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THE EXISTENCE OF MULTIPLE SOLUTIONS

FOR BOUNDARY VALUE PROBLEM

WITH ONE DIMENSIONAL P-LAPLACIAN

Boris Rudolf

ABSTRACT. The boundary value problem for a differential equation with one
dimensional p-Laplacian is studied. The technique of lower and upper solutions

is used. The existence of a solution for well ordered and unordered case as well as
the existence of multiple solutions are proved. The growth condition is assumed
only on a part of the nonlinearity.

The paper deals with the boundary value problem(
ϕp(x

′)
)′
= F

(
t, x, ϕp(x

′)
)
, (1)

x(b) =

b∫
0

x(s) dg(s)− kϕp

(
x′(b)

)
, x′(0) = 0. (2)

The left hand side of (1) is one dimensional p-Laplacian, ϕp(s) = |s|p−1sgn (s),
the right hand side is the sum of two continuous functions

F (t, x, y) = f1(t, x, y) + f2(t, x, y)

with different properties. The second boundary condition is nonlocal, g(s) is
a nondecreasing function of bounded variation, G(s) = var [0,s]g(τ), G(b) < 1
and k ≥ 0.

The nonlocal boundary condition covers certain types of linear two point,
multipoint and integral boundary conditions.

The main goal is to prove existence of multiple classical solutions of (1), (2),
i.e., solutions from

D =
{
x ∈ C1(I), ϕp(x

′) ∈ C1(I)
}
, I = [0, b]

under suitable conditions.
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We use the method of lower and upper solutions. Results of this type for
the classical second order BVP are well known, see [4], [7], existence results
for periodic BVP with p-Laplacian and growth condition on nonlinearity are
in [5], and existence result for (1), (2) in well ordered case and restricted growth
of nonlinearity is given in [8].

The paper is based on ideas of [7] applied on the problem (1), (2). By a priori
estimates of the norm of solutions or its derivatives we use method of K o r -
m a n [3], based on B i h a r i inequality [1].

We define a lower and upper solution of (1), (2) by the obvious way.
Set I0 = I \ {ti; 0 < ti < b, i = 1 . . . n

}
.

���������� 1 ( [8])� A function α ∈ C(I) ∪ C1(I0), with ϕ(α′) ∈ C1(I0) is
called a lower solution of (1), (2) if

lim
t→ti−

α′(t) ≤ lim
t→ti+

α′(t) for i = 1, . . . , n ,(
ϕp

(
α′(t)

))′
≥ f

(
t, α(t), ϕp

(
α′(t)

))
for t ∈ I0,

α(b) ≤
b∫

0

α(s) dg(s)− kϕp

(
α′(b)

)
, α′(0) ≥ 0 .

Similarly a function β ∈ C(I) ∪ C1(I0), with ϕ(β′) ∈ C1(I0) is called an
upper solution of (1), (2) if

lim
t→ti−

β′(t) ≥ lim
t→ti+

β′(t) for i = 1, . . . , n ,(
ϕp

(
β′(t)

))′
≤ f

(
t, β(t), ϕp

(
β′(t)

))
for t ∈ I0,

β(b) ≥
b∫

0

β(s) dg(s)− kϕp

(
β′(b)

)
, β′(0) ≤ 0 .

In the case of strict inequalities for the equation on I0 and for the second
boundary condition we say that lower and upper solutions are strict.

	�

� 2 ([8])� Let α, β be a strict lower and upper solution and x be a solution
of the problem (1), (2). Then α(t) ≤ x(t) for each t ∈ I implies α(t) < x(t)
for each t ∈ I and β(t) ≥ x(t) for each t ∈ I implies β(t) > x(t) for each t ∈ I.

In our first existence result as well as in all theorems below we assume that
the summand f1 satisfies a Nagumo–Bernstein type of growth condition [2], [5]
and f2 instead of this satisfies one of two possible types of sign condition.

In the rest of the paper constant q > 0 is such that 1
p + 1

q = 1. Then the

function ϕq is the inverse of ϕp.
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�����
 3� Let

(A1) ∃ r > 0 such that ∀ t ∈ I, f1(t, r, 0) > 0, f1(t,−r, 0) < 0 on I,

(B1) ∃ c > 0 such that ∀ t ∈ I, |x| < r, y ∈ R,

|f1(t, x, y)| ≤ c(1 + |y|q),
(C1) ∀ t ∈ I, x, y ∈ R,

x · f2(t, x, y) ≥ 0.

