

Milan Koreñ*

MODELOVANIE KRAJINY PROSTREDNÍCTVOM POLÍ

Abstract

M. Koreň: Field-based models of landscape. Geografický časopis, 58, 1, 2006, 27 refs.

The paper is focused on mathematical formalization of selected terms from the field of geography and landscape ecology. Developed mathematical formalism enables general problem description at the theoretical level, independently from the target computer system. For this purpose the field-based approach seems to be more appropriate than a classic object-based approach. The representation of selected concepts was developed by use of suitable mathematical structures: landscape (system), territory (two-dimensional interval), landscape property (function, field), regionalization (decomposition), area (continuous set). Spatial operations such as overlay of thematic layers, buffering and so on can be expressed at the abstract level by use of characteristic functions and distance operator. Duality between landscape properties (fields) and regionalization (decomposition) preserves the close relationship between object-based and field-based approaches.

Key words: geographic information systems, spatial models, field-based models, regionalization, area, boundary, overlay

ÚVOD

V príspevku je rozpracovaná matematická formalizácia vybraných pojmov z oblasti geografie a krajinnej ekológie. Vybrané pojmy a termíny sa vyjadrujú prostredníctvom vhodných matematických štruktúr (množín, funkcií, polí, rozkladov). Zavedenie predloženého formálneho aparátu umožňuje vytvorit' teoretické opisy a modely krajinných systémov, ktoré sú nezávislé na počítačovej reprezentácii.

[^0]Základom formalizácie vybraných pojmov je systémový prístup ku krajine rozpracovaný v prácach Krcha (1977, 1979, 1981 a 1990). Na reprezentáciu vlastností krajiny sa nepoužíva klasický objektový prístup, ale všetky vlastnosti sa vyjadrujú skalárnymi a vektorovými poliami. Pole sa chápe ako funkcia, ktorá zobrazuje územie do vhodného oboru hodnôt. Pomocou vlastností krajiny sa definuje rozklad územia, ktorý zodpovedá pojmu regionalizácie podlla vhodne zvoleného regionalizačného kritéria. Na základe charakteristických funkcií je vyjadrená dualita vlastností krajiny a regionalizácie (rozkladu), čím sa vytvára prepojenie medzi klasickým objektovým prístupom a reprezentáciou prostredníctvom polí. Kompozíciou charakteristických funkcií je možné opísat' aj nakladanie (overlay) tematických vrstiev. Zavádza sa pojem areálu ako súvislej množiny, ktorá tvorí základnú jednotku priestorového rozkladu. V závere je uvedený stručný rozbor povahy hraníc areálov a problematiky ich presného určenia.

POČÍTAČOVÉ MODELY KRAJINY

Priestor, čas aj vlastnosti objektov sú spojité veličiny. Ak s nimi model narába ako so spojitými, potom hovoríme o spojitom modeli. Pretože počítače sú konečno-stavové zariadenia s obmedzenou pamätou, realizácia počítačových Na formálne vyjadrenie modelov sa používajú proru, času a popisných údajov. Na formáne vyjadrenie modelov sa používajú prostriedky diskrétnej matemati-
ky. Spôsob diskretizácie závisí od účelu, použitých por ky. Spôsob diskretizácie závisí od účelu, použitých postupov a požiadaviek na presnost' a správnost' modelu. Pre modelovanie priestorových javov v geografii a krajinnej ekológii sa v odbornej literatúre (Peuquet 1988, Worboys 1995) rozlišujú dve základné triedy konceptuálnych počítačocových modelov: modelovanie prostredníctvom polí (field-based models) a objektové modely (object-based
models) models).

Modely založené na poliach zobrazujú geografické údaje ako množinu priestorových distribúcií popisných údajov, ktoré ako matematické funkcie zobrazujú priestorový rámec do oboru hodnôt. Priestorovým rámcom sa nazýva rozklad azeždá na konečítatel'l'ná počet disjunkia z územia množín. Priestorovým pol’om je potom každá vypočítatel'ná funkcia z územia do vhodného konečného oboru hodnôt. Tieto modely sú výhodné v situáciách, pri ktorých potrebujeme vykonávat' vý, počty. Používajú sa napríklad v oblasti počítačového spracovania leteckých a družicových snímok, modelovania kontaminácie pôdy, znečistenia ovzdušia, erózie pôdy a pod.

Typickým predstavitel’om sú rastrové modely, ktoré používajú pravidelný obdížnikový alebo štvorcový rozklad územia. Pole je reprezentované ako rastrová tematická vrstva. Ked’že priestorový rámec má pravidelnú a konečnú štruktúru, je potrebné vzorkovanie sledovaného javu. Procesom vzorkovania sa do rastrového modelu nutne zavádzajú chyby správnosti aj presnosti. D̆alším zástupcom modelov založených na poliach je nepravidelná trojuholníková siet' (triangulated irregular network - TIN). Nepravidelné trojuholníkové siete sa používaú hlavne na reprezentáciu digitálnych modelov georeliéfu (Krcho 1990 a 2001). Na nepravidelných trojuholníkových sietach je možné vykonávat' výpočty, alebo ich vhodným algoritmom transformovat' na rastrové a vektorové modely (bodové pole, vrstevnice, spádnice a pod.).

Objektovo založené modely najskôr definujú objekty, ktorým sa potom priradí ich poloha v priestore. Tým vzniká nepravidelný rozklad územia. V počítačovom prostredí sa tieto objekty implementujú ako základné geometrické útvary: bod, línia, polygón. Vyhl’adávanie a triedenie objektov je v objektových modeloch omnoho efektívnejšie ako v modeloch založených na poliach. Preto sú vhodné na budovanie rozsiahlych geografických databáz, kde priamo pracujeme s objektmi a ich vlastnostami. Aj metódy sietovej analýzy je jednoduchšie implementovat' a vykonat' nad vhodným objektovým modelom líniových sietí.

