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ON SOME DIFFERENCE EQUATIONS

OF FIRST ORDER

Vladimir B. Vasilyev

ABSTRACT. One considers two boundary value problems for the Laplacian and
biharmonic operator in a plane sector with boundary conditions of the Dirichlet
and the Neumann type on the angle sides. The system of difference equations
of first order to which this problem is reduced, is explicitly written out. Certain
cases of solvability for such difference equations of first order are described; it will

be useful for studying similar equations.

1. Introduction

In 90th the author has suggested the wave factorization method for study-
ing solvability of pseudo differential equations in non-smooth domains. It has
permitted to obtain a solvability picture for model pseudo differential equations
in canonical non-smooth domains of cone type. Besides, for roughly speaking,
positive index of wave factorization starting from form of general solution one
can describe certain correct statements of boundary value problems for pseudo
differential equations and to obtain for them the analogue of algebraic Shapiro-
-Lopatinskii condition [1], [4]. But using the reduction to the boundary for a lot
of cases we obtain the system of linear difference equations with variable coeffi-
cients of arbitrary order n instead of the system of linear algebraic equations [7].
In some simple cases there were the difference equations of first order, which
can be solved by the special methods [5], [6]. We will give here some calcula-
tions based on the wave factorization related to boundary value problems for
the Laplacian, and give the obtained difference equations. In conclusion we give
some results devoted to solvability of simplest difference equations of first order.
Here we use also the factorization idea.
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The difference equations given in Sections 2, 3 look very hard, but the author
hopes, it is possible their further simplification and studying solvability. Some
calculations were done by my postgraduate student M. I. K h o d o t o v a.

2. Difference equations in the oblique derivative problem
for the Laplacian in a plane sector

We consider the following problem finding the function u+, which is defined
in Ca

+ =
{
x ∈ R2 : x2 > a|x1|

}
(for simplicity we take a = 1) and satisfy the

Laplace equation
(Δu+) (x) = 0, x ∈ Ca

+, (1)

and boundary Neumann condition on one angle side ∂Ca
+

∂u

∂n

∣∣∣∣
x2=x1, x1>0

= 0 (2)

and boundary condition

a
∂u

∂x2
+ b

∂u

∂x1
+ cu

∣∣∣∣
x2=−x1, x1<0

= g, (3)

on the other one, where n is the normal vector to the straight line x2 = x1.

Using wave factorization method [4] and changing variables in the problem
(1)–(3) x′

1 = x1+x2, x
′
2 = x1−x2, going to Fourier images, we have the following

general form for the solution of (1):

Ũ+ (t1, t2) = a−1
�= (t1, t2)

(
c̃ (t1) + d̃ (t2)

)
. (4)

The formula (4) is a special case of the formula for general solution of elliptic
pseudodifferential equation with symbol A(ξ), which admits the homogeneous
wave factorization in the form (see [4] for details)

A(ξ) = A�=(ξ)A=(ξ).

We use the following notations: Ũ+ (t1, t2) = ũ+

(
(t2 + t1) /2, (t2 − t1) /2

)
,

a�= (t1, t2) = A�=
(
(t2 + t1) /2, (t2 − t1) /2

)
, c̃ (t1) = c̃0 (t1) , d̃ (t2) = d̃0 (t2) ,

where the unknown functions c̃0, d̃0 satisfy the conditions:

+∞∫
−∞

t1Ũ+ (t1, t2) dt1 = 0,
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a

+∞∫
−∞

t1Ũ+ (t1, t2) dt2 + b

+∞∫
−∞

t2Ũ+ (t1, t2) dt2 + c

+∞∫
−∞

Ũ+ (t1, t2) dt2 = g̃′ (t1) . (5)

Substituting (4) into (5) we obtain the following system of linear integral equa-

tions with respect to c̃, d̃:

+∞∫
−∞

t1a
−1
�= (t1, t2) c̃ (t1) dt1 + d̃ (t2)

+∞∫
−∞

t1a
−1
�= (t1, t2) dt1 = 0, (6)

c̃ (t1)

+∞∫
−∞

(at1 + bt2 + c) a−1
�= (t1, t2) dt2

+

+∞∫
−∞

(at1 + bt2 + c) a−1
�= (t1, t2) d̃ (t2) dt2 = g̃′ (t1) .

To simplify this system we need to calculate the following integrals:

b (t1)
def
=

+∞∫
−∞

a−1
�= (t1, t2) dt2, b1 (t1)

def
=

+∞∫
−∞

t2a
−1
�= (t1, t2) dt2,

b2 (t2)
def
=

+∞∫
−∞

t1a
−1
�= (t1, t2) dt1.