Then the problem (1), (2) possesses a solution x such that |x(t)| < r.

P r o o f. Set X = C1
(
[0, b]

)
and define an operator T : X → X by

Tx(t) =
1

G(b)− 1

⎧⎨
⎩

b∫
0

G(s)ϕq

(
F̃x(s)

)
ds+ k

(
F̃x(b)

)⎫⎬⎭−
b∫

t

ϕq

(
F̃x(s)

)
ds, (3)

where

F̃x(s) =

s∫
0

F
(
τ, x

(
τ), ϕp(x

′(τ)
))

dτ.

Then

Tx(t) ∈ D =
{
x ∈ C1(I), ϕp(x

′) ∈ C1(I)
}
, and (Tx)′(0) = 0.

The function satisfies boundary conditions (2), see [8], and fixed point of com-
pletely continuous operator T is a solution of (1), (2).

We consider the perturbed boundary value problems(
ϕp(x

′)
)′

= λF
(
t, x, ϕp(x

′)
)
+ (1− λ)x(t), (4)

x(b) =

b∫
0

x(s) dg(s)− kϕp

(
x′(b)

)
, x′(0) = 0 (5)

with λ ∈ [0, 1].

Clearly, −r and r are strict lower and upper solutions of (4), (5).

Convex combination f1λ = λf1 + (1 − λ)x satisfies the same growth con-
dition (A1) with the constant c1 = c + r and f2λ = λf2 satisfies the sign
condition (C1)independently on λ.

Let x(t) be a solution of (4), (5) with |x(t)| < r on I. We estimate |x′(t)|.
Suppose x(t0) = max[t0,t1], x(t) > 0 and x′(t) < 0 on (t0, t1). Then x(t) is

invertible on [t0, t1], its inverse is t(x). Denote p(x) = ϕp

(
x′(t(x))

)
.

We rewrite the equation (4) in

p′(x)ϕq

(
p(x)

)
= f1λ

(
t, x, p(x)

)
+ f2λ

(
t, x, p(x)

)
and estimate

p′(x)ϕq

(
p(x)

) ≥ −c1
(
1 + |p(x)|q).
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Substitution z(x) = |p(x)|q gives

z′(x) ≥ −qc1
(
1 + z(x)

)
and after the change of variable v = x0 − x we denote z̃(v) = z(x) + 1 and obtain

z̃′(v) ≤ qc1z̃(v), z̃(0) = 1.

Then
z̃(v) ≤ eqc1v ≤ eqc1r and |p(x)| ≤ ec1r = c2 .

That means, −ϕq(c2) ≤ x′(t) ≤ 0 on [t0, t1]. Boundedness of derivative in case
x > 0 and x′ > 0 and in cases x < 0 is proved similarly. Then boundedness
of a solution x, x(t) < r implies the existence of a constant ρ, x′(t) < ρ on I.

We set
Ωr,ρ =

{
x ∈ X; |x| < r, |x′| < ρ

}
.

The associated homotopy operator

H(x, λ) =
1

G(b)− 1

⎧⎨
⎩

b∫
0

G(s)ϕq

(
F̃x,λ(s)

)
ds+ k

(
F̃x,λ(b)

)⎫⎬⎭−
b∫

t

ϕq

(
F̃x,λ(s)

)
ds,

with F̃x,λ(s) =
∫ s

0
λf1

(
τ, x(τ), ϕp(x

′(τ))
)
+f2

(
τ, x(τ), ϕp(x

′(τ))
)
+(1−λ)x(τ) dτ

possesses no fixed point on the boundary of Ωr,ρ. Then the Leray-Schauder
degree of H(., λ) is well defined and independent on λ.

H(x, 0) is an odd operator and Borsuk’s theorem implies [2]

d(I − T,Ω, 0) = d
(
I −H(x, 0),Ω, 0

)
= 1(mod 2)

which implies the existence of a fixed point x ∈ Ω of T . �

By the same method can be proved the following existence result with another
sign condition.

�����
 4� Let

(A1) ∃ r > 0 such that ∀ t ∈ I, f1(t, r, 0) > 0, f1(t,−r, 0) < 0 on I,

(B1) ∃ c > 0 such that ∀ t ∈ I, |x| < r, y ∈ R,

|f1(t, x, y)| ≤ c(1 + |y|q),
(C2) ∀ t ∈ I, x, y ∈ R,

y · f2(t, x, y) ≤ 0.