Podobnost' modelov spočíva v rozklade územia na geometrické objekty určitého typu. Okrem rozdielu medzi pravidelným rozkladom rastrových modelov a nepravidelným rozkladom vektorových modelov, hlavný rozdiel spočíva v odlišnom postupe tvorby rastrového a vektorového modelu. V rastrových modeloch alebo nepravidelných trojuholníkových siet’ach prirad’ujeme areálu (bunke rastra) hodnotu (vlastnost'). Vo vektorových modeloch objektom vymedzeným na základe ich vlastností prirad’ujeme polohu v priestore. V rastrových modeloch nepracujeme s objektmi, len s priestorovými distribúciami hodnôt (vlastností). Vo vektorovom modeli je objekt jednoznačne identifikovatel'ná entita, s ktorou môžeme manipulovat' (napr. posúvat'). V rastrovom modeli zodpovedá polohe jedného objektu zvyčajne niekol'ko buniek rastra, ktoré sa však nepovažujú spolu za jeden celok.

Modely založené na poliach, ako aj objektové modely predstavujú triedy konceptuálnych počítačových modelov, ktoré sú nezávislé na konkrétnej implementácii vo výpočtovom prostredí. V súčasnosti existuje viacero spôsobov efektívnej implementácie rastrových aj vektorových modelov. Rozpracované sú aj vhodné štruktúry údajov a algoritmy práce s týmito údajmi (napr. Samet 1989). Obidve triedy modelov sa dajú kombinovat', čo umožñuje využívat' výhody oboch prístupov. Vyvinuli sa rôzne postupy na transformáciu modelov založených na poliach na objektové modely a opačne. Tieto transformácie sú vo väčšine prípadov možné, avšak sú časovo náročné a dochádza pri nich k strate presnosti a správnosti modelov. Podobne pri výpočtoch s modelmi založenými na poliach je potrebné zabezpečit,', aby všetky polia boli definované v rovnakom priestorovom rámci. Ak nemajú spoločný priestorový rámec, potom je nevyhnutné polia prevzorkovat'.

KRAJINNÝ SYSTÉM A ÚZEMIE

Teória modelovania je úzko spojená s rozvojom teórie systémov. V slovenskej a českej literatúre sa problematika modelovania prírodných a sociálnoekonomických systémov rozoberá hlavne v súvislosti so systémovým prístupom (Krcho 1981, Stach 1982, Habr a Vepřek 1986, Oboňa 1990 a d’alší). V nadväznosti na matematickú teóriu systémov (Bertalanffy 1976) boli vypracované teórie modelov a modelovania. Medzi teoreticky najviac prepracované patria práce Zeiglera (1976) a Castiho (1989).

Krajinný systém (sféra) je - ako špeciálny druh geosystému - hybridný časo-vo-priestorový, látkovo-energetický a informačný systém (Mičian a Zatkalík 1990), ktorý pozostáva zo svojich podsystémov. Z hladiska teórie systémov ho môžeme vyjadrit' nasledovne (Krcho 1977, 1979 a 1990):

$$
\begin{equation*}
S_{G}=\left\{S_{F G}, S_{A G}\right\}, \tag{1}
\end{equation*}
$$

kde $S_{F G}$ je fyzicko-geografický a $S_{A G}$ socio-ekonomický podsystém. Okolie systému S_{G} budeme označovat' S_{0}. Fyzicko-geografický systém $S_{F G}$ a socio-ekonomický systém $S_{A G}$ môžeme d'alej dekomponovat' na podsystémy druhého rádu.

Pod pojmom krajina (resp. geografická krajina) rozumieme konkrétnu čast' zemského povrchu, vyhraničenú na základe zvoleného kritéria (Mičian a Zatkalík, 1990). V tejto práci budeme túto konkrétnu čast' zemského povrchu reprezentovat' otvoreným dvojrozmerným intervalom

$$
\begin{equation*}
L=\left(x_{0}, y_{0}\right) \times\left(x_{1}, y_{1}\right), \tag{2}
\end{equation*}
$$

ktorý je podmnožinou dvojrozmerného euklidovského priestoru E_{2} s definovaným pravouhlým súradnicovým systémom. Tento interval nazývame územie.

Systémový prístup znamená vytvorenie určitého konceptuálneho modelu krajiny, pri ktorom sa vymedzujú podsystémy a samotné prvky krajiny, ktoré sa oddel'ujú od okolia. Prvky krajiny sa nachádzajú v istom stave. Medzi prvkami navzájom, ako aj s okolím krajiny existujú väzby. Skúmat' štruktúru (a rozmanitost') krajiny znamená skúmat' štruktúru (a rozmanitost') systému, jeho podsystémov, prvkov, väzieb a stavov. Naproti tomu územie predstavuje len dvojrozmerný priestor, do ktorého sa premietajú jednotlivé objekty a ich vlastnosti. V priemete do územia sa takto môže odrazit len čast' štruktúry a rozmanitost krajiny. Pri štúdiu rozmanitosti územia preto skúmame len rozmanitost' dvoj rozmerného priemetu krajinného systému.

Pre aplikácie geografických informačných systémov a počítačové simulácie predstavuje územie čast' projekčnej roviny, do ktorej sa vhodnou kartografickou transformáciou zobrazuje referenčný elipsoid. Na ñom je spravidla definovany systém zemepisných (geodetických) súradníc, ktoré sú reprezentované zemepisnou šírkou φ a zemepisnou dlžkou λ. Kartografické zobrazenie k je potom definované na podmnožine zemepisných súradníc, ktorú zobrazuje do dvojrozmerného (resp. trojrozmerného) euklidovského priestoru:

$$
\begin{equation*}
k: U \rightarrow E_{2}\left(E_{3}\right), \text { kde } U \subseteq\left[-90^{\circ}, 90^{\circ}\right] \times\left[0^{\circ}, 360^{\circ}\right] . \tag{3}
\end{equation*}
$$

Pod štruktúrou územia rozumieme podl’ Kozovej (1980) priestorovú stavbu krajinného systému, t. j. všeobecný kvalitatívne a kvantitatívne určený poriadok (usporiadanie) priestorových závislostí a väzieb medzi podsystémami krajinného systému. Medzi štruktúrou konkrétneho územia a procesmi, ktoré v ňom prebiehajú, existujú silné obojstranné väzby. Priestorové usporiadanie ovplyvñujú abiotické podmienky, distribúcia prírodných zdrojov, ale aj trofické vzt'ahy, vitalita spoločenstiev a antropické aktivity.

Priestorové jednotky zobrazujeme prostredníctvom tematických máp (kategórií). Každá tematická mapa (kategória) zvyčajne pozostáva z viacerých tried, z ktorých každá sa skladá z množiny vzájomne sa neprekrývajúcich priestorových areálov. Areál reprezentuje súvislú čast' územia, ktorá je vnútorne homogénna vzhl’adom na zvolené kritérium. Pri analýze priestorovej štruktúry sa na krajinu a jej prvky môžeme pozerat' na viacerých hierarchických úrovniach.