We remind [4]

a�= (t1, t2) =

{
(t2 − t1) /

√
2 +

√−t1t2sgn (t2 − t1) , t1t2 < 0, t1 �= t2,

(t2 − t1) /
√
2 + i

√
t1t2, t1t2 > 0.

One can see the function b (t1) is homogeneous of order zero, and hence it is
sufficient to calculate b (±1).

Let us find the value b (1). Taking into account the definition for the func-

tion we will represent a�= (1, t) = (t− 1) /
√
2 − √−t for all t ∈ R taking such

branch
√
z of the square root for which its image is in lower half-plane. We have

+∞∫
−∞

e−ixtdt

a�= (1, t)
= −

√
2

+∞∫
−∞

eixtdt

t+
√
2t+ 1

.
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Let us expand the fraction
(
t+

√
2t+ 1

)−1
into the simplest ones and obtain

+∞∫
−∞

e−ixtdt

a�= (1, t)
= i

⎛⎝ +∞∫
−∞

eixtdt√
t+ (1− i) /

√
2
−

+∞∫
−∞

eixtdt√
t+ (1 + i) /

√
2

⎞⎠ .

The first integral is vanishing, because the function under integral sign is holo-
morphic in upper and lower half-planes. The second integral for x < 0 is vanish-
ing in view of residue theorem, but for x > 0

−i

+∞∫
−∞

eixtdt√
t+ (1 + i) /

√
2
= −i

(
2πi Res

z=i

[
eixz√

z + (1 + i) /
√
2

])
= −4πeiπ/4−x,

from which b (1) = −4πeiπ/4. The same calculations give b (−1) = 4πe−iπ/4.
The second integral b1(t1) is a function homogeneous of order 1, and for its
calculation we do the following: first we calculate b1 (±1), and then
b1 (t1) = b1 (sgnt1) t1sgnt1. At the end we obtain that

b1 (1) = −4πieiπ/4 = 4πe−iπ/4, b1 (−1) = 4πie−iπ/4 = 4πeiπ/4.

The function represented by the integral b2 (t2) is homogeneous of order 1
also, and for its calculation it is sufficient to find b2 (±1), and therefore,

b2 (t2) = b2 (sgnt2) t2sgnt2.

We have b2 (1) = 4πie−iπ/4 = 4πeiπ/4, b2 (−1) = −4πieiπ/4 = 4πe−iπ/4.

The system (6) can be rewritten as

+∞∫
−∞

K (t1, t2) c̃ (t1) dt1 + d̃ (t2) = 0, (7)

ac̃ (t1) +
(
bb1 (t1) b

−1 (t1) + c
)
t−1
1 c̃ (t1)

+
(
a+ ct−1

1

)+∞∫
−∞

L (t1, t2) d̃ (t2) dt2

+

+∞∫
−∞

M (t1, t2) d̃ (t2) dt2 = g̃1 (t1) ,

where we use the following notations:

K (t1, t2) = a−1
�= (t1, t2) b

−1
2 (t2) t1,

L (t1, t2) = a−1
�= (t1, t2) b

−1 (t1) ,

M (t1, t2) = a−1
�= (t1, t2) b

−1 (t1) t2t
−1
1 ,

g̃1 (t1) = g̃′ (t1) b−1 (t1) t
−1
1 .
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For all t1 > 0, t2 > 0 we denote

K11 (t1, t2) = K (t1, t2) , K12 (t1, t2) = K (−t1, t2) ,

K21 (t1, t2) = K (−t1,−t2) , K22 (t1, t2) = K (t1,−t2) .

Analogously, we define the kernels Mij (t1, t2), Lij (t1, t2), i, j = 1, 2.

Let us note all kernels are the functions homogeneous of order −1.

Denote c0 (t1) the restriction c̃ (t1) on (0;+∞), c1 (t1) the restriction c̃ (−t1)
on (0;+∞); the same we define the functions d0 (t2), d1 (t2). Finally, we de-
note g10 (t1) the restriction g̃1 (t1) on (0;+∞), g11 (t1) the restriction g̃1 (−t1)
on (0;+∞). As a result instead of the system of two linear integral equation (7)

with respect to two unknowns c̃ (t1), d̃ (t2) we obtain the system of four linear
integral equations with respect to four unknown functions c0 (t1), c1 (t1), d0 (t2),
d1 (t2) on the positive half-axis, for which their kernels are homogeneous of the
order −1. It permits to apply the Mellin transform [3] for studying solvability
of this system.

