

is increasing, an integration from t1 to t, yields

z(t) ≥ τ0
p0 + τ0

t
∫

t1

1

r(u)

∞
∫

u

Q(s)z
(

σ(s)
)

ds du

≥ τ0
p0 + τ0

t
∫

t1

z
(

σ(u)
) 1

r(u)

∞
∫

u

Q(s) ds du.

65



JOZEF DŽURINA

That is,

z(t)≥ τ0
p0 + τ0

t
∫

t1

Q1(u)z
(

σ(u)
)

du. (2.10)

Let us denote the right hand side of (2.10) by w(t). Then w(t) > 0 and using
z(t) ≥ w(t), one can see that

w′(t) =
τ0

p0 + τ0
Q1(t)z

(

σ(t)
)

≥ τ0
p0 + τ0

Q1(t)w
(

σ(t)
)

.

Thus w(t) is a positive solution of (E2). This contradicts our assumptions and
thus the absence of the positive solutions of (E2) implies the oscillation of (E).

Now, we shall show that the absence of the positive solutions of (E2) also
yields the oscillation of (E). An integration of (2.9) from t1 to t, provides

z(t) ≥ τ0
p0 + τ0

t
∫

t1

1

r(u)

∞
∫

u

Q(s)z
(

σ(s)
)

ds du

≥ τ0
p0 + τ0

t
∫

t1

1

r(u)

t
∫

u

Q(s)z
(

σ(s)
)

ds du

=
τ0

p0 + τ0

t
∫

t1

Q(s)z
(

σ(s)
)

s
∫

t1

1

r(u)
du ds.

That is,

z(t) ≥ τ0
p0 + τ0

t
∫

t1

Q2(s)z
(

σ(s)
)

ds. (2.11)

Let us denote the right hand side of (2.11) by w(t). Then w(t) > 0 and using
that z(t) ≥ w(t), one can see that w(t) is a positive solution of (E3). This is
a contradiction and the proof is complete now. �Corollary 1. Let τ(t) ≥ t. Assume that at least one of the following conditions

lim inf
t→∞

σ(t)
∫

t

Q1(s) ds >
τ0 + p0
τ0 e

, (2.12)

lim inf
t→∞

σ(t)
∫

t

Q2(s) ds >
τ0 + p0
τ0 e

, (2.13)

holds. Then (E) is oscillatory.
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P r o o f. Theorem 2.1.1 from [10] guarantees that (E1) and (E2) have no positive
solutions provided that (2.12) and (2.13) hold, respectively. The assertion now
follows from Theorem 1. �

For our incoming references, let us denote

Q3(t) =
τ ′(t)

r(τ(t))

∞
∫

t

Q(s) ds, Q4(t) = Q(t)
(

R
(

τ(t)
)

−R(t1)
)

. (2.14)

where t ≥ t1, t1 is large enough.Theorem 2. Let τ(t) ≤ t. Assume that at least one of the first order advanced

differential inequalities

w′(t)− τ0
τ0 + p0

Q3(t)w
(

τ−1
(

σ(t)
)

)

≥ 0, (E3)

w′(t)− τ0
τ0 + p0

Q4(t)w
(

τ−1
(

σ(t)
)

)

≥ 0, (E4)

has no positive solution. Then (E) is oscillatory.

P r o o f. Assume that x(t) is a positive solution of (E). Then the corresponding
function z(t) satisfies (2.8). On the other hand, since r(t)z′(t) is decreasing and
τ(t) ≤ t, then it follows from (2.8) that

r
(

τ(t)
)

z′
(

τ(t)
)

(

1 +
p0
τ0

)

≥
∞
∫

t

Q(s)z
(

σ(s)
)

ds. (2.15)

Multiplying by τ ′(t)/r
(

τ(t)
)

and then integrating from t1 to t, we get

z
(

τ(t)
)

≥ τ0
p0 + τ0

t
∫

t1

τ ′(u)

r(τ(u))

∞
∫

u

Q(s)z
(

σ(s)
)

ds du

≥ τ0
p0 + τ0

t
∫

t1

z
(

σ(u)
) τ ′(u)

r(τ(u))

∞
∫

u

Q(s) ds du.

That is,

z
(

τ(t)
)

≥ τ0
p0 + τ0

t
∫

t1

Q3(u)z
(

σ(u)
)

du. (2.16)

Let us denote the right hand side of (2.16) by w(t). Noting that

z
(

τ(t)
)

≥ w(t),
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one can see that w(t) is a positive solution of (E3). This contradicts our assump-
tions and thus the absence of the positive solutions of (E3) implies the oscillation
of (E).