Z hladiska rozsahu a mierky parametre (charakteristiky) sledujeme a počítame na úrovni areálu, triedy, kategórie (tematickej vrstvy) a krajiny.

REGIONALIZÁCIA

Rozklad územia

Fyzicko-geografické regióny sa definujú ako časti fyzicko-geografického podsystému $S_{F G}$, vydelené na základe určitého znaku (Mičian a Zatkalík 1990). Proces vydel’ovania (ohraničovania) fyzicko-geografických regiónov sa nazýva fyzicko-geografickou regionalizáciou krajiny. Rovnaké postupy sa používajú aj v krajinnej ekológií, len geografické znaky sa nahrádzajú krajinno-ekologickými.

Pojmom regionalizácia sa v geografii označuje proces regionalizácie krajiny na základe zvoleného kritéria, ako aj výsledok tohto procesu. Podla jednoznačnosti, resp. opakovatel'nosti regiónov rozlišujeme individuálnu a typologickú regionalizáciu (Mičian a Zatkalík 1990). Individuálnou nazývame regionalizáciu, ktorej výsledkom sú neopakovatel'né, jedinečné regióny, z ktorých každý má svoju osobitnú charakteristiku a na mape je reprezentovaný jedným areálom. Pri typologickej regionalizácií môže vzniknút' viacero regiónov (areálov) s rovnakou charakteristikou.

Z matematického hl’adiska regionalizácia P krajiny predstavuje rozklad dvojrozmerného intervalu L (územia) na množinu neprázdnych disjunktných množín P_{i} (regiónov), ktorých zjednotenie je celé územie:

$$
\begin{aligned}
& P=\left\{P_{i}: i=1,2,3, \ldots\right\}, \\
& L=\bigcup_{i=1}^{+\infty} P_{i},
\end{aligned}
$$

$$
P_{i} \neq \varnothing \text {, pre každé } i,
$$

$$
P_{i} \cap P_{j}=\varnothing \text {, pre každé } i \neq j \text {. }
$$

Z praktického hl’adiska sú zaujímavé najmä rozklady územia na konečný počet množín. Pre každý rozklad P môžeme definovat' reláciu ekvivalencie (\equiv) na množine L
$x \equiv y$, práve vtedy, ked' existuje i také, že $x \in P_{i} \wedge y \in P_{i}$,
čo znamená, že dva prvky sú ekvivalentné práve vtedy, ked' patria do tej istej množiny rozkladu. Dá sa dokázat', že medzi triedami ekvivalencie takto definovanej relácie a množinami rozkladu existuje jedno-jednoznačné zobrazenie. Opačne, ku každej relácii ekvivalencie na území L existuje jednoznačný rozklad (Legéň 1980). Relácia ekvivalencie predstavuje klasifikačné kritérium (znak), na základe ktorého sa robí regionalizácia. Rozklad územia predstavuje výsledok procesu regionalizácie, rozdelenie krajiny na vnútorne homogénne regióny (s ohl'adom na zvolené klasifikačné kritérium).

Každá trieda rozkladu sa môže skladat' z jednej alebo viacerých súvislých, navzájom disjunktných množín. Súvislú množinu rozkladu nazývame areál. Pri praktických aplikáciách je vhodné požadovat', aby bol rozklad konečný, z teoretického hl'adiska sa však môžeme zaoberat' aj rozkladmi na nekonečný počet areálov. Trieda rozkladu územia zodpovedá regiónu. Ak všetky triedy rozkladu (regióny) pozostávajú práve z jedného areálu, tak rozklad reprezentuje individuálnu regionalizáciu.

Súvislá množina - areál

V definíciách regiónu (resp. priestorovej jednotky) sa vyžaduje, aby bol súvislý. Rozumie sa tým, že medzi každými dvoma bodmi množiny existuje súvislá cesta, ktorá celá leží v danej množine.

Cestou medzi dvoma bodmi a, b z územia L budeme nazývat' každé spojité zobrazenie p, pre ktoré platí:

$$
\begin{align*}
& p:[0,1] \rightarrow L, \\
& p(0)=a, p(1)=b, \tag{6}\\
& p(t) \in L, \text { pre každé } t \in[0,1] .
\end{align*}
$$

Množinu P_{i} rozkladu územia L nazývame súvislou, ak medzi každými dvoma bodmi tejto množiny existuje aspoñ jedna cesta. Geometrický význam cesty spočíva v tom, že môžeme nakreslit' súvislú čiaru z bodu a do bodu b tak, že celá cesta bude ležat' v množine P_{i}.

Súvislými množinami sú všetky „klasické" priestorové jednotky, zavedené v oblasti geografických informačných systémov: jednoduchý polygón aj polygón s ,„dierami". Množina polygónov, ktorá pozostáva z dvoch alebo viacerých oddelených polygónov, nie je súvislá. Súvislou množinou bude však množina, ktorá sa skladá z dvoch oddelených polygónov a jedinej čiary, ktorá ich spája. Môžu to byt' napríklad dve vodné nádrže spojené kanálom. Každá cesta medzi bodmi z oddelených polygónov bude obsahovat' čiaru, ktorá ich spája. Dalším špeciálnym prípadom spojitej množiny je obraz riečnej, cestnej, železničnej alebo inej siete. V týchto prípadoch sa medzi bodmi môžeme pohybovat' vždy len po spájajúcich čiarach. V líniovej sieti sa okrem uzlových bodov do strany nedá pohybovat'. Využitím funkcie vzdialenosti a topologických vlastností množín je možné zadefinovat' pojmy uzol a línia a použit' ich na vytvorenie siet'ového modelu (grafu) danej líniovej siete.

Pre potreby počítačového spracovania údajov musíme predpokladat', že výsledkom regionalizácie je konečný počet regiónov a tieto sa dajú vyjadrit' vo vhodnej digitálnej forme. Región sa musí dat' vyjadrit' určitou plošnou priestorovou jednotkou. Vo vektorových geografických informačných systémoch sa na reprezentáciu súvislého areálu používa polygón. Prostredníctvom neho sa definujú d’alšie priestorové jednotky: jednoduchý areál, zložený areál, resp. množina areálov. V rastrovo orientovaných GIS-och sa súvislý areál definuje ako množina susedných buniek s rovnakými hodnotami. Susednost' sa môže definovat' viacerými spôsobmi. Najpoužívanejšími sú 4 -susednost' a 8 -susednost'. Po-
dobne ako vo vektorových GIS môžeme skonštruovat' areál jednoduchý, zložený a množinu areálov. Pre prácu s regiónmi v týchto systémoch sú potrebné tzv. regionálne operátory, sumarizujúce údaje v jednej údajovej vrstve pre regióny definované na inej vrstve.