We remind the Mellin transform is defined by the formula

f̂(s) =

∞∫
0

f(x)xs−1 dx, s = σ + iτ,

at least for functions f(x) ∈ C∞
0 (R+). The integral converges for all complex

s and it is an entire analytic function. If we change variable x = et, then the
Mellin transform passes into the Fourier transform of function f(et)

f̂(s) =

∞∫
−∞

etsf(et) dt, s = σ + iτ.

Thus, all properties of the Mellin transform can be obtained from corresponding
properties of the Fourier transform. Particularly, the inversion formula of the
Mellin transform for f(x) ∈ C∞

0 (R) has the following form

f(x) =
1

2π

∞∫
−∞

f̂(s)t−sdτ, s = σ + iτ.

The Parseval equality for the Mellin transform

+∞∫
0

t2σ−1|f(t)|2 dt = 1

2π

+∞∫
−∞

|f̂(s)|2 dτ, s = σ + iτ,
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particularly, for σ = 1/2 we have

+∞∫
0

|f(t)|2 dt = 1

2π

+∞∫
−∞

|f̂(s)|2 dτ, s = 1/2 + iτ,

or, in other words,

+∞∫
0

|f(t)|2 dt = 1

2πi

1/2+i∞∫
1/2−i∞

|f̂(s)|2 ds,

meaning the right integral as

lim
y→∞

1/2+iy∫
1/2−iy

|f̂ (s)|2 ds.

The last transform reduces the (4× 4)-system mentioned to a system of linear

difference equations with respect to unknowns ĉ0 (λ), ĉ1 (λ), d̂0 (λ), d̂1 (λ):

K̂11 (λ) ĉ0 (λ) + K̂12 (λ) ĉ1 (λ) + d̂0 (λ) = 0,

K̂21 (λ) ĉ0 (λ) + K̂22 (λ) ĉ1 (λ) + d̂1 (λ) = 0,

aĉ0 (λ) +
(
bb1 (1) b

−1 (1) + c
)
ĉ0 (λ− 1) +

(
aL̂11 (λ) + bM̂11 (λ)

)
d̂0 (λ)

+
(
aL̂12 (λ) + bM̂12 (λ)

)
d̂1 (λ) + cL̂11 (λ) d̂0 (λ− 1) + cL̂12 (λ) d̂1 (λ− 1)

= ĝ10 (λ) ,

aĉ1 (λ)−
(
bb1 (−1) b−1 (−1) + c

)
ĉ1 (λ− 1) +

(
aL̂21 (λ) + bM̂21 (λ)

)
d̂0 (λ)

+
(
aL̂22 (λ) + bM̂22 (λ)

)
d̂1 (λ)− cL̂21 (λ) d̂0 (λ− 1)− cL̂22 (λ) d̂1 (λ− 1)

= ĝ20 (λ) , (8)

wherêdenotes the Mellin transform for corresponding functions, K̂ij(λ), M̂ij(λ),

L̂ij (λ) are the Mellin transforms for the functions Kij (1, t), Mij (t, 1), Lij (t, 1),
i, j = 1, 2, respectively. So, it is necessary to calculate the Mellin transforms for
the functions Kij (1, t), Mij (t, 1), Lij (t, 1):

K11 (1, t) = a−1
�= (1, t) b−1

1 (t) = (4π)
−1

e−iπ/4t−1
(
(t− 1) /

√
2 + i

√
t
)−1

,

K12 (1, t) = −a−1
�= (−1, t) b−1

1 (t) = − (4π)
−1

e−iπ/4t−1
(
(t+ 1) /

√
2 +

√
t
)−1

,
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K21 (1, t) =−a−1
�= (−1,−t) b−1

1 (−t) =− (4π)
−1

eiπ/4t−1
(
(1− t) /

√
2 + i

√
t
)−1

,

K22 ( 1, t) = a−1
�= (1,−t) b−1

1 (−t) = − (4π)
−1

eiπ/4t−1
(
(t+ 1) /

√
2 +

√
t
)
.

By analogous calculations we find Mij (t, 1), Lij (t, 1). Further we have:

L11 (t, 1) =− (4π)
−1

e−iπ/4
(
(1− t) /

√
2 + i

√
t
)−1

= −itK21 (1, t) ,

L12 (t, 1) = (4π)
−1

eiπ/4
(
(t+ 1) /

√
2 +

√
t
)−1

= −tK22 (1, t) ,

L21 (t, 1) = (4π)−1 eiπ/4
(
(t− 1) /

√
2 + i

√
t
)−1

= itK11 (1, t) ,

L22 (1, t) = (4π)
−1

e−iπ/4
(
(t+ 1) /

√
2 +

√
t
)−1

= −tK12 (1, t) ;

M11 (t, 1) = t−1L11 (t, 1) ,

M12 (t, 1) = t−1L12 (t, 1) ,

M21 (t, 1) =−t−1L21 (t, 1) ,

M22 (t, 1) =−t−1L22 (t, 1) .