Then the problem (1), (2) possesses a solution x such that |x(t)| < r.

In the case of well ordered nonconstant lower and upper solutions the following
theorem holds.
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�����
 5� Let

(A2) α(t) ≤ β(t) be a lower and upper solution of (1), (2),

(B2) ∃ c(r) : R+ → R+ such that ∀ t ∈ I, |x| < r, y ∈ R,

|f1(t, x, y)| ≤ c(r)(1 + |y|q),
(C1) or (C2).

Then the problem (1), (2) possesses a solution x such that α(t) ≤ x(t) ≤ β(t).

P r o o f. We prove the case when (C1) holds. Set r = max{||α||, ||β||} + 1, and
choose M > max

{|f(t, x, 0)|; t ∈ I, α(t) ≤ x ≤ β(t)
}
.

Define

f∗
1 (t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1
(
t, β(t), y

)
+M

(
r − β(t)

)
, x > r,

f1
(
t, β(t), y

)
+M

(
x− β(t)

)
, β(t) < x ≤ r,

f1(t, x, y), α(t) ≤ x ≤ β(t),

f1
(
t, α(t), y

)−M
(
α(t)− x

)
, −r ≤ x < α(t),

f1
(
t, α(t), y

)−M
(
α(t) + r

)
, x < −r,

and

f∗
2 (t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2(t, β(t), y), 0 ≤ β(t) < x,

f2(t, β(t), y)
x

β(t) , β(t) < x < 0,

0, β(t) < 0 ≤ x,

f2(t, x, y), α(t) ≤ x ≤ β(t),

0, x ≤ α(t) < 0,

f2(t, α(t), y)
x

α(t) , 0 < x < α(t),

f2(t, α(t), y), x < α(t) ≤ 0.

Now the boundary value problem(
ϕp(x

′)
)′
= f∗

1

(
t, x, ϕp(x

′)
)
+ f∗

2

(
t, x, ϕp(x

′)
)
, (6)

x(b) =

b∫
0

x(s) dg (s)− kϕp

(
x′(b)

)
, x′(0) = 0 (7)

satisfies conditions (A1), (B1), and (C1). That means, perturbed BVP is solvable
and

d(I − T ∗,Ωr,ρ, 0) = 1 (mod 2).

Moreover, for each ε > 0 the function α(t) − ε is a strict lower solution and
β(t) + ε is a strict upper solution of (6), (7).

Lemma 2 implies that α(t) ≤ x(t) ≤ β(t). That means, f∗
i

(
t, x, ϕp(x

′)
)
=

fi
(
t, x, ϕp(x

′)
)
and x(t) is also a solution of (1), (2). �
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Example 6. We consider the boundary value problem

(
ϕp(x

′)
)′
+ k(t, x)ϕm(x′) + f(t, x) = h(t),

(8)

x(1) =

1∫
0

x(s) dg (s)− kϕp

(
x′(1)

)
, x′(0) = 0,

and assume that

k(t, x) ≥ 0, m > 1, and lim
x→∞ f(t, x) = −∞, lim

x→−∞ f(t, x) = ∞.

Then BVP (8) possesses a solution for each h(t) ∈ C(I).

Example 7. Consider the boundary value problem

(
ϕp(x

′)
)′
+ k(t, x)ϕr(x

′) = f(t, x, x′),
(9)

x(1) =

1∫
0

x(s) dg (s)− kϕp

(
x′(1)

)
, x′(0) = 0

with the bounded nonlinearity |f(t, x, y)| ≤ M , and k(t, x) ≥ 0. Then BVP (9)
possesses a solution x(t),

|x(t)| ≤ 1

1−G(1)

(
B0 + kMq1−p

)
+ β0(t),

where

β0(t) = Mq1−p(1− tq) and B0 =

1∫
0

β(s) dg(s).

The case of unordered lower and upper solutions is more complicated, requires
stronger growth conditions on f1. The existence result presented below gives no
a priori bound of a solution, instead of this we have only a partial information
about its localization.

�����
 8� Let

(A3) α 
≤ β be a strict lower and upper solution of (1), (2),

(B3) ∃ 0 < A,B < q − 1, c > 0 such that ∀t ∈ I, x, y ∈ R,

|f1(t, x, y)| ≤ c
(
1 + |x|A + |y|B

)
,

(C1) or (C2).

