
�

�
�����������	 
��	�����
��

DOI: 10.2478/tmmp-2013-0004
Tatra Mt. Math. Publ. 54 (2013), 45–59

MODEL OF STABILIZING OF THE INTEREST RATE

ON DEPOSITS BANKING SYSTEM

USING BY MOMENT EQUATIONS

Irada Dzhalladova — Mária Michalková — Miroslava Růžičková

ABSTRACT. The paper deals with a system of difference equations, where coef-
ficients depend on Markov chains. The functional equations for particular density

and the moment equations for the system are derived and used in the investi-
gation of solvability and stability. An application of the results is shown how to
solve various economic problems.

1. Introduction

At the beginning of the 20th century French mathematician L o u i s B a c h e -
l i e r (1870–1946) evaluated stock options on the Paris market applying stochas-
tic processes. A. E i n s t e i n in the same manner described Brownian motion
of suspended particles in the liquid. Although the genesis of the theory of sto-
chastic processes is in economics, after L. B a c h e l i e r it was mostly developed
in physics.

In the twenties of the 20th century it was found that even in a sequence
of equally distributed independent random variables could occur quite naturally
marginal distributions other than the normal. Mechanism of creation majority
of such regularities can be understood only using the theory of the Markov
processes.

Process in a system is called a Markov process, if at any time the probability
of any future state of the system depends only on the state of the system at the
moment and does not depend on how the system has come into this state.

Markov models are widely used in controlling. They form the basis of mod-
ern arsenal of probabilistic methods in relation to the description of the state
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of the managed object and the transition from one state to another at time with
an acceptable degree of accuracy and reliability. Basic properties of Markov pro-
cesses are represented in [12].

In our opinion, based on the stochastic approach, we can study a number
of aspects concerning the operation of the banking system. Our aim is to build
models in the economic system, using elements of random processes. In this pa-
per, we will present how this approach can be used to study the profits of banks,
using a model based on the constructed moment equations. Focusing on the eco-
nomic feasibility of management decision making at each stage of such project
will not only save resources, but will also ensure the planned profit level.

Obviously, in developing solutions, management of complex systems always
has to take into account the uncertainty and risk, while allowing some regularities
of the probabilistic nature in accordance with the role of individual or mass
of random phenomena. Uncertainty is especially characteristic of the decisions
that have to be made in fast changing circumstances. Reduce uncertainty in two
ways: either to try to obtain additional relevant information and reexamine the
problem; or to act in strict accordance with the past experiences, thoughts or
intuition and make an assumption about the probability of events when there is
not enough time to collect additional information or it costs too high.

So, development of governance profit models in banks is possible within the
framework of the stochastic approach.

Investigating stability of solutions of difference equations with random coeffi-
cients depending on Markov or non-Markov, in particular semi-Markov, process
represents a current problem.

A dynamic system called a system with random parameters is considered in
this paper. Some dynamic systems with random parameters are mentioned in the
papers by V. V. A n i s i m o v [1], I. Y a. K a t z–N. N. K r a s o v s k i i [13],
A. N. K o l m o g o r o v [14], V. S. K o r o l y u k [15], [16], P. L e v i [19] and
others.

Investigating stability in mean and stability in mean square using traditional
methods of Lyapunov functions is considered in [2], [3], [7], [8], [9], [11], [20],
[22], [24], [27]. The class of systems investigated in this paper, i.e., systems with
jumps, is considered in [12], [23] and others.

Considering a more accurate models with semi-Markov coefficients remains
an open problem. It will be possible to obtain necessary and sufficient conditions
for stability in mean square and conditions for L2-stability of systems with semi-
-Markov coefficients.
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2. Statement of the problem

Let us consider the initial value problem on the probability space (Ω, F, P)
formulated for stochastic dynamic system with random coefficients

xn+1 = A(n, ξn)xn, n = 1, 2, . . . , (1)

x0 = ϕ(ω), (2)

where ϕ : Ω → R
m, ϕ ∈ C(Ω), A is m × m matrix with random elements,

ξn is the Markov chain of finite number of the states θ1, θ2, . . . , θq with the
probabilities pk(n) = P{ξn = θk}, k = 1, 2, . . . , q, n = 1, 2, . . . that satisfy the
system of difference equations

pk(n+ 1) =

q∑
s=1

πksps(n), k = 1, 2, . . . , q, (3)

with transition matrix
(
πks(t)

)q
k,s=1

.

���������� 1 ([6])� The m-dimensional random vector xn is called a solution
of the initial value problem (1), (2) if xn satisfies (1) and initial condition (2) in
the sense of strong solution of the initial Cauchy problem.