VYJADRENIE VLASTNOSTÍ KRAJINY PROSTREDNÍCTVOM SKALÁRNYCH A VEKTOROVÝCH POLÍ

Skalárne a vektorové polia

V prírodovedných disciplínach, hlavne vo fyzike, sa na opis a modelovanie veličín často používajú vektorové funkcie. Slovo „pole" sa používa vo viacerých oblastiach matematiky a podl'a toho má rôzny význam. Pre potreby vyjadrenia vlastností územia používame tento pojem vo význame skalárnej (resp. vektorovej) funkcie. Vektorovým pol’om sa nazýva zobrazenie

$$
\begin{equation*}
v: L \rightarrow R^{n}, \tag{7}
\end{equation*}
$$

kde R označuje množinu reálnych čísiel. Vektorové funkcie sú vhodné v prípadoch, ked' sa veličina dá v každom bode opísat' vektorom reálnych čísiel. Takto definovaná funkcia sa potom nazýva vektorové pole (Moravský et al. 1992).

Okrem vektorových funkcií sa zaviedli skalárne funkcie, resp. skalárne polia. Rozumie sa tým každé zobrazenie územia (oboru hodnôt) do množiny reálnych čísiel. Vektorové pole môžeme rozložit' na jeho skalárne zložky

$$
\begin{equation*}
v_{i}: L \rightarrow R \tag{8}
\end{equation*}
$$

a zapísat' ho nasledovne:

$$
\begin{equation*}
v(x)=\left(v_{1}(x), v_{2}(x), \ldots, v_{n}(x)\right) \tag{9}
\end{equation*}
$$

Na vyjadrenie vlastností krajiny sú potrebné aj iné ako reálne funkcie. Z tohto dôvodu používame rozšírenú definíciu skalárneho pol’a. Skalárnym pol’om potom nazývame každú funkciu, ktorá zobrazuje územie L do vhodne zvoleného oboru hodnôt:

$$
\begin{equation*}
s: L \rightarrow D \tag{10}
\end{equation*}
$$

kde D je zvolený obor hodnôt skalárneho pol'a. Ak obor hodnôt je podmnožina reálnych čísiel, potom ho budeme nazývat' reálnym skalárnym pol'om.

Obdobne vektorovým pol’om nazývame každú funkciu, ktorá zobrazuje územie L do karteziánskeho súčinu vhodne zvoleného konečného počtu oborov hodnôt:

$$
\begin{equation*}
v: L \rightarrow D_{1} \times D_{2} \times \ldots \times D_{n} \tag{11}
\end{equation*}
$$

Ak všetky obory hodnôt sú podmnožiny reálnych čísiel, potom ho nazývame reálnym vektorovým pol'om.

Vlastnosti krajiny môžeme súhrnne vyjadrit' množinou funkcií

$$
\begin{equation*}
F_{G}=\left\{f_{i}, i=1,2,3, \ldots\right\}, \tag{12}
\end{equation*}
$$

kde každá funkcia

$$
\begin{equation*}
f_{i}: L \rightarrow D_{i} \tag{13}
\end{equation*}
$$

je skalárnym alebo vektorovým polom nad územím L a vyjadruje určitú kvantitatívnu alebo kvalitatívnu vlastnost' krajiny. Funkcie z množiny F_{G} preto nazývame vlastnostami krajiny.

Každá funkcia f_{i} má definovaný vlastný obor hodnôt D_{i}. Podl’a oboru hodnôt rozdel'ujeme vlastnosti krajiny do štyroch skupín (Triola 1989): nominálne, ordinálne, intervalové, podielové. V rámci uvedených skupín sú nominálne hodnoty považované za najnižšiu úroveň, podielové za najvyššiu. Vhodnou transformáciou sa hodnoty vyššej úrovne dajú transformovat' na hodnoty nižšej úrovne. Použitím vhodných matematických operácií je možné odvodzovat' d'alšie vlastnosti krajiny, simulovat' výpočty a postupy, vytvárat' teoretické matematické modely nezavislé na počítacovej reprezentacii.

Pri systémovom modelovaní krajiny sa geografický systém S_{G} rozkladá na fyzicko-geografický podsystém $S_{F G}$ a socio-ekonomický podsystém $S_{A G}$. Obdobným spôsobom môžeme rozložit' množinu všetkých vlastností krajiny F_{G} na podmnožinu fyzicko-geografických vlastností $F_{F G}$ a podmnožinu socio-ekonomických vlastností $F_{A G}$, ktoré vyjadrujú vlastnosti jednotlivých podsystémov krajiny:

$$
\begin{equation*}
F_{G}=F_{F G} \cup F_{A G} . \tag{14}
\end{equation*}
$$

Bodové polia, interpolácia a aproximácia

V praxi sa často stretávame s prípadom, ked’ vlastnosti krajiny nie sú známe v každom bode územia. Výsledkom terénnych prieskumov a meraní sú hodnoty vo vybraných pozorovacích bodoch. Na reprezentáciu takýchto údajov sa používajú bodové skalárne a vektorové polia.

