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STABILITY PROPERTIES OF A DISCRETIZED

NEUTRAL DELAY DIFFERENTIAL EQUATION

Jana Hrabalová

ABSTRACT. The paper discusses the asymptotic stability region of a discretiza-
tion of a linear neutral delay differential equation

x′(t) = ax(t − τ) + bx′(t− τ).

We present necessary and sufficient conditions specifying this region and describe
some of its properties.

1. Introduction and preliminaries

In this paper, we discuss the asymptotic stability region of the Euler dis-
cretization applied to the test delay differential equation of the neutral type

x′(t) = a x(t− τ) + b x′(t− τ), t > 0, (1)

where a, b are real scalars and the delay τ is a positive real scalar. The problem
of asymptotic stability of (1) is equivalent to a problem whether its corresponding
characteristic equation

λ− ae−λ τ− bλe−λ τ = 0

has roots only with negative real parts and whether all its roots are uniformly
negatively bounded away from the imaginary axis (see, e.g., [1] or [7]). This task
has been studied in [4] for a more general neutral equation

x′(t) = a x(t− τ) + b x′(t− τ) + c x(t)

via analyzing the location of a pair of pure imaginary roots of its character-
istic equation. Using the relevant result from [4] we may conclude that (1) is
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asymptotically stable if and only if

|b| < 1, −(
1− b2

)1/2
arccos b < aτ < 0.

These inequalities set up the asymptotic stability region of (1), i.e., the set
of all real couples (a, b) such that any solution of (1) is tending to zero as t → ∞.
We denote this region by S∗

τ and depict it on Figure 1.

Figure 1. The asymptotic stability region S∗
τ for τ = 1.

The goal of this paper is to describe the asymptotic stability region for the
basic (Euler) discretization of (1) and investigate some of its properties (for
other related qualitative investigations of discretized delay differential equations
we refer, e.g., to [8]).

The paper is organized as follows. In Section 2 we provide the forward Euler
discretization of (1) and derive the necessary and sufficient conditions for its
asymptotic stability. In Section 3 we discuss some properties of the derived
asymptotic stability region and perform some comparisons with respect to S∗

τ .

2. The forward Euler discretization

Let us consider a mesh tn = nh, n = 0, 1, . . . , where h > 0 is a stepsize of the
method. To avoid the interpolation in a replacement of delayed terms we impose
h = τ/k, k ∈ Z

+. The forward Euler method for a delay differential equation

x′(t) = f
(
t, x(t), x(t− τ)

)
is a formula of the form

yn+1 = yn + hf(tn, yn, yn−k), n = 0, 1, 2 . . . ,
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where yn is an approximate value of x(tn). The application of the forward Euler
method to (1) yields a four-term linear difference equation

Δyn = b yn−k+1 + (ah− b)yn−k, n = 0, 1, 2 . . . , (2)

where Δyn = yn+1 − yn is the forward difference operator.

In order to analyze its asymptotic stability we utilize the explicit necessary
and sufficient conditions for a more general four-term linear difference equation

yn+1 + αyn + βyn−k+1 + γyn−k = 0, n = 0, 1, 2 . . . , (3)

which have been recently derived in [2]. For other approaches in determining
asymptotic stability of (3) we refer to [5] or [9].

We recall that (3) is asymptotically stable if limn→∞ yn = 0 for any solution
of (3). It is well known that asymptotic stability of this linear difference equation
depends on the location of the roots of its characteristic polynomial with respect
to the unit disk (see, e.g., [3]). If the characteristic polynomial associated to (3)

λk+1+ αλk + βλ+ γ = 0 (4)

is of the Shur type, i.e., all its roots are located inside the open unit disk, then (3)
is asymptotically stable (and conversely).

The following proposition, which is due to [2], gives the necessary and suffi-
cient conditions guaranteeing that all the roots of (4) lie within the open unit
disk.

����������� 2.1	 Let α, β and γ be real constants and k be a positive integer.
Then all the roots of (4) lie inside the unit disk if and only if one of the following
conditions holds:

(C1) 1 +α+ β+ γ > 0, 1 +α− β − γ > 0, 1−α+ β − γ > 0, 1−α− β + γ > 0,
and k is any positive integer.

(C2) 1 +α+ β+ γ > 0, 1 +α− β − γ = 0, 1−α+ β − γ > 0, 1−α− β + γ > 0,
and k is any positive integer.