Then the problem (1), (2) possesses a solution x such that β 
≤ x 
≤ α.
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P r o o f. We set r0 = max (|α|, |β|), a number r > r0, we specify later, and
M0 = c

(
1 + rA

)
. We define a perturbation

f∗
1 (t, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(t, r, y) +M0, x > r + 1,

f1(t, r, y) +M0(x− r), r < x ≤ r + 1,

f1(t, x, y), −r ≤ x ≤ r,

f1(t, r, y) +M0(x+ r), −r − 1 ≤ x < −r,

f1(t, r, y)−M0, x < −r − 1.

Clearly, −r − 1, α, β, r + 1 are strict lower and upper solutions of the per-
turbed BVP (

ϕp(x
′)
)′

= f∗
1

(
t, x, ϕp(x

′)
)
+ f2

(
t, x, ϕp(x

′)
)
, (10)

x(b) =

b∫
0

x(s) dg (s)− kϕp

(
x′(b)

)
, x′(0) = 0. (11)

Moreover, f∗
1 satisfies the growth property (B1) and (B2) for chosen r

|f∗
1 (t, x, y)| ≤ c

(
1 + |r|A + |y|B)+M0 < c̄(1 + |y|q).

The existence theorems above and their proofs imply (T ∗ is given by (3)
using f∗

1 instead of f)

d(I − T ∗,Ωr+1,ρ, 0)=d(I − T ∗,Ωα,r+1,ρ, 0) =d(I − T ∗,Ω−r−1,β,ρ, 0) =1 (mod 2).

Then

d(I − T ∗,Ω, 0) = 1 (mod 2) for Ω = Ωr+1,ρ \ Ωα,r+1,ρ ∪ Ω−r−1,β,ρ .

We estimate the norm of a solution x using a method of K o rm a n [3], [7].
We consider the case (C1) only.

Suppose that max |x(t)| = x(t0) > r0 and set M = x(t0)−r0 > 0. The second
boundary condition implies t0 
= b. As x ∈ Ω, ∃ tα such that x(tα) ≤ α(tα) ≤ r0.
Then ∃ t1 such that x(t1) = r0 .

We suppose t0 < t1, the opposite case is treated similarly.

As in the proof of Theorem 3, we denote p(x) = ϕp

(
x′(t(x))

)
, z(x) = |p(x)|q

and v = M + r0 − x, to obtain

z̃′(v) ≤ qc
(
1 + (r + 1)A + z̃(v)

B
q

)
, z̃(0) = 0.

The B i h a r i lemma [1] implies

z̃(v) ≤
[(

cqM
(
1 + (r + 1)A

))1−B
q

+ (q −B)cM

] 1

1−B
q
.
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Then

|p(x)| ≤
[(

cqM
(
1 + (r + 1)A

))1−B
q

+ (q − B)cM

] 1
q−B

and

|p(x)| ≤ d

((
cqM

(
1 + (r + 1)A

))1
q

+
(
(q −B)cM

) 1
q−B

)
, d = 2

1
q−B .

As M ≤ (b− a)maxv∈[0,M ] |p(v)|, we have

M ≤ d(b− a)

((
cqM

(
1 + (r + 1)A

))1
q

+
(
(q −B)cM

) 1
q−B

)
.

Then

M
q−1
q ≤ c1r

A
q + c2M

b
(q−B)q ,

where positive constants ci are independent on r.

Either

r0 +M < r or r0 +M ≥ r.

In the latter case

M
q−1
q ≤ c1(r0 +M )

A
q + c2M

b
(q−B)q .

Then ∃M1 independent of r such that r0 +M < r.

We proceed similarly also in the case max |x(t)| = −x(t0) > r0. That means,
|x(t)| < r and then x is a solution of the original problem. �

We prove the existence of at least two solutions under assumption that the
boundary value problem has either two strict lower solutions and one upper one
or vice versa.

	�

� 9� Let α be a strict lower solution of (1), (2).

Suppose (C1) holds and sets

f1α(t, x, y) =

{
f1(t, x, y) for t ∈ I, x ≥ α(t), y ∈ R ,

f1(t, α(t), y) for t ∈ I, x < α(t), y ∈ R ,
(12)

and

f2α(t, x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f2(t, x, y) for t ∈ I, x ≥ α(t), y ∈ R ,

xf2(t, α(t), y) for t ∈ I, 0 ≤ x < α(t), y ∈ R ,

0 for t ∈ I, x < 0 ≤ α(t), y ∈ R ,

f2(t, α(t), y) for t ∈ I, x < α(t) < 0, y ∈ R .