Dvojrozmerným skalárnym bodovým pol’om sa nazýva konečná množina usporiadaných trojíc

$$
\begin{equation*}
\left\{\left(x_{k}, y_{k}, z_{k}\right): k=1, \ldots, n\right\} \tag{15}
\end{equation*}
$$

Usporiadaná dvojica $\left(x_{i}, y_{i}\right) \in L$ predstavuje súradnice bodu v území, číslo z_{i} hodnotu priradenú tomuto bodu. Zovšeobecnene si bodové pole môžeme predstavit' ako funkciu, ktorá zobrazuje množinu bodov P do vhodného oboru hodnôt

$$
\begin{equation*}
h: U \rightarrow H, \text { kde } U \subset L . \tag{16}
\end{equation*}
$$

Ak množina U je konečná, tak ju budeme nazývat' konečným bodovým poloom. Body množiny U môžu byt' v území rozmiestnené pravidelne (napr. v pra-
videlnej obdlžnikovej sieti). Vtedy hovoríme o pravidelnom bodovom poli. Ak sú body rozmiestnené nepravidelne, potom pole nazývame nepravidelným. Podl’a oboru hodnôt U rozlišujeme skalárne a vektorové bodové polia.
Bodové polia sa vhodnou metódou rozširujú (zovšeobecňujú) na celé územie. Rozoznávame dva druhy rozšírení: aproximácie a interpolácie. Pole (funkcia, vlastnost') f je interpoláciou bodového pol’a h, ak v každom bode množiny U nadobúda rovnaké hodnoty ako dané bodové pole h :

$$
\begin{equation*}
f(x, y)=u(x, y) \text {, pre každé }(x, y) \in U . \tag{17}
\end{equation*}
$$

U aproximačných funkcií je táto podmienka zoslabená. Požaduje sa, aby hodnota aproximačnej funkcie g bola blízka hodnote bodového pol'a (pre vhodné ε):

$$
\begin{equation*}
|g(x, y)-h(x, y)|<\varepsilon, \text { pre každé }(x, y) \in U . \tag{18}
\end{equation*}
$$

Interpolácia je vlastne špeciálnym prípadom aproximácie, ked' sa požaduje, aby sa hodnoty aproximačnej funkcie a bodového pol'a zhodovali v daných bodoch.

DUALITA VLASTNOSTÍ A ROZKLADU ÚZEMIA

Pohl’ad na vlastnosti krajiny prostredníctvom funkcií je svojím spôsobom netradičný, pretože nie je spojený so žiadnymi objektmi krajinnej sféry ani tematickými vrstvami. Vychádza len z pozorovaného územia, ktorému prirad’uje rôzne vlastnosti. Na základe týchto vlastností je potom možné vymedzit' jednotlivé objekty, alebo urobit regionalizáciu územia. Opačne, ak máme dané objekty, resp. regionalizáciu záujmového územia, môžeme ich využit na definíciu funkcií, ktoré opisujú vlastnosti krajiny. Tento postup sa v praxi používa často. Ako základ sa vezme mapa územia a k existujúcim objektom mapy (sídla, rieky, cesty, lesné porasty, pôdne typy, geomorfologické jednotky, atd'.) sa prirad'ujú popisné údaje (vlastnosti). Túto dualitu môžeme formálne vyjadrit' nasledujúcim spôsobom.

Pre každú vlastnost' krajiny

$$
\begin{equation*}
f: L \rightarrow D \tag{19}
\end{equation*}
$$

ktorej oborom hodnôt je konečná množina

$$
D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}
$$

môžeme skonštruovat' množiny

$$
\begin{equation*}
D_{i}=\left\{x \in L: f(x)=d_{i}\right\} \tag{20}
\end{equation*}
$$

Množina D_{i} predstavuje všetky body krajiny, v ktorých vlastnost' f nadobúda hodnotu d_{i}. Uzemie L sa takto rozdelí na množinu disjunktných regiónov, pričom

$$
\begin{equation*}
L=\bigcup_{i=1}^{n} D_{i} \text { a } D_{k} \cap D_{l}=\varnothing \text {, pre } k \neq l . \tag{21}
\end{equation*}
$$

Každá vhodná vlastnost' krajiny tak vytvára jej rozklad - regionalizáciu, pričom charakter regionalizácie (individuálna, typologická) závisí od vlastností funkcie.

Opačne, ak máme daný konečný rozklad (regionalizáciu) územia

$$
\begin{equation*}
P=\left\{P_{i}, i=1,2, \ldots, n\right\}, \tag{22}
\end{equation*}
$$

pričom

$$
\begin{equation*}
L=\bigcup_{i=1}^{n} P_{i} \text { a } P_{k} \cap P_{l}=\varnothing \text {, pre } k \neq l \tag{23}
\end{equation*}
$$

a pre každý región P_{i} je daná nejaká hodnota d_{i}, môžeme definovat' novú vlastnost' krajiny

$$
\begin{align*}
& h: L \rightarrow D, \\
& h(x)=d_{i}, \text { práve vtedy, ked' } x \in P_{i}, \tag{24}
\end{align*}
$$

kde $D=\bigcup_{i=1}^{n}\left\{d_{i}\right\}$.
Špeciálne, ak každému regiónu priradíme jednoznačnú hodnotu odlišnú od ostatných (identifikátor), dostaneme charakteristickú funkciu regionalizácie P :

$$
\begin{align*}
& \chi_{P}: L \rightarrow D, \\
& \chi_{P}(x)=i, \text { práve vtedy, ked' } x \in P_{i}, \tag{25}\\
& \operatorname{kde} D=\{1,2, \ldots, n\} .
\end{align*}
$$

Táto funkcia jednoznačne identifikuje jednotlivé regióny. Príslušné triedy rozkladu, skonštruované podl’a (20), spätne vytvoria pôvodné jednotlivé regióny ($P_{i}=D_{i}$). Obdobným spôsobom ako charakteristickú funkciu regionalizácie mốžeme definovat' aj charakteristickú funkciu regiónu P_{i} :

$$
\begin{align*}
& \chi_{P_{i}}: L \rightarrow\{0,1\}, \\
& \chi_{P_{i}}(x)=1, \text { práve vtedy, ked' } x \in P_{i}, \tag{26}\\
& \chi_{P_{i}}(x)=0, \text { práve vtedy, ked' } x \notin P_{i} .
\end{align*}
$$

Charakteristickú funkciu regionalizácie P potom môžeme vyjadrit' ako sumu charakteristických funkcií jej regiónov:

$$
\begin{equation*}
\chi_{P}(x)=\sum_{i=1}^{n} i \cdot \chi_{P_{i}}(x) \tag{27}
\end{equation*}
$$

Ako vidíme, opis vlastností krajiny funkciami a procesy identifikácie objektov na základe ich vlastností, ako aj regionalizácie územia na základe zvoleného kritéria sa vzájomne doplñajú. K vhodne zvolenej vlastnosti krajiny môžeme
priradit' regionalizáciu územia a na základe regionalizácie územia môžeme vytvárat' funkcie opisujúce vlastnosti krajiny. Táto dualita formálne vyjadruje ekvivalentnost' modelov založených na poliach a objektových modelov.