Now, we shall show that the absence of the positive solutions of (E4) implies
the oscillation of (E). An integration of (2.15) from t1 to t, gives

z(τ(t)) ≥ τ0
p0 + τ0

t
∫

t1

τ ′(u)

r(τ(u))

∞
∫

u

Q(s)z
(

σ(s)
)

ds du

≥ τ0
p0 + τ0

t
∫

t1

τ ′(u)

r(τ(u))

t
∫

u

Q(s)z
(

σ(s)
)

ds du

=
τ0

p0 + τ0

t
∫

t1

Q(s)z
(

σ(s)
)

s
∫

t1

τ ′(u)

r(τ(u))
du ds.

That is,

z
(

τ(t)
)

≥ τ0
p0 + τ0

t
∫

t1

Q4(s)z
(

σ(s)
)

ds. (2.17)

Let us denote the right hand side of (2.17) by w(t). Then w(t) > 0 and using
that z

(

τ(t)
)

≥ w(t), one can see that w(t) is a positive solution of (E4). This is
a contradiction and the proof is complete now. �Corollary 2. Let τ(t) ≤ t. Assume that at least one of the following conditions

lim inf
t→∞

τ−1(σ(t))
∫

t

Q3(s) ds >
τ0 + p0
τ0 e

, (2.18)

lim inf
t→∞

τ−1(σ(t))
∫

t

Q4(s) ds >
τ0 + p0
τ0 e

, (2.19)

holds. Then (E) is oscillatory.

P r o o f. Theorem 2.1.1 from [10]) guarantees that (E3) and (E4) have no positive
solutions provided that (2.18) and (2.19) hold, respectively. The assertion now
follows from Theorem 2. �

Remark 3. The condition τ ◦ σ = σ ◦ τ contained in the hypothesis (H3) is
satisfies if the deviating arguments τ(t) and σ(t) are of the same form, that is,
e.g., τ(t) = αt and at the same time σ(t) = βt or τ(t) = tα and simultaneously
σ(t) = tβ , etc.
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Example 1. We consider the second order neutral differential equation

(

t1/2
[

x(t) + p0x(τ0t)
]

′

)

′

+
a

t3/2
x(αt) = 0, (E5)

where 0 ≤ p0 < ∞, 0 < τ0 < ∞, α > 1, and a > 0.

If τ0 ≥ 1, then

Q(t) = q
(

τ(t)
)

=
a

(τ0t)
3

2

and moreover, the conditions (2.12) and (2.13) of Corollary 1 reduce to

a lnα >
(τ0 + p0)

√
τ0

2τ0 e
,

which guaranties oscillation of (E5).

If τ0 ≤ 1, then Q(t) = q(t) = a/t
3

2 and conditions (2.18) and (2.19)
of Corollary 2 reduce to

a ln
α

τ0
>

τ0 + p0

2τ
3

2

0 e
,

which also guaranties oscillation of (E5). Consequently, we have covered oscil-
lation of (E5) for all α ∈ (0,∞), that is for τ(t) = αt to be delay or advanced
argument.

On the other hand, if

a =

(

1

2
− γ

)

γ
(

1 + p0τ
γ
0

)

α−γ , with γ ∈
(

0,
1

2

)

,

then both presented oscillation criteria fail and (E5) has a nonoscillatory solution
x(t) = tγ.

Remark 4. All our conclusions can be very easily extend to nonlinear neutral
differential

(

r(t)
[

x(t) + p(t)x
(

τ(t)
)

]

′

)

′

+ q(t)f
(

x
(

σ(t)
)

)

= 0. (E5)

Adding the additional condition

f(x)

x
≥ k

the reader can verify that our results here hold also for (E5), provided that we
replace in the assumption of our achievements the function q(t) by kq(t).
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3. Summary

In this paper we have introduced new comparison theorems for investigation
of the oscillation of (E). The established comparison principles reduce oscillation
of the second order advanced neutral equations to studying properties of various
types of the first order advanced differential inequalities, which essentially sim-
plifies examination of (E). Our technique permits to relax restrictions usually
imposed on the coefficients of (E). So that our results are of high generality
and can be easily extended also to the nonlinear neutral differential equations.
Obtained results are easily applicable and are illustrated on a suitable example.
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