From computational point of view it is more convenient to find the Mellin
transform of the functions Lij (t, 1), i, j = 1, 2, and then, taking into account

property of the Mellin transform, ̂t−1f (t) = f̂ (λ− 1), and then to obtain the
Mellin transform of the functions Mij (t, 1), Kij (1, t).

We have:
+∞∫
0

tλ−1

(t− 1) /
√
2 + i

√
t
= 2

√
2

+∞∫
0

y2λ−1

y2 +
√
2iy − 1

.

Let us note, the following representation is valid(
y2 +

√
2iy − 1

)−1

= − i+ 1

2

(
1 +

√
2

i− 1
y

)−1

− i− 1

2

(
1 +

√
2

i+ 1
y

)−1

.

Hence, we obtain

+∞∫
0

tλ−1dt

a�= (1, t)
= 2

√
2

(
i− 1

2

π(√
2/ (i+ 1)

)2λ cos ec (2πλ)

− i+ 1

2

π(√
2/ (i− 1)

)2λ cos ec (2πλ)

)

= − 2π cos ec (2πλ)
(
ei(π/4)(2λ−1) − ei(3π/4)(2λ−1)

)
,
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which implies

L̂21 (λ) = − (1/2) eiπ/4 cos ec (2πλ)
(
ei(π/4)(2λ−1) − ei(3π/4)(2λ−1)

)
,

and then

K̂11 = −iL̂21 (λ− 1) ,

K̂11 (λ) = (i/2) eiπ/4 cos ec
(
2π (λ− 1)

) (
ei(π/4)(2λ−3) − ei(3π/4)(2λ−3)

)
= (1/2) eiπ/4 cos ec (2πλ)

(
ei(π/4)(2λ−1) − ei(3π/4)(2λ−1)

)
.

M21 (t, 1) = −L̂21 (λ− 1) ,

hence,

M̂21 (λ) = − (1/2) e3iπ/4 cos ec (2πλ)
(
ei(π/4)(2λ−1) − ei(3π/4)(2λ−1)

)
.

Analogously,

L̂22 (λ) = −e−iπ/4 cos ec (2πλ) sin
(
(π/4) (2λ− 1)

)
,

K̂12 (λ) = M̂22 (λ) = −L̂22 (λ− 1) = −e−iπ/4 cos ec (2πλ) cos
(
(π/4) (2λ− 1)

)
,

L̂12 (λ) = −eiπ/4 cos ec (2πλ) sin
(
(π/4) (2λ− 1)

)
,

K̂22 (λ) = M̂12 (λ) = −L̂12 (λ− 1) = −eiπ/4 cos ec (2πλ) cos
(
(π/4) (2λ− 1)

)
,

L̂11 (λ) = (1/2) e−iπ/4 cos ec (2πλ)
(
e−i(3π/4)(2λ−1) − e−i(π/4)(2λ−1)

)
,

K̂21 (λ) = iL̂11 (λ− 1)

= (1/2) e−iπ/4 cos ec (2πλ)
(
e−i(3π/4)(2λ−1) + e−i(π/4)(2λ−1)

)
,

M̂21 (λ) = −L̂11 (λ− 1)

= − (1/2) eiπ/4 cos ec (2πλ)
(
e−i(3π/4)(2λ−1) + e−i(π/4)(2λ−1)

)
.

It is not hard work to reduce the system (8) by elementary transformations to
the system of two difference equations with two unknowns ĉ0 (λ), ĉ1 (λ).