PRIENIKY PRIESTOROVÝCH AREÁLOV

Prekrývanie (nakladanie) tematických vrstiev patrí medzi základné operácie používané pri analýze geografických údajov. Vyjadrenie rozkladu územia pomocou polí umožňuje formalizáciu tejto základnej operácie priestorovej analýzy nezávisle na počítačovej implementácii a použitých údajových štruktúrach.

Operácia prekrývania tematických vrstiev sa zakladá na dvoch regionalizáciach územia - primárnej (P) a sekundárnej (S) :

$$
\begin{align*}
& P=\left\{P_{i}, i=1,2, \ldots, m\right\}, \tag{28}\\
& S=\left\{S_{j}, j=1,2, \ldots, n\right\} .
\end{align*}
$$

Napríklad pri výpočte rozmanitosti krajiny primárna (určujúca) regionalizácia definuje regióny, v rámci ktorých chceme sledovat' a vypočítat' rozmanitost' regiónov sekundárnej regionalizácie. Ako primárna sa použije individuálna regionalizácia (napr. okresy, geomorfologické jednotky, územie celej republiky a pod.). Sekundárna regionalizácia určuje regióny, ktoré vytvárajú rozmanitost' vo vnútri regiónov primárnej (určujúcej) regionalizácie. Ako sekundárna sa použije vhodná typologická regionalizácia (geobotanické typy, pôdne typy, krajinná pokrývka a pod.), takže jednotlivé typy, resp. kategórie sa môžu vo vnútri primárnych regiónov opakovat'.

Prienikom primárnej a sekundárnej regionalizácie vznikne výsledná regionalizácia O (prekrytie, overlay)

$$
\begin{equation*}
O=P \cap S, \tag{29}
\end{equation*}
$$

ktorú vyjadríme skonštruovaním funkcie prieniku χ_{0} pomocou charakteristických funkcií regionalizácií P a S :

$$
\begin{align*}
& \chi_{0}: L \rightarrow\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}, \\
& \chi_{0}=\left[\chi_{p}(x), \chi_{s}(x)\right] \tag{30}
\end{align*}
$$

χ_{0} je jedna z charakteristických funkcií prieniku, pričom regióny prieniku sú dané nasledovne (môže sa stat', že región $O_{i, j}$ zodpovedajúci niektorej hodnote [i, j] bude prázdny):

$$
\begin{equation*}
O_{i, j}=\left\{x \in U, \chi_{o}(x)=[i, j]\right\} . \tag{31}
\end{equation*}
$$

HRANICE AREÁLOV

Hranice areálov v analógových alebo digitálnych mapách sú ostré a presne oddel'ujú areál od jeho okolia. V skutočnom svete je takého presné vymedzenie zriedkavé (Burrough 1986). Presné a ostré hranice sú väčšinou charakteristické
len pre umelé výtvory: hranice parciel, hranice budov a iných stavieb, adminis tratívne hranice. Priebeh hraníc prírodných areálov nebýva jednoznačný.

Charakter hranice areálu je ovplyvnený prírodnými procesmi, ktoré prebiehajú v krajine a ovplyvňujú jej vlastnosti, meniace sa v priestore spojite, v súlade s určitým trendom, ktorý môže byt narušený náhlymi lokálnymi zmenami Takýmito sú napríklad vlastnosti, ktorých hlavnou príčinou sú klimatické procesy. K výrazným zmenám dochádza postupne a na relatívne vel'ké vzdialenosti. Výsledkom je zonálnost' javov: šírková, kontinentálna, oceanická a pod. (Plesník 2002). Všeobecný trend môže byt' narušený výraznými lokálnymi vplyvmi, napríklad hmotou pohoria, orientáciou a híbkou doliny, ktoré urýchl'ujú alebo spomalujú zmeny a na menšom území môžu byt' príčinou vlastnej regionálnej zonálnosti (príhorská zonálnost' - Mičian 1967, vnútrohorská zonálnost' - Plesník 2002 a iné). Spojitá vlastnost' sa rozdelí do tried (zóny, oblasti, typy), ktoré zachovávajú podstatné črty. Hranica medzi zónami (areálmi) je potom vlastne hranicou oddel'ujúcou zvolené triedy.

Podobne aj hranice iných typologických jednotiek krajinných prykov (pôdnych, rastlinných atd'.) sú v teréne tažko jednoznačne identifikovatel'né. Len v špeciálnych prípadoch, ked’ dochádza k prudkej zmene podmienok (napr. zlo mová hrana reliéfu, breh rieky, okraj riečnej terasy), je hranica areálu definovaná presne. Prevažná väčšina hraníc je ovplyvňovaná náhlymi lokálnymi zmenami na malé vzdialenosti. Spôsobujú ich sekundárne procesy, ktorých intenzita je výrazná v danej lokalite. Pri bližšom pohl’ade na takúto hranicu nachádzame vždy nové a nové detaily, takže nadobúda fraktálový charakter. Určenie priebehu hraníc je naviac ovplyvnené chybami terénnych pozorovaní, hustotou a polohou pozorovacej siete a d'alšími faktormi. Nesprávna interpretácia nameraných hodnôt môže spôsobit', že kvôli lokálnemu extrému sa prehliadne trend širšieho významu a určia sa nesprávne hranice (Burrough 1986).

O fraktálovom charaktere hraníc prírodných areálov sa v odbornej literatúre stále diskutuje. Podl’a základnej Mandelbrotovej tézy sa zväčšovaním mierky absolútna presnost' pozorovania nezvyšuje, ale rastie množstvo pozorovaných detailov. Fraktálové útvary majú dve základné vlastnosti. Prvou je samopodobnost' (selfsimilarity), ktorá znamená, že so zmenou mierky sa opakujú tvary a vzory. Druhou vlastnost’ou je zlomková (fraktálová) dimenzia. Fraktálový charakter bol pozorovaný pri prírodných javoch, akými sú priebeh pobrežia alebo hranice pôdnych jednotiek (Burrough 1983). Pri iných javoch (napr. rozšírenie geomorfologických jednotiek) sa opakovatel'nost' a štatistická podobnost' v rôznych mierkach nepotvrdila. Dosiahnuté výsledky sú ovplyvnené aj skutočnost'ou, že fraktálovú dimenziu možno počítat' rôznymi spôsobmi, pričom aj rovnakým postupom sa pre rôzne mierky dosiahnu rozdielne aproximujúce výsledky (Burrough 1986).