To define stochastic value xn it needs: at first, to determine a discrete set
of its values, it means a discrete phase space of states; next to determine the
probability distribution on this set.

The space X of solutions is often interpreted as a phase space of states of ran-
dom space, of which measurable subsets represent set of observed states of the
space. As a phase space of states we consider complete separable metric space,
usually Euclidean space or finite set of σ-algebra of all subsets of X.

Our task is to obtain reliable and simple method for investigating stability
of solutions of this class of systems, also its justification and application to solving
different practical problems representing a continuation of the series of papers,
for example [5], [10], [21], referring to this field of study.

In this article we present an appropriate method for investigating stability,
it means the method of moment equations.

���������� 2� Let xn ∈ R
m be the random variable depending on a random

Markov chain ξn with q possible states θk, k = 1, 2, . . . , q. The matrices

E(n) =

q∑
k=1

E(k)(n), D(n) =

q∑
k=1

D(k)(n),

where

E(k)(n) =

∫
Em

xfk(n, x) dx, D(k)(n) =

∫
Em

x x∗fk(n, x) dx, k = 1, 2, . . . , q,
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are called moments of the first or the second order of the random variable xn re-
spectively. The values E(k)(n) and D(k)(n), k = 1, 2, . . . , q, are called particular
moments of the first or the second order respectively.

Remark 1� The moments of the random variable xn in a scalar case, xn ∈ R,
are defined for any s = 1, 2, . . . , and are called moments of the sth order. The
particular moments are defined by the formula

E(k)
s (n) =

∞∫
−∞

xsfk(n, x) dx, s = 1, 2, . . . , k = 1, 2, . . . , q. (4)

Several different stability statements are possible. We recall here mean square
stability definition.

���������� 3� The trivial solution of the system (1) is said to be mean square
stable, if for any ε > 0 there exists a δ(ε) > 0 such that the mathematical
expectation

E
(‖xn‖2

)
< ε for all n = 1, 2, . . .

whenever the initial probability distribution x0 satisfies E
(‖x0‖2

)
< δ(ε).

3. Moment equations for the linear homogenous
difference equations

At first, on the probability space (Ω,F, P) we consider initial value prob-
lem (1), (2) when the system (1) is stochastic difference equation of the first
order in the form

xn+1 = a(ξn)xn, (5)

where ξn is random Markov chain which has only two possible states ξn = θ1,
ξn= θ2 with probabilities

pk(n) = P{ξn = θk}, k = 1, 2.

In the proof of the next theorem we denote

a(θ1) = a1,

a(θ2) = a2.

We will suppose that for 0 ≤ λ ≤ 1, 0 ≤ ν ≤ 1, the probabilities pk(n), k = 1, 2,
satisfy the system of difference equations

p1(n+ 1) = (1− λ)p1(n) + νp2(n),

p2(n+ 1) = λp1(n) + (1− ν)p2(n).
(6)
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����� 1� Moment equations of any order s = 1, 2, 3, . . . for the equation (5)
are of the form

E(1)
s (n+ 1) = (1− λ)as1E

(1)
s (n) + νas2E

(2)
s (n), (7)

E(2)
s (n+ 1) = λas1E

(1)
s (n) + (1− ν)as2E

(2)
s (n). (8)

P r o o f. We consider the possible states of the random variable ξn (see in [26]).
The random variable ξn can be in the state ξn = θ1. The particular density
function corresponding to the xn is f1(n, x). The random variable ξn+1 can
also be in the state ξn+1= θ1 with probability (1−λ) and the particular density
function corresponding to the xn+1 is f1

(
n, x

a1

)
1
a1
· If the random variable ξn is in

the state ξn = θ2 then the particular density function corresponding to the xn is
f2(n, x). The transition probability to the state ξn+1 = θ1 of the random variable
ξn+1 is ν and the density function corresponding to the random variable xn+1 is
f2
(
n, x

a2

)
1
a2
· Now, in accordance with the formula for total probability, we obtain

the first relationship for the particular density functions:

f1(n+ 1, x) =
1− λ

a1
f1

(
n,

x

a1

)
+

ν

a2
f2

(
n,

x

a2

)
· (9)

In the same way the second relationship can be obtained

f2(n+ 1, x) =
λ

a1
f1

(
n,

x

a1

)
+

1− ν

a2
f2

(
n,

x

a2

)
(10)

for the particular density functions.