So, the solving the problem (1) with boundary conditions (2), (3) reduces to
solving the following system:{

Â (λ) ĉ0 (λ ) + B̂ (λ ) ĉ1 (λ ) + P̂ (λ) ĉ0 (λ−1) + R̂ (λ ) ĉ1 (λ−1) = ĝ10 (λ) ,

Â1 (λ) ĉ0 (λ) + B̂1 (λ) ĉ1 (λ) + P̂1 (λ) ĉ0 (λ−1) + R̂1 (λ) ĉ1 (λ−1) = ĝ20 (λ) ,
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where

Â (λ) = a
(
1− K̂11 (λ) L̂11 (λ)− K̂21 (λ) L̂12 (λ)

)
− b

(
K̂11 (λ) M̂11 (λ) + K̂21 (λ) M̂12 (λ)

)
,

B̂ (λ) =− a
(
K̂12 (λ) L̂11 (λ) + K̂22 (λ) L̂12 (λ)

)
− b

(
K̂12 (λ) M̂11 (λ) + K̂22 (λ) M̂12 (λ)

)
,

P̂ (λ) = bb1 (1) b
−1 (1) + c

(
1− K̂11 (λ) L̂11 (λ)− K̂12 (λ) L̂12 (λ)

)
,

R̂ (λ) =− c
(
K̂12 (λ) L̂11 (λ) + K̂22 (λ) L̂12 (λ)

)
,

Â1 (λ) = a
(
K̂21 (λ) L̂22 (λ)− K̂11 (λ) L̂21 (λ)

)
+ b

(
K̂21 (λ) M̂22 (λ)− K̂11 (λ) M̂21 (λ)

)
,

B̂1 (λ) = a
(
1− K̂12 (λ) L̂21 (λ)− K̂22 (λ) L̂22 (λ)

)
− b

(
K̂12 (λ) M̂21 (λ) + K̂22 (λ) M̂22 (λ)

)
,

P̂1 (λ) = c
(
K̂11 (λ) L̂21 (λ) + K̂21 (λ) L̂22 (λ)

)
,

R̂1 (λ) = c
(
K̂22 (λ) L̂22 (λ) + K̂12 (λ) L̂21 (λ)−1

)
− bb1(−1) b−1(−1) .

3. Difference equations in the oblique derivative problem
for the biharmonic equation in a plane sector

Here we consider the following problem: finding the function u+, which is
defined in C1

+ =
{
x ∈ R2 : x2 > |x1|

}
and satisfy the biharmonic equation

Δ2u+ (x) = 0, x ∈ C1
+, (9)

and boundary conditions on angle sides⎧⎨⎩
∂u+

∂n

∣∣∣
x2=x1,x1>0

= g1,

u+|x2=x1,x1>0= g2
(10)

on one angle side, and ⎧⎨⎩
∂u+

∂n

∣∣∣
x2=−x1,x1<0

= g3,

u+|x2=−x1,x1<0= g4,
(11)
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on the other one, where n is unit normal vector for the straight line x2 = x1.

Using the wave factorization we have the formula for general solution of the
equation (9) and changing variables

x′
1= x1 + x2, x′

2= x1 − x2

in the problem (9)–(11) and going to Fourier images, we have the equation

Ũ+ (t1, t2) = a−2
�= (t1, t2)

(
c̃0 (t1) + c̃1 (t1) t2 + d̃0 (t2) + d̃1 (t2) t1

)
(12)

and four conditions for determining the unknown functions c̃0, d̃0, c̃1, d̃1:⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞∫
−∞

t1Ũ+ (t1, t2) dt1 = g̃′1 (t2) ,

+∞∫
−∞

Ũ+ (t1, t2) dt1 = g̃′2 (t2) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞∫
−∞

t2Ũ+ (t1, t2) dt2 = g̃′3 (t1) ,

+∞∫
−∞

Ũ+ (t1, t2) dt2 = g̃′4 (t1) ,
(13)

for which we use the following notations:

Ũ+ (t1, t2) = ũ+

(
(t2 + t1) /2, (t2 − t1) /2

)
,

a�= (t1, t2) = A�=
(
(t2 + t1) /2, (t2 − t1) /2

)
,

c̃ (t1) = c̃0 (t1) ,

d̃ (t2) = d̃0 (t2) .

Substituting (12) into (13) we obtain the following system of linear integral

equations with respect to c̃, d̃ :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

t1a
−2
�= (t1, t2) c̃0 (t1) dt1 + t2

+∞∫
−∞

t1a
−2
�= (t1, t2) c̃1 (t1) dt1

+d̃0 (t2)
+∞∫
−∞

t1a
−2
�= (t1, t2) dt1

+d̃1 (t2)
+∞∫
−∞

t21a
−2
�= (t1, t2) dt1 = g̃1 (t2) ,

+∞∫
−∞

a−2
�= (t1, t2) c̃0 (t1) dt1 + t2

+∞∫
−∞

a−2
�= (t1, t2) c̃1 (t1) dt1

+d̃0 (t2)
+∞∫
−∞

a−2
�= (t1, t2) dt1

+d̃1 (t2)
+∞∫
−∞

t1a
−2
�= (t1, t2) dt1 = g̃2 (t2) ,
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c̃0 (t1)
+∞∫
−∞

t2a
−2
�= (t1, t2) dt2 + c̃1 (t1)