Charakter priestorového areálu a jeho hranice závisia predovšetkým od procesov, ktoré krajinu formujú. V rovinatých oblastiach prevládajú akumulačné procesy, ktoré sa menia plynulo. Zmeny sú postupné, plochu rozsiahlych a ho mogénnych areálov môžu narušovat' len lokálne anomálie. V nepriaznivých klimatických podmienkach vysokohorského prostredia sa však dajú očakávat' procesy erózneho charakteru, rýchle zmeny vlastností, rozlohou malé priestorové areály a tým aj rozmanitejšia štruktúra územia. Určenie hranice areálu nie je ab-
solútne presné, ale je kompromisom (často subjektívnym) vyplývajúcim zo stupn̆a poznania a podmienok (prírodných, ekonomických, časových). Naviac, charakter a presnost' určenia hraníc areálu sa môže menit'. V praxi býva v jed nom mieste hranica daná presne, napr. zlomovou hranou reliéfu, v inom mieste je určená len približne.

Počítačové modely krajiny využívajú na reprezentáciu priestorových areálov objektový prístup. Reprezentácia hraníc areálov je obmedzená možnostami počítačového systému a neumožn̆uje verné znázornenie všetkých druhov areálov (napr. fraktálových). Teoretický prístup prostredníctvom polí, v ktorom je areál definovaný ako súvislý vzor určitej množiny hodnôt, je všeobecnejší. Umožňuje študovat' aj zložité priestorové útvary fraktálovej povahy.

V praktických aplikáciách sa pod hranicou areálu intuitívne rozumie „čiara" ktorá ho oddel'uje od okolia, t. j. hranica polygónu, alebo hranica bunky rastra To však znamená, že väčšina hraničných bodov leží súčasne v dvoch objek toch - l’avom a pravom polygóne. Definícia rozkladu územia na vzájomne disjunktné množiny však takúto možnost' nepripúšťa. Body hranice musia vždy patrit' práve do jednej množiny, preto je nutné zaviest' a používat' všeobecnú definíciu hranice množiny.

Bod sa nazýva vnútorným bodom množiny, ak existuje také jeho otvorené okolie, ktoré je celé podmnožinou danej množiny. Množinu všetkých vnútorných bodov budeme označovat' $\operatorname{Int}(U)$ a nazývat' vnútrom množiny U.

Hranicu množiny $\delta(U)$ definujeme ako doplnok k zjednoteniu vnútorných bodov množiny U a vnútorných bodov jej doplnku (Borisovich et al. 1985). Zjednodušene povedané, v každom okolí bodu hranice sa nachádzajú body danej množiny aj body jej okolia, čo zodpovedá nášmu intuitívnemu chápaniu hranice ako rozhrania medzi množinou a jej okolím. Pri výpočtoch musíme d'alej predpokladat', že hranica je ,,rozumná" jednorozmerná (líniová) množina, pri ktorej vieme merat' dížku. Dížzu hranice množiny budeme označovat' perim (δU), skrátene len perim (U).

DÍžku hranice medzi dvoma množinami U, V budeme označovat' perim (U, V) a rozumiet ňou dížku prieniku hraníc týchto množín:

$$
\begin{equation*}
\operatorname{perim}(U, V)=\operatorname{perim}(\delta(U) \cap \delta(V)) . \tag{32}
\end{equation*}
$$

ZÁVER

Modely krajiny a krajinno-ekologických procesov by mali byt' formulované na dostatočne všeobecnej úrovni, ktorá umožní ich skúmanie analytickými metódami a simuláciu na rồznych počítačových platformách (Koreñ 2003). Používané geografické a krajinno-ekologické pojmy je preto potrebné definovat' presne a nájst' vhodné matematické štruktúry na ich reprezentáciu. Vztahy na výpočet a modelovanie potom bude možné definovat' v rámci abstraktného (matematického) modelu krajiny.
Na reprezentáciu vlastností krajiny sa nepoužíva klasický objektový prístup, ale všetky vlastnosti sa vyjadrujú skalárnymi a vektorovými poliami. Pole sa chápe ako funkcia, ktorá zobrazuje územie do vhodného oboru hodnôt. Pomo-
cou vlastností krajiny sa definuje rozklad územia, ktorý zodpovedá pojmu regionalizácie podl'a vhodne zvoleného regionalizačného kritéria. Zavádza sa pojem areálu ako súvislej množiny, ktorá tvorí základnú jednotku rozkladu. Ku každému rozkladu územia (regionalizácii) je možné priradit' charakteristickú funkciu. Priradenie vyjadruje dualitu vlastnosti krajiny a regionalizácie (rozkladu), čím sa vytvára prepojenie medzi klasickým objektovým prístupom a reprezentáciou prostredníctvom polí. Nakladanie tematických vrstiev, ktoré je jednou zo základných funkcií priestorovej analýzy, sa na teoretickej úrovni dá opísat' kompozíciou vhodných charakteristických funkcií.

V príspevku sme sa zaoberali matematickou formalizáciou vybraných geografických a krajinno-ekologických pojmov. Ciel’om nebolo vytvorit' úplnú matematickú teóriu týchto pojmov, ale zaviest' aparát pre formálny opis operácií priestorovej analýzy. Vo formalizácii pojmov je potrebné pokračovat' a podrobnejšie rozpracovat' d'alšie operácie priestorového modelovania. V spojení s teóriou systémov a modelovania tak získame potrebné nástroje na teoretický opis krajinných systémov, procesov a ich simulácie.

Príspevok vznikol na základe dizertačnej práce Výpočet indexov rozmanitosti územia prostriedkami geografických informačných systémov, vypracovanej pod vedením prof. RNDr. Jozefa Krcha, DrSc. na Katedre kartografie, geoinformatiky a DPZ Prírodovedeckej fakulty UK v Bratislave. Autor d'akuje školitelovi, konzultantom a Ing. Milanovi Koren̆ovi, CSc. za cenné rady a pripomienky k uvedenej práci. Spracovanie príspevku bolo podporené grantom agentúry VEGA č. 1/0436/03 GE-IV 3004.