(C3) 1 + α+ β + γ > 0 1 + α− β − γ > 0, 1− α+ β − γ = 0, 1− α− β + γ > 0,
and k is any positive odd integer.

(C4) 1 +α+ β+ γ > 0, 1 +α− β − γ > 0, 1−α+ β − γ > 0, 1−α− β + γ = 0,
and k is any positive even integer.

(C5) 1 +α+ β+ γ > 0, 1 +α− β − γ < 0, 1−α+ β − γ > 0, 1−α− β + γ > 0,
and k is any positive integer such that

k < arccos
α2 − β2 + γ2 − 1

2|αγ − β|
/

arccos
α2 − β2 − γ2 + 1

2|α− βγ| . (5)

(C6) 1 +α+ β+ γ > 0, 1 +α− β − γ > 0, 1−α+ β − γ < 0, 1−α− β + γ > 0,
and k is any positive odd integer such that (5) holds.

(C7) 1 +α+ β+ γ > 0, 1 +α− β − γ > 0, 1−α+ β − γ > 0, 1−α− β + γ < 0,
and k is any positive even integer such that (5) holds.
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Let us note that (2) has a fixed parameter α = −1 which allows us to simplify
Proposition 2.1 in the following way.


������� 2.2	 Let β and γ be real constants and k be a positive integer.
Then all the roots of the polynomial

λk+1 − λk + βλ+ γ = 0

lie inside the unit disk if and only if

β + γ > 0, |β − γ| < 2, k < arccos
γ − β

2

/
arccos

2− β2 − γ2

2(1 + βγ)
.

P r o o f. Substituting α = −1 into (C1)–(C7), the first two inequalities lead
to a contradiction in all conditions except for (C5), where they become

β + γ > 0.

Further, the third and fourth inequalities of (C5) can be read as

|β − γ| < 2.

Setting α = −1 in (5) we arrive at

k < arccos
−β2 + γ2

2|β + γ|
/
arccos

2− β2 − γ2

2|1 + βγ| .

Since β + γ > 0, the remaining issue is to determine the sign of 1 + βγ.
Let us consider β > 0 and γ < 0. Then

|β − γ| = β − γ < 2,

which implies

1 + βγ > 1 + γ(2 + γ) = (1 + γ)2 ≥ 0.

The case β < 0 and γ > 0 is analogous. If β and γ are of the same sign,
then the positivity of 1 + βγ is obvious. �

������� 2.3	 The discretization (2) is asymptotically stable if and only if

a < 0, |ah− 2b| < 2, τ arccos
2(1− b2) + 2abh− a2h2

2(1 + abh− b2)
< h arccos

2b− ah

2
.

P r o o f. Theorem 2.3 is a direct consequence of the Corollary 2.2. �

Remark 2.4	 The conditions of Theorem 2.3 define the asymptotic stability
region of (2). We denote it by Sτ (h) to emphasise its dependence on the step-
size h.
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3. Some properties of S∗
τ and Sτ (h)

The aim of this section is to analyze mutual relationships between Sτ (h) with
various h, as well as their comparisons with S∗

τ .

This task has been studied in [6] for the equation (1) without a neutral term,
that is,

x′(t) = ax(t− τ), t > 0. (6)

It was shown that the corresponding stability intervals Iτ (h), i.e., sets of all
parameters a such that any solution of the discretization (2) with b = 0 tends
to zero as n → ∞, are enlarging with decreasing stepsize h. This corresponds to
the well known behavior of the forward Euler discretization applied to (6) with
τ = 0. Moreover, when h is tending to zero, Iτ (h) is approaching the asymptotic
stability interval of (6). Here, we show that in the case of the neutral equation (1)
the situation is more difficult.

������� 3.1	 Let k1 < k2 be arbitrary positive integers and let h1 = τ/k1 >
τ/k2 = h2 be corresponding stepsizes. Then there exist real couples (a1, b1),
(a2, b2), (a3, b3) such that

(i) (a1, b1) /∈ Sτ (h1) and (a1, b1) ∈ Sτ (h2),

(ii) (a2, b2) ∈ Sτ (h1) and (a2, b2) ∈ Sτ (h2),

(iii) (a3, b3) ∈ Sτ (h1) and (a3, b3) /∈ Sτ (h2).