+∞∫
−∞

t22a
−2
�= (t1, t2) dt2

+
+∞∫
−∞

t2a
−2
�= (t1, t2) d̃0 (t2) dt2

+t1
+∞∫
−∞

t2a
−2
�= (t1, t2) d̃1 (t2) dt2 = g̃3 (t1) ,

c̃0 (t1)
+∞∫
−∞

a−2
�= (t1, t2) dt2 + c̃1 (t1)

+∞∫
−∞

t2a
−2
�= (t1, t2) dt2

+
+∞∫
−∞

a−2
�= (t1, t2) d̃0 (t2) dt2

+t1
+∞∫
−∞

a−2
�= (t1, t2) d̃1 (t2) dt2 = g̃4(t1).

As in the previous case we write the expression

a�= (t1, t2) =

{(
(t2 − t1) /

√
2 +

√−t1t2sgn (t2 − t1)
)2
, t1t2 < 0, t1 �= t2,

(t2 − t1) /
√
2 + i

√
t1t2, t1t2 > 0.

For simplifying the system above and taking into account the concrete form
of the symbol a�= (t1, t2), we will calculate the following integrals:

b (t1)
def
=

+∞∫
−∞

a−2
�= (t1, t2) dt2, b1 (t1)

def
=

+∞∫
−∞

t2a
−2
�= (t1, t2) dt2,

b2 (t1)
def
=

+∞∫
−∞

t22a
−2
�= (t1, t2) dt2, b3 (t2)

def
=

+∞∫
−∞

a−2
�= (t1, t2) dt1,

b4 (t2)
def
=

+∞∫
−∞

t1a
−2
�= (t1, t2) dt1, b5 (t2)

def
=

+∞∫
−∞

t21a
−2
�= (t1, t2) dt1.

These integrals can be calculated by the same way as above for the Laplacian.

Let us calculate b(t1) =
∫ +∞
−∞ a−2

�= (t1, t2) dt2. It is sufficient to calculate b (±1).

Let us find the value b (1). We have

+∞∫
−∞

e−ixt dt

a�= (1, t)
= −2

+∞∫
−∞

eixt dt(
t+

√
2t+ 1

)2 .
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If we expand the fraction
(
t +

√
2t + 1

)−2
into the simplest ones, we will

obtain:

+∞∫
−∞

e−ixtdt

a�=(1, t)
=

+∞∫
−∞

eixtdt(√
t+ (1− i)/

√
2
)2 −

+∞∫
−∞

eixtdt(√
t+ (1 + i)/

√
2
)2

+
√
2i

+∞∫
−∞

eixtdt√
t+ (1− i)/

√
2
−
√
2i

+∞∫
−∞

eixtdt√
t+ (1 + i)/

√
2
,

−
√
2i

+∞∫
−∞

eixtdt√
t+ (1 + i) /

√
2
= −4

√
2πe

iπ
4 −x,

+∞∫
−∞

eixtdt(√
t+ (1 + i) /

√
2
)2 = 2πi Res

z=i

[
eixz(√

z + (1 + i) /
√
2
)2
]

=
2
√
2πie

iπ
4 −x

2e
i π
4 +

√
2 +

√
2e

iπ
2

,

from which it implies that

b (1) =− 2
√
2πeiπ/4

(
2− i√

2eiπ/4 + 1 + eiπ/2

)
.

By the similar way we find that

b (−1) = 2
√
2πe−iπ/4

(
2− i√

2eiπ/4 + 1 + eiπ/2

)
.

Let us calculate the second integral

b1 (t1) =

+∞∫
−∞

t2a
−2
�= (t1, t2) dt2 :

b1 (1) =− 2
√
2πeiπ/4

(
2i+

1√
2eiπ/4 + 1 + eiπ/2

)
,

b1 (−1) = 2
√
2πe−iπ/4

(
2i+

1√
2eiπ/4 + 1 + eiπ/2

)
.

b2 (t1) =

+∞∫
−∞

t22a
−2
�= (t1, t2) dt2 :
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b2 (1) =− 2
√
2πeiπ/4

(
2 +

i√
2eiπ/4 + 1 + eiπ/2

)
,

b2 (−1) = 2
√
2πe−iπ/4

(
2− i√

2eiπ/4 + 1 + eiπ/2

)
.