By some modification of the equation (9) we obtain the first moment, i.e.,
the equation (7). Specifically, we multiply the left side of equation (9) and (10)
by the x and we integrate them from −∞ to ∞. So, we get

∞∫
−∞

x f1(n+ 1, x) dx = E(1)(n+ 1),

∞∫
−∞

x f2(n+ 1, x) dx = E(2)(n+ 1),

or, by using linear change of integrating variables, we obtain
∞∫

−∞
x f1

(
n,

x

a1

)
dx

a1
= a1E

(1)(n),

∞∫
−∞

x f2

(
n,

x

a2

)
dx

a2
= a2E

(2)(n).
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IRADA DZHALLADOVA — MÁRIA MICHALKOVÁ — MIROSLAVA RŮŽIČKOVÁ

Taking this into account, the equation (9) can be rewritten in the form

E(1)(n+ 1) = (1− λ)a1E
(1)(n) + νa2E

(2)(n). (11)

Let us explain meaning of the equation (11). If ξn = θ1 then the random vari-
able ξn+1 is in the same state θ1 with probability (1 − λ). Using the linear
transformation xn+1 = a1xn the first particular moment E(1)(n+ 1) of random
variable xn+1 can be derived from the first particular moment E(1)(n) of random
variable xn multiplied by a1.

If ξn = θ2, ξn+1= θ1, using the linear transformation xn+1 = a2xn, the first
particular moment E(1)(n + 1) of random variable xn+1 can be derived from
the first particular moment E(2)(n) of random variable xn multiplied by a2.
Therefore, according to the formula of mathematical expectation we obtain the
equation (11).

By the similar considerations that have been used above, it can be also found
the equation

E(2)(n+ 1) = λa1E
(1)(n) + (1− ν)a2E

(2)(n). (12)

The system of difference equations (11), (12) describes behavior of the first
particular moments of random variables xn, xn+1.

The system of difference equations

D(1)(n+ 1) = (1− λ) a21D
(1)(n) + ν a22D

(2)(n),

D(2)(n+ 1) = λ a21D
(1)(n) + (1− ν)a22D

(2)(n)

for the second particular moments D(k)(n) = E
(k)
2 (n), k = 1, 2 can be obtained

by the same way as for the first particular moments.

Finally, the system of linear difference equations of the type (7), (8) for mo-

ments E
(k)
s (n), k = 1, 2, of any order s = 1, 2, 3, . . . can be derived by the same

way, in accordance with the formula (4). �
Remark 2� The system of equations (7), (8) can be rewritten in simpler form

un+1 = (1− λ)as1un + νas2υn,

υn+1 = λas1un + (1− ν)as2υn, s = 1, 2, 3, . . . ,
(13)

where un = E(1)(n), υn = E(2)(n), un+1 = E(1)(n+ 1), υn+1 = E(2)(n+ 1).

Remark 3� For the probability density functions

f(n, x) = f (1)(n, x) + f (2)(n, x)

it is impossible to create a simple system of ordinary difference equations, that
would reflect the relationship among values of f(n, x) for different values of n.
It is possible only for particular values of the probability density functions
f (1)(n, x), f (2)(n, x).
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Example 1. Let us find condition for mean stability of solutions of linear equa-
tions (5) such that probabilities pk(n) = P{ξn = θk}, k = 1, 2 satisfy the system
of difference equations (6). The mean stability of solutions of the difference
equation (5) is equivalent to the stability of solutions of the system (11), (12)
or, in view to the Remark 2, is equivalent to its simpler form (13) with s = 1.

The characteristic equation, under assumption ν = λ, is∣∣∣∣z − (1− λ)a1 −λa2
−λa1 z − (1− λ)a2

∣∣∣∣=z2− z(1−λ)(a1 + a2) + (1−2λ) a1a2=0. (14)

Both roots of the equation (14) are real. For the maximum absolute value of this
roots the condition

zmax = max{|z1|, |z2|}

=
(1− λ)(a1 + a2)

2
+

√
(1− λ)2

(a1 − a2)2

4
+ λ2a1a2 < 1,

is valid, if the inequality below holds

(a1 + a2)(1− λ) < 1 + a1a2(1− 2λ). (15)

The condition (15) specifies the domain of mean stability of solutions of dif-
ference equation (5).

By the same way it can be derived the condition

(a21 + a22)(1− λ) < 1 + a21a
2
2(1− 2λ),

which defines the domain of mean square stability of solutions of equations (5)
and the condition

(as1 + as2)(1− λ) < 1 + as1a
s
2(1− 2λ)

defines the domain of stability in the sth mean of the solutions.