P r o o f. First, we consider b = 0, i.e., (1) takes the form of (6). Via its dis-
cretization we get the difference equation

yn+1 − yn − ahyn−k = 0, n = 0, 1, 2 . . .

with the stability interval

Iτ (h) =

{
a ∈ R : 0 > a > − 2

h
sin

πh

4τ + 2h

}
.

It was proved in [6] that the function defining the left endpoint of Iτ (h) is
increasing which implies Iτ (h1) ⊂ Iτ (h2) ⊂ I∗τ . Moreover, both the inclusions
are sharp. Let ā be the left endpoint of Iτ (h1), i.e.,

ā = − 2

h1
sin

πh1

4τ + 2h1
.

Then ā ∈ Iτ (h2) and ā /∈ Iτ (h1). Consequently,

(ā, 0) /∈ Sτ (h1) and (ā, 0) ∈ Sτ (h2).

Thus, we have proved (i), where

a1 = − 2

h1
sin

πh1

4τ + 2h1
and b1 = 0.
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Setting h = τ we get

Iτ (τ) =

{
a ∈ R : 0 > a > − 1

τ

}
.

Because of the monotony property of Iτ (h), it holds

(ã, 0) ∈ Sτ (h1) and (ã, 0) ∈ Sτ (h2) for each ã ∈ Iτ (τ).

Consequently, it proves (ii) where a2 ∈ (−1/τ, 0) and b2 = 0.

Further, let us consider b = −1. The inequality

τ arccos
2(1− b2) + 2abh− a2h2

2(1 + abh− b2)
< h arccos

2b− ah

2

can be then simplify into

a > − 4

h
sin2

πh

2(τ + h)
.

We define

f(h) = − 4

h
sin2

πh

2(τ + h)
. (7)

In order to analyze the monotony of f(h), we drop the constraint h = τ/k,
k ∈ Z

+ and consider f(h) to be a function of a continuous argument. Then

f ′(h) = − 2

h

(
− 2

h
sin2

πh

2(τ + h)
+

πτ

(τ + h)2
sin

πh

τ + h

)
.

Obviously, f ′(h) < 0 when

−2sin2
πh

2(τ + h)
+

πτh

(τ + h)2
sin

πh

τ + h
> 0,

or equivalently,

tan
πh

2(τ + h)
<

πτh

(τ + h)2
, h > 0.

Let

g1(h) = tan
πh

2(τ + h)
, g2(h) =

πτh

(τ + h)2
.

We show that g1(h) < g2(h) for some h > 0. Doing this, we investigate their
derivatives

g′1(h) =
πτ

2(τ + h)2
cos−2 πh

2(τ + h)
, g′2(h) =

πτ(τ − h)

(τ + h)3
.

It holds

g1(0) = g2(0) and g′1(h) <
2πτ

3(τ + h)2
, h ∈

〈
0,

τ

2

)
.

It implies that
g′1(h) < g′2(h) for all h < τ/5.
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Hence, f(h) is decreasing for h ∈ (0, τ/5). The remaining issue is to investigate
the behavior of f(h) for h = τ/k̄, k̄ = 1, 2, 3, 4, 5. The values of f(h) for such h
are computed in the following table.

Table 1. The values of function f(h) for some particular h.

h τ τ/2 τ/3 τ/4 τ/5

f(h) -2/τ −2/τ −1.757/τ −1.528/τ −1.400/τ

We may conclude that, with the exception of h = τ and h = τ/2, f(h)
is decreasing in h = τ/k, k ∈ Z

+. Therefore, by setting

â = − 4

h2
sin2

πh2

2(τ + h2)
, k2 =

τ

h2
> 2

we get (â,−1) ∈ Sτ (h1) and (â,−1) /∈ Sτ (h2) for k2 > 2.

To complete the proof we have to find a couple (ǎ, b̌) such that (ǎ, b̌) ∈ Sτ (τ)
and (ǎ, b̌) /∈ Sτ (τ/2). To this purpose we investigate the stability boundary
given by

τ arccos
2(1− b2) + 2abh− a2h2

2(1 + abh− b2)
= h arccos

2b− ah

2

in the neighborhood of (−2/τ,−1), because this point is a common boundary
point for both Sτ (τ) and Sτ (τ/2). Using the implicit differentiation formula
we get

a′(b)=
τa(ah− 2b) + 2(1− b2) + 2abh

τ [2(1− b2) + abh] + h(1 + abh− b2)
, 4−(2b−ah)2 �=0, 1+abh−b2 �=0.