LITERATÚRA

BERTALANFFY, L. (1976). General systems theory: foundations, development, applications. New York (George Braziller).
BORISOVICH, Y., BLIZNYAKOV, N., IZRAILEVICH, Y., FOMENKO, T. (1985). Introduction to topology. Moscow (Mir).
BURROUGH, P. A. (1983). Multiscale sources of spatial variation in soils I. The application of fractal concepts to nested levels of soil variation. Journal of Soil Science. 35, 577-597.
BURROUGH, P. A. (1986). Principles of geographic information systems and land resources assessment. New York (Oxford University Press).
CASTI, J. L. (1989). Alternate realities: mathematical models of nature and man. New York (Wiley).
HABR, J., VEPREK, J. (1986). Systémová analýza a syntéza (zdokonalování a projektování systému). Praha (SNTL).
KOREN, M. (2003). Výpočet indexov rozmanitosti územia prostriedkami geografických informačných systémov. Dizertačná práca, Prírodovedecká fakulta Univerzita Komenského, Bratislava.
KOREN, M. (2004). Priestorové modely krajiny. Kartografické listy, 12, 37-47.
KOZOVÁ, M. (1980). Kvantitatívne hodnotenie geometrických aspektov krajinnej ştruktúry. Kandidátska dizertǎ̌ná práca, Centrum biologicko-ekologických vied, Ústav experimentálnej biológie a ekológie SAV, Bratislava.
KRCHO, J. (1977). Krajina ako priestorový dynamický systém a vyjadrenie jej priestorovej diferenciácie mierou entropie. Habilitǎ̌ná práca, Prírodovedecká fakulta Unirovej diferenciacie mierou entro
KRCHO, J. (1979). Reliéf ako priestorový subsystém S_{RF} geografickej krajiny a jeho komplexný digitálny model. Geografický ćasopis, 31, 237-262.

KRCHO, J. (1981). Mapa ako abstraktný kartografický model S_{K} geografickej krajiny ako reálneho priestorového systému S_{G}. Geografický časopis, 33, 224-272.
KRCHO, J. (1990). Morfometrická analýza a digitálne modely georeliéfu. Bratislava (Veda).
KRCHO, J. (2001). Modelling of georelief and its geometrical structure using DTM: positional and numerical accuracy. Bratislava (Q111 Publishers).
LEGEN, A. (1980). Grupy, okruhy a zväzy. Bratislava (Alfa).
MAZÚR, E., URBÁNEK, J. (1982). Kategória priestoru v geografii. Geografický caso-
pis, 34, 309-325.
MICIAN, L. (1967). K otázke predhorskej (príhorskej) zonálnosti so zvláštnym zretelom na strednú a juhovýchodnú Európu. Sbornik Ceskoslovenské společnosti zemépisné, 72, 342-354.
MIČIAN, L., ZATKALÍK, F. (1990). Náuka o krajine a starostlivost' o životné prostredie. Bratislava (Prírodovedecká fakulta UK).
MORAVSKÝ, L., MORAVČİK, J., ŠULKA, R. (1992). Matematická analýza, 2. Bratislava (Alfa).
OBONAA, J. (1990). Systémy a systémová analýza v praxi. Bratislava (Alfa).
PEUQUET, D. J. (1988). Representations of geographical space: toward a conceptual synthesis. Annals of the Association of American Geographers, 78, 375-394.
PLESNÍK, P. (2002). Niektoré nové aspekty diverzity biosféry. Geografický cas capis, 54, 115-130.
SAMET, H. (1989). The design and analysis of spatial data structures. Reading (Addison-Wesley).
STACH, J. (1982). Základy teorie systému. Praha (SNTL).
TRIOLA, M. F. (1989). Elementary statistics. Redwood City (Benjamin/Cummings). WORBOYS, M. F. (1995). GIS. A computing perspective. London (Taylor and Francis) ZEIGLER, B. P. (1984). Theory of modelling and simulation. New York (Wiley).

Milan Koren̆

FIELD-BASED MODELS OF LANDSCAPE

Spatial and cartographic modelling are widely adopted in the fields of geography and landscape ecology. The complexity and interrelationship of processes of geographical systems requires an interdisciplinary approach. The design and use of computer models of landscape (simulations) must be based on the general system theory and theory of modelling. Developed mathematical formalism enables general problem description at the theoretical level, independently from the target computer system. For this purpose the field-based approach seems to be more appropriate than the classic objectbased approach. The representation of selected concepts from the field of geography and landscape ecology was developed by use of suitable mathematical structures.
A geographical system S_{G} is defined as a hybrid spatial-temporal, material-energetic and informational system (1), which consists of physical-geographical ($S_{F G}$) and socioeconomic ($S_{A G}$) subsystems (Krcho 1977, 1979 and 1990). Landscape is a specific part of the Earth's surface given by selected criteria (Mixian and Zatkalik 1990). This part of the surface we call the territory (L) and representit by a two-dimensional open interval (2). Landscape regionalization is then a decomposition of two-dimensional interval into set of non-empty disjoint sets (regions), which fully cover the given territory (4). There exists a one-to-one relationship between decompositions and equivalence relations (5) The continuous set is called the area and is defined by the idea of the path, which mus exist between any two points of the set (6). Afterwards the concepts of interior, exterior and boundary of the area are introduced and the perimeter operator is defined (32).
The landscape's properties (attributes) are expressed in scalar and vector fields from the territory (co-domain) to the suitable target domain (10 and 11). Then the set F_{G} of
all landscape's properties can be defined (12). This set is a union of the subset of physi-cal-geographical properties $F_{F G}$ and the subset of socio-economic properties $F_{A G}$ (14). It has been shown that there exists a duality between decompositions and properties of the landscape. Any scalar or vector field defines decomposition (regionalization) of territory (20). On the other hand, any regionalization can be described by its characteristic function (25). This duality between landscape properties (fields) and regionalization (decomposition) preserves the close relationship between objects-based and fields-based approaches. Moreover, the spatial operations as overlay of thematic layers can be expressed at the abstract level, using characteristic functions (30 and 31).

Models of landscape and its processes should be expressed in a formal mathematical way. General formulation enables use of analytical methods and simulations on various computer platforms. We have to find appropriate mathematical structures, which correspond to the terms from the fields of geography and landscape ecology. Introduced mathematical formalization is not complete. Subsequent detailed analyses and formulations are needed.

[^0]: * Katedra hospodárskej úpravy lesov a geodézie, Lesnícka fakulta Technickej univerzity vo Zvolene, T. G. Masaryka 24, 96053 Zvolen