b3 (t2) =

+∞∫
−∞

a−2
�= (t1, t2) dt1 :

b3 (1) = 2
√
2πeiπ/4

(
−2i+

1√
2eiπ/4 + 1− eiπ/2

)
,

b3 (−1) = 2
√
2πe−iπ/4

(
−2i+

1√
2eiπ/4 + 1− eiπ/2

)
.

b4 (t2) =

+∞∫
−∞

t1a
−2
�= (t1, t2) dt1 :

b4 (1) = 2
√
2πeiπ/4

(
2 +

i√
2e−iπ/4 + 1− eiπ/2

)
,

b4 (−1) = 2
√
2πe−iπ/4

(
2 +

i√
2e−iπ/4 + 1− eiπ/2

)
.

b5 (t2)
def
=

+∞∫
−∞

t21a
−2
�= (t1, t2) dt1 :

b5 (1) = 2
√
2πeiπ/4

(
2i− 1√

2e−iπ/4 + 1− eiπ/2

)
,

b5 (−1) = 2
√
2πe−iπ/4

(
2i− 1√

2e−iπ/4 + 1− eiπ/2

)
.

The previous system takes the form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞∫
−∞

t1a
−2
�= (t1, t2) c̃0 (t1) dt1 + t2

+∞∫
−∞

t1a
−2
�= (t1, t2) c̃1 (t1) dt1

+ d̃0 (t2) b4 (t2) + d̃1 (t2) b
−1
5 (t2) = g̃1 (t2) ,

+∞∫
−∞

b−1
3 (t2) a

−2
�= (t1, t2) c̃0 (t1) dt1 + t2

+∞∫
−∞

b−1
3 (t2) a

−2
�= (t1, t2) c̃1 (t1) dt1

+ d̃0 (t2) + d̃1 (t2) b
−1
3 (t2) b4 (t2) = g̃2 (t2) ,
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c̃0 (t1) b1 (t1) + c̃1 (t1) b2 (t1) +
+∞∫
−∞

t2a
−2
�= (t1, t2) d̃0 (t2) dt2

+ t1
+∞∫
−∞

t2a
−2
�= (t1, t2) d̃1 (t2) dt2 = g̃3 (t1) ,

c̃0 (t1) + c̃1 (t1) b1 (t1) b (t1) +
+∞∫
−∞

b−1 (t1) a
−2
�= (t1, t2) d̃0 (t2) dt2

+ t1
+∞∫
−∞

b−1 (t1) a
−2
�= (t1, t2) d̃1 (t2) dt2 = g̃4 (t1) ,

and can be reduced as above to a system of (8× 8)-system of linear integral equa-
tions, and further by Mellin transform to the (8× 8)-system of linear difference
equations.

4. One solvability case for a system
of linear difference equations of first order

Let us consider a system of two linear difference equations of first order with
two unknowns c1 (λ), c2 (λ):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a11 (λ) c1 (λ) + a12 (λ) c2 (λ)

− b11 (λ) c1 (λ− 1)− b12 (λ− 1) c2 (λ) = d1 (λ) ,

a21 (λ) c1 (λ) + a22 (λ) c2 (λ)

− b21 (λ) c1 (λ− 1)− b22 (λ) c2 (λ− 1) = d2 (λ) ,

(14)

where d1 (λ), d2 (λ) are given functions.

Our main goal is to find the solution of the system (14).

For this purpose we rewrite the system in a matrix form:

A (λ)C (λ)−B (λ)C (λ− 1) = D (λ) , (15)

where

A (λ) =

(
a11 (λ) a12 (λ)

a21 (λ) a22 (λ)

)
, B (λ) =

(
b11 (λ) b12 (λ)

b21 (λ) b22 (λ)

)
are matrices of order (2× 2), and

C (λ) =

(
c1 (λ)

c2 (λ)

)
, D (λ) =

(
d1 (λ)

d2 (λ)

)
are vectors.

Multiply the quantity (15) by A−1 (λ) from left. We obtain

A−1 (λ)A (λ)C (λ)−A−1 (λ)B (λ)C (λ− 1) = A−1 (λ)D (λ)
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or
C (λ)−G (λ)C (λ− 1) = R (λ) ,

where G (λ) = A−1 (λ)B (λ) is matrix of order (2 × 2), R (λ) = A−1 (λ)D (λ)
is vector.

If we suppose that G (λ) admits factorization

G (λ) = P−1
1 (λ)P1 (λ− 1) , (16)

then substituting (16) into last matrix equation we have:

C (λ)− P−1
1 (λ)P1 (λ− 1)C (λ− 1) = R (λ)

or
P1 (λ)C (λ)− P1 (λ− 1)C (λ− 1) = P1 (λ)R (λ) .