Setting h = τ we obtain a′(−1) = 1/τ , while for h = τ/2 it holds a′(−1) = 0.

Hence, there exists a point b̌ in a left neighborhood of b = −1 such that
(−2/τ, b̌) ∈ Sτ (τ) and (−2/τ, b̌) /∈ Sτ (τ/2). Thus, we have proved (iii), where
for k2 > 2,

a3 = − 4

h2
sin2

πh2

2(τ + h2)
and b3 = −1

while for k2 = 2, we have

a3 = −2/τ and b3 = −1− ε,

where ε is a sufficiently small positive number. �

Remark 3.2	 In order to study Sτ (τ) it is convenient to rewrite the last relation
in Theorem 2.3 as follows. Employing the formula

2 arctanx = arccos
1− x2

1 + x2
= 2 arccot

1

x
, x > 0,
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we can convert the left-hand side of the relation into

2τ arctan

(
a2h2

(2(1− b) + ah) (2(1 + b)− ah)

)1/2
.

On the right-hand side, we apply the formula

arccosx = 2 arctan

√
1− x2

1 + x
, −1 ≤ x ≤ 1 (8)

and we get

2h arctan

(
2(1− b) + ah

2(1 + b)− ah

)1/2
.

Hence, we arrive at

τ arctan

(
a2h2

(2(1− b) + ah) (2(1 + b)− ah)

)1/2
< h arctan

(
2(1− b) + ah

2(1 + b)− ah

)1/2
,

which can be simplified for h = τ as

a >
b− 1

τ
.

Considering also the remaining conditions of Theorem 2.3 we get the following
necessary and sufficient asymptotic stability condition describing Sτ (τ)

b− 1 < aτ < min
(
0, 2(1 + b)

)
.

The behaviour of S1(h) is illustrated in Figure 2. The depicted curves are the
asymptotic stability boundaries for different values of the stepsize h. In all the
cases is the stability area bounded from above by the b-axis.

Remark 3.3	 In order to investigate the behavior of Sτ (h) as h → 0, we rewrite
the last inequality in Theorem 2.3 as

τ < h arccos
2b− ah

2

/
arccos

2(1− b2) + 2abh− a2h2

2(1 + abh− b2)
. (9)

We are interested in the limit

L = lim
h→0

(
h arccos

2b− ah

2

/
arccos

2(1− b2) + 2abh− a2h2

2(1 + abh − b2)

)
.

Using the L’Hospital rule we get

L = limh→0

[(
arccos 2b−ah

2 + ah
(4−(2b−ah)2)1/2

)/
−a(2(1−b2)+abh)

(4−(2b−ah)2)1/2(1+abh−b2)

]
.

Hence,

L = − (1− b2)1/2

a
arccos b.
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Figure 2. The asymptotic stability regions S1(h).

Therefore, (9) becomes

aτ > −(
1− b2

)1/2
arccos b,

which, taking into account also the first two inequalities from Theorem 2.3
with h = 0, is equivalent to the necessary and sufficient conditions on S∗

τ .

Remark 3.4	 Let h = τ/k where k is an arbitrary positive integer. Then there
exist real couples (a1, b1), (a2, b2), (a3, b3) such that

(i) (a1, b1) /∈ Sτ (h) and (a1, b1) ∈ S∗
τ ,

(ii) (a2, b2) ∈ Sτ (h) and (a2, b2) ∈ S∗
τ ,

(iii) (a3, b3) ∈ Sτ (h) and (a3, b3) /∈ S∗
τ .

The existence of (a1, b1), (a2, b2) and (a3, b3) can be proved using a similar
approach as in Theorem 3.1.
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[8] KUNDRÁT, P.: A note on asymptotic estimate for difference equation with several pro-
portional delays, Tatra Mt. Math. Publ. 43 (2009), 109–114.

[9] LEVIN, S. A—MAY, R.: A note on difference delay equations, Theor. Popul. Biol. 9
(1976), 178–187.

Received October 12, 2012 Institute of Mathematics
Brno University of Technology
Technická 2
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