Let us discuss some values of a1, a2. It is simple to prove the inequality

a1 ≤ zmax ≤ a2

under the assumption 0 < a1 < a2. Moreover, if

0 < ak < 1, k = 1, 2, then zmax < 1

and the zero solutions of the system (13) are asymptotically stable. In the other
side, if

ak > 1, k = 1, 2,

then the zero solution oscillates. The most interesting situation is when

0 < a1 < 1 < a2.
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The considered equation (5) becomes deterministic if λ = 1 and takes the
form of equation

xn+2 = a1 a2 xn.

The domain of stability in the case of deterministic equation is once shaded
in the Figure 1. The domain of the mean stability of solutions of equation (5)
in the case λ �= 1 obtained from (15) is twice shaded in the Figure 1.

Figure 1. Domains of stability for equation (5).

4. Model problem

We apply the results on the stability of solutions of the system (6) established
above in economical model problem. We consider the following situation: the
bank randomly changes the rate interest of deposits while choosing from two
values p or q. Our aim is to find the mean value of the rate for sufficiently large n.
Suppose that the change of the rate is described by difference equations (5),
where

pk(n) = P{ξn = θk}, k = 1, 2, n = 1, 2, . . .
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Let xn be random value of the rate through n time intervals. Then changes
of the rate can be described by difference equation

xn+1= a(ξn)xn.

The coefficient of equation (5) when the random variable is in the state θ1 is

a1 = a(θ1) = 1 +
p

100
.

If the random variable is in the state θ2 then the coefficient is

a2 = a(θ2) = 1 +
q

100
·

The first moment

E(n) = E(1)(n) +E(2)(n)

of random solution is described by the system of difference equations (11), (12),
where values of coefficients established here are used.

Growth of solutions is defined by zmax

zmax =
(1− λ)a1 + (1− ν)a2

2

+

√(
(1− λ)a1 − (1− ν)a2

2

)2

+ λνa1a2 . (16)

If the rate is not changing, it means a1 = a2, then from the formula (16) we
obtain

zmax = a1.

It is interesting to calculate mean increase of the rate for various values of λ
and ν. The results are in Table 1. The average time of remain in the first state
is λ−1, in the second state ν−1.

As we can see in Table 1, increase of the rate interest is equal to mean value
of rates p and q if λ = ν = 0, 5.

Table 1. Table of mean increase of the rate.

λ = ν % λ = ν % λ ν %
0, 000 5, 000 0, 2 4, 014 0, 1 0, 2 4, 353
0, 001 4, 900 0, 3 4, 006 0, 1 0, 3 4, 511
0, 010 4, 395 0, 4 4, 002 0, 1 0, 4 4, 606
0, 100 4, 038 0, 5 4, 000 0, 1 0, 5 4, 670
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5. Moment equations for the non-homogenous
linear difference equations

Next, on the probability space (Ω,F,P) we consider the initial value prob-
lem (1), (2) when the system (1) is stochastic nonhomogenous linear difference
equation of the first order in the form

xn+1 = a(ξn)xn + b(ξn), (17)

where ξn is a random Markov chain which has q states

ξn = θk, k = 1, 2, . . . , q

with probabilities

pk(n) = P{ξn = θk}, k = 1, 2, . . . , q

that satisfy equation (3).

In the next theorem we also denote

ak = a(θk), bk = b(θk), ak �= 0, k = 1, 2, . . . , q.

	
����� 2� Moment equations of any order s = 1, 2, . . . for the equations (17)
are of the form

E(k)
s (n+ 1) =

q∑
r=1

πkr

s∑
j=0

(
s

j

)
ajr b

s−j
r E

(r)
j (n), k = 1, 2, . . . , q. (18)

P r o o f. For particular probability density function we obtain system of func-
tional equations

fk(n+ 1, x) =

q∑
s=1

πksfs

(
n,

x− bs
as

)
· 1

as
, k = 1, 2, . . . , q. (19)

The system (18) of linear difference equations for particular sth moments,
s = 1, 2, . . . can be obtained multiplying particular probability density func-
tions by the xs and integrating them from −∞, to ∞. �

Let us recall that the total density function is a sum of particular density
functions

f(n, x) =

q∑
k=1

fk(n, x).