It is easily seen the last expression is a system of linear difference equation
of first order, and its solution will be in the following form (see [2] for details
and notations)

P1 (λ)C (λ) =
λ

S
c
P1 (z)R (z)Δz +�,

where � is periodic function with period 1.

Hence,

C (λ) = P−1
1 (λ)

λ

S
c
P1 (z)R (z)Δz +� = P−1

1 (λ)
λ

S
c
P1 (z)A

−1 (z)D (z)Δz +�.

So, the problem is reduced to finding P1(λ).

Let us consider the equation (16), which we rewrite in the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
p11 (λ) g11 (λ) + p12 (λ) g21 (λ) = p11 (λ− 1) ,

p11 (λ) g12 (λ) + p12 (λ) g22 (λ) = p12 (λ− 1) ,

p21 (λ) g11 (λ) + p22 (λ) g21 (λ) = p21 (λ− 1) ,

p21 (λ) g12 (λ) + p22 (λ) g22 (λ) = p22 (λ− 1) ,

where p11 (λ), p12 (λ), p21 (λ), p22 (λ) are the unknown functions.

Such system decomposes into the two systems of linear difference equations
of first order with variable coefficients g11 (λ), g12 (λ), g21 (λ), g22 (λ):{

p11 (λ) g11 (λ) + p12 (λ) g21 (λ) = p11 (λ− 1) ,

p11 (λ) g12 (λ) + p12 (λ) g22 (λ) = p12 (λ− 1) ,
(17)

{
p21 (λ) g11 (λ) + p22 (λ) g21 (λ) = p21 (λ− 1) ,

p21 (λ) g12 (λ) + p22 (λ) g22 (λ) = p22 (λ− 1) .
(18)

We will seek the solution of the system (17) in the form p11 (λ) = α1e
rλ,

p12 (λ) = α2e
rλ.
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Then our system can be rewritten in the form:{
g11 (λ)α1e

rλ + g21 (λ)α2e
rλ = α1e

r(λ−1),

g12 (λ)α1e
rλ + g22 (λ)α2e

rλ = α2e
r(λ−1),

or, in the other terms,{(
g11 (λ)− e−r

)
α1 + g21 (λ)α2 = 0,

g12 (λ)α1 +
(
g22 (λ)− e−r

)
α2 = 0.

The last system has a non-trivial solution in such case only, if its determi-
nant is equal to zero. Let us compose the determinant and find the non-trivial
solutions of the system.∣∣∣∣∣ g11 (λ)− e−r g21 (λ)

g12 (λ) g22 (λ)− e−r

∣∣∣∣∣ = detG− e−rtr G+ e−2r = 0, (19)

tr G is trace of the matrix G.

Changing variables δ = e−r, a = tr G, b = detG, we obtain quadratic equation
δ2 − aδ + b = 0, which has always two solutions δ1 and δ2, and, hence, we have
two values r, i.e., r1 and r2.

Take α1 = 1. Then the solutions of the systems (17) and (18) can be

p11(λ) = er1λ, p12 (λ) = aer1λ, p21 (λ) = er2λ, p22 (λ) = ber2λ,

where r1 and r2 are solutions of our quadratic equation.

������� 1� If the elements of the matrix G such that under certain r the
determinant (19) is equal zero, then G (λ) admits the factorization.

The method for solving (2× 2)-system of linear difference equations of first
order mentioned above is valid for a system of three linear difference equations
of first order with three unknowns.

������� 2� If the elements of the matrix G, where G is corresponding matrix
of order (3× 3) such that under certain r the following equation

detG− e−2rtr G− e−3r − e−r

× (
g11(λ)g33(λ) + g22(λ)g33(λ) + g11(λ)g22(λ)−

− g31(λ)g13(λ)− g23(λ)g32(λ)− g21(λ)g12(λ)
)
= 0 (20)

is valid, then G (λ) admits the factorization.

Concerning to (n× n)-system of linear difference equations of first order,
reasoning by the same way one can obtain an algebraic equation of order n
of type (20) and formulate the following result.
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������� 3� If the factorization for the matrix G exists, then it is unique up to
periodic function.

The proof of Theorem 3 is easily obtained by taking logarithm of both sides
of the equation (16) and reducing to the problem of type

R(λ)−R(λ− 1) = Q(λ)

with given right-hand side Q(λ).

Such problem is solved by the formula [3]

R(λ) =
λ

S
c
Q(z)Δz +�,

where � is periodic function with the period 1.
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