(13)
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Then each solution x(t) of the problem(
ϕp(x

′)
)′

= Fα

(
t, x, ϕp(x

′)
)
,

(14)

x(b) =

b∫
0

x(s) dg(s)− kϕp

(
x′(b)

)
, x′(0) = 0

is a solution of (1), (2).

P r o o f. The proof is based on the fact that in both cases the function α(t)−m
is a strict lower solution of (14) for each m > 0. Then Lemma 2 implies our
assertion. �
�����
 10� Let

(A4) α ≤ β, α ≤ α1, α1 
≤ β, α, α1 be a strict lower and β a strict upper
solution of (1), (2),

(B4) ∃ 0 < A,B < q − 1, c > 0 such that ∀ t ∈ I, x, y ∈ R,

f1(t, x, y) ≥ −c
(
1 + |x|A + |y|B),

(B2), (C1).

Then the boundary value problem (1), (2) possesses at least two solutions.

P r o o f. As α ≤ β, are well ordered lower and upper solutions, assumptions
(A2), (B2), (C1) and Theorem 2 implies the existence of a solution x1.

On the other hand, α1 
≤ β, are unordered lower and upper solutions of (1), (2)
and also of (14). Moreover, each solution x2 of (14) is x2 ≥ α.

We modify (14) replacing f1α by one sided perturbation

f∗
1α =

⎧⎪⎨
⎪⎩
f1α(t, r, y) +M0, x > r + 1,

f1α(t, r, y) +M0(x− r), r < x ≤ r + 1,

f1α(t, x, y), x ≤ r,

where r, M0 have the same sense as in the proof of Theorem 8.

It is easy to prove by the same method as in the case of Theorem 8 that
x(t) < r for each solution x(t) of modified problem. Then there exists a second
solution x2 such that α < x2, β 
≤ x2 
≤ α1. �

In the case when solution are bounded from above by the strict upper solu-
tion β the following symmetric lemma and multiplicity theorem hold.

	�

� 11� Let β be a strict upper solution of (1), (2).

Suppose (C1) holds and sets

f1β(t, x, y) =

{
f1(t, x, y) for t ∈ I, x ≤ β(t), y ∈ R ,

f1
(
t, β(t), y

)
for t ∈ I, x > β(t), y ∈ R,

(15)

and
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f2β(t, x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f2(t, x, y) for t ∈ I, x ≤ β(t), y ∈ R ,

xf2(t, β(t), y) for t ∈ I, 0 ≥ x < β(t), y ∈ R ,

0 for t ∈ I, x > 0 ≥ β(t), y ∈ R ,

f2
(
t, β(t), y

)
for t ∈ I, x > β(t) > 0, y ∈ R .

(16)

Then each solution x(t) of the problem(
ϕp(x

′)
)′

= Fβ

(
t, x, ϕp(x

′)
)
,

(17)

x(b) =

b∫
0

x(s) dg (s)− kϕp

(
x′(b)

)
, x′(0) = 0

is a solution of (1), (2).

�����
 12� Let

(A4) α ≤ β, β1 ≤ β, α 
≤ β1, α be a strict lower and β β1 a strict upper solutions
of (1), (2),

(B4) ∃ 0 < A, B < q − 1, c > 0 such that ∀ t ∈ I, x, y ∈ R,

f1(t, x, y) ≥ −c
(
1 + |x|A + |y|B),

(B2), (C1).

Then the boundary value problem (1), (2) possesses at least two solutions.

Example 13. We consider the boundary value problem(
ϕp(x

′)
)′− k(t, x)ϕm(x) + f(t, x) = h(t) ,

(18)

x(1) =

1∫
0

x(s) dg(s)− kϕp

(
x′(1)

)
, x′(0) = 0,

where we assume that k(t, x) ≥ 0 for t ∈ I, x, y ∈ R and the function f is such
that

lim
x→−∞

f(t, x) = ∞, lim
x→∞

f(t, x) = −∞,

and

∃x1, x2, x1 < x2 such that f(t, x1) < f(t, x2) on I.

Then the boundary value problem (18) has a solution for each h(t), at least two
solutions for

h(t), f(t, x1) ≤ h(t) ≤ f(t, x2) on I,

and at least three solutions for

h(t), f(t, x1) < h(t) < f(t, x2) on I.
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