The particular moment of any order is defined by the formula (4). For s = 0 we
have

E
(k)
0 (n) ≡ pk(n), k = 1, 2, . . . , q.
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In general, to find particular moment of order s it supposes to know all the
particular moments of order 0, 1, . . . , s − 1. Step by step in accordance to the
formula (18) we get

E
(k)
0 (n+ 1) =

q∑
r=1

πkrE
(r)
0 (n),

E
(k)
1 (n+ 1) =

q∑
r=1

πkr

(
arE

(r)
1 (n) + brE

(r)
0 (n)

)
,

E
(k)
2 (n+ 1) =

q∑
r=1

πkr

(
a2rE

(r)
2 (n) + 2arbrE

(r)
1 (n) + b2rE

(r)
0 (n)

)
,

...

The system of difference equations (18) has simpler form

E(k)
s (n+ 1) =

q∑
r=1

πkra
s
rE

(r)
s (n), k = 1, 2, . . . , q

in the case when b(ξ) ≡ 0 in the system of equations (19).

6. Moment equations for the non-homogenous
system of linear difference equations

In the last section we consider the system of linear difference equations

xn+1 = A(ξn)xn +B(ξn), (20)

on the probability space (Ω,F, P) together with the initial condition (2). In the
considered system ξn is Markov chain which has q different states θ1, θ2, . . . , θq.
We suppose that probabilities pk(n) = P{ξn = θk} satisfy the system of linear
difference equations

pk(n+ 1) =

q∑
k=1

fk(n, x)δ(ξ − θk),

where δ(ξ) is a Dirac function.

We denote

A(θk) = Ak, B(θk) = Bk

and we suppose

det Ak �= 0.

55
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����� 3� Moment equations of first and second order for the system of equa-
tions (20) are of the form

E(k)(n+ 1) =

q∑
s=1

πks

(
AsE

(s)(n) + Bsps(n)
)
,

D(k)(n+ 1) =

q∑
s=1

πks

(
AsD

(s)(n)A∗
s +AsE

(s)(n)B∗
s

+Bs

(
E(s)(n)

)∗
A∗

s +BsB
∗
sps(n)

)
, k = 1, 2, . . . , q. (21)

P r o o f. The probability density functions fk(n, x), k = 1, 2, . . . , q satisfy the
system of linear functional equations

fk(n+ 1, x) =

q∑
s=1

πksfs

(
n,A−1

s (x−Bs)
)
det A−1

s ,

k = 1, 2, . . . , q, n = 1, 2, . . . (22)

The first equation of (21), in accordance with Definition 2, we obtain by the
multiplying equation (22) by the column vector x, subsequently by integrating
the product on m-dimensional phase space Em. By the same way we get the
second equation of (21). �


�������� 1� For the homogenous system of difference equations with random
Markov coefficients, i.e., for the system

xn+1 = A(ξn)xn, n = 1, 2, . . . , (23)

the system of the moment equations (21), is in the following form

E(k)(n+ 1) =

q∑
s=1

πksAsE
(s)(n),

D(k)(n+ 1) =

q∑
s=1

πksAsD
(s)(n)A∗

s , k = 1, 2, . . . , q.

Example 2. Let us construct system of moment equations for the system of dif-
ference equations (23), where

A1 = A(θ1) =

(
1 0
0 1

)
, A2 = A(θ2) =

(
0 1

−1 0

)
,

π11 = 1− λ, π12 = ν, π21 = λ, π22 = 1− ν.

56



MODEL OF STABILIZING OF THE INTEREST RATE USING BY MOMENT EQUATIONS

Then the system of moment equations of the first order is in the form

E(1)(n+ 1) = (1− λ)

(
1 0
0 1

)
E(1)(n) + ν

(
0 1

−1 0

)
E(2)(n),

E(2)(n+ 1) = λ

(
1 0
0 1

)
E(1)(n) + (1− ν)

(
0 1

−1 0

)
E(2)(n).

The system of moment equations of the second order is of the form

D(1)(n+ 1) = (1− λ)

(
1 0
0 1

)
D(1)(n)

(
1 0
0 1

)

+ ν

(
0 1

−1 0

)
D(2)(n)

(
0 −1
1 0

)
,

D(2)(n+ 1) = λ

(
1 0
0 1

)
D(1)(n)

(
1 0
0 1

)

+ (1− ν)

(
0 1

−1 0

)
D(2)(n)

(
0 −1
1 0

)
.

As a conclusion let us remark that considered difference equations describe
the evolution of a state of dynamical systems. Development of mathematical
modeling of natural phenomena requires new enhanced methods. The established
moments equations can be used also for solving problems such as:

• finding a model of dynamics of populations that do not interfere in biology;

• solving a problem of bank operations—models of saturation of citizens
saving;

• solving economics problem—to find a model of market, where there are
delays of products selling and